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a b s t r a c t

We formulate a control problem for positive compartmental systems formed by nodes (buffers) and
arcs (flows). Our main result is that, on a finite horizon, we can solve the Pontryagin equations in one
shot without resorting to trial and error via shooting. As expected, the solution is bang–bang and the
switching times can be easily determined. We are also able to find a cost-to-go-function, in an analytic
form, by solving a simple nonlinear differential equation. On an infinite horizon, we consider the
Hamilton–Jacobi–Bellman theory and we show that the HJB equation can be solved exactly. Moreover,
we show that the optimal solution is constant and the cost-to-go function is linear and copositive.
This function is the solution of a nonlinear equation. We propose an iterative scheme for solving this
equation, which converges in finite time. We also show that an exact solution can be found if there
is a positive external disturbance affecting the process and the problem is formulated in a min sup
framework. We finally provide illustrative examples related to flood control and epidemiology.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

A compartmental system is a positive system whose state
ariables are associated with nodes representing reservoirs (com-
artments), where resources are stored, and whose dynamics is
ue to flows circulating on the arcs among the nodes. In the
inear case, the flow from one node to another is proportional
o the amount of resource in the departure node. Deeply inves-
igated and encountered in many fields (Jacquez & Simon, 1993),
ompartmental models are important in the control (Lenhart &
orkman, 2007) and structural analysis (Blanchini & Giordano,
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2021) of biological systems, in pharmacokinetics and toxicokinet-
ics (Yeargers, Herod, & Shonkweiler, 2012), and in the analysis
and the control of infection dynamics (Brauer & Castillo-Chavez,
2012; Lee & Leitmann, 1994; Martcheva, 2015; Morton & Wick-
wire, 1974; Rowthorn, Laxminarayan, & Gilligan, 2009; Sharomi
& Malik, 2017). The COVID-19 pandemic has recently spurred re-
newed interest in the control of epidemic models (Arino, Brauer,
van den Driessche, Watmough, & Wu, 2007; Bloem, Alpcan, &
Basar, 2009; Bussell, Dangerfield, Gilligan, & Cunniffe, 2019; Diek-
mann & Heesterbeek, 2000; Forster & Gilligan, 2007; Gumel et al.,
2004; Hansen & Day, 2011; Hethcote, 2000; Kermack & McK-
endrick, 1927), leading to countless new contributions, see for
instance (Bin et al., 2021; Freddi, 2022; Hayhoe, Barreras, &
Preciado, 2021; Köhler et al., 2021; Mandal et al., 2020); we refer
to Alamo, Reina, Millán Gata, Preciado, and Giordano (2021) for a
very recent survey.

We consider here the control problem in which some of the
coefficients governing the flows among the nodes are control
variables. This type of situation is encountered in controlled drug
delivery and treatment planning, formulated as the control of
a positive switched system by Colaneri, Middleton, Chen, Ca-
porale, and Blanchini (2014), Hernandez-Vargas, Colaneri, Mid-
dleton, and Blanchini (2011) and Hernandez Vargas, Middleton,
and Colaneri (2014) for HIV mitigation and then by Devia and
Giordano (2019) and Giordano, Rantzer, and Jonsson (2015) for
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ancer therapies. Indeed, our problem could be framed in the
ontext of positive linear controlled switching systems. These
ystems have several other applications besides those mentioned,
ncluding fluid networks, thermal systems and traffic control. We
efer to Blanchini, Colaneri, and Valcher (2016) for a survey and
ore references on the topic of positive switching systems. The
ptimal control of compartmental models has been successfully
pplied to drug administration (Kusuoka et al., 1981) and con-
rolled cancer chemotherapic treatment (Swierniak, Ledzewicz, &
chättler, 2003).
The control problem for positive switched systems is by no

eans an easy one, but it can be efficiently solved under particu-
ar assumptions. The optimal control problem on a finite horizon
an be solved via dynamic programming methods (Hernandez-
argas et al., 2011) and, as long as the switching controlled
oefficients are on the diagonal of the system matrix, the con-
rol reduces to a convex optimization problem (Colaneri et al.,
014; Rantzer & Bernhardsson, 2014). Unfortunately, this result
oes not apply in the case of switched compartmental systems
ith controlled arcs, because coefficients outside the diagonal are
odified by the control.
We formulate the control problem for linear controlled com-

artmental systems with a linear cost on both finite and infinite
orizon. In general, Pontryagin theory requires a shooting ap-
roach to solve the state equations, forward in time, and the
o-state equations, backward in time. The convergence of the
hooting scheme is a critical issue. The dynamic programming
pproach is even harder, since it requires the solution of the
JB equation, which, in general, involves a numerical brute-
orce scheme. We show that, quite surprisingly, for controlled
ompartmental systems, both problems can be solved efficiently
ia Pontryagin theory and Hamilton–Jacobi–Bellman theory. The
ontributions of the manuscript are summarized next.

• In the finite horizon problem, the state and co-state equa-
tions are decoupled, and the Hamiltonian minimizer control
depends on the co-state only. This means that the co-state
equation is integrated just once, thus producing directly the
optimal control input.

• The optimal control does not depend on the initial state.
• Pontryagin equations give necessary conditions for optimal-

ity. To support the theory, we formulate the HJB equation
on a finite horizon, which provides sufficient conditions. The
solution is the same achieved via the Pontryagin maximum
principle, which ensures the optimality of the solution. The
control is switching.

• On an infinite horizon, we consider the HJB equation and we
show that it reduces to an algebraic equation. The derived
cost-to-go function is linear co-positive. Hence, the optimal
control is constant in the long run.

• The proposed algebraic equation may have multiple solu-
tions. Yet, we prove that there is a single stabilizing one (the
only one that can be accepted). Our constructive proof pro-
vides an iterative scheme that converges to the stabilizing
solution in a finite number of steps.

• When the system is affected by an additive positive exter-
nal disturbance, a similar approach is proposed to solve a
min sup control problem.

• The HJB approach requires stabilizability. We show how to
check this assumption by solving the problem of minimizing
the Frobenius eigenvalue.

e apply our results on two illustrative examples. The first is a
lood control problem with 6 states. In the second, inspired by
he COVID-19 pandemic, we analyze the sensitivity of the IDART
odel (Giordano et al., 2020), having 5 state variables, with
 o

2

16 uncertain parameters treated as ‘‘control variables’’, and we
determine minimum and maximum values of relevant variables
via a minimization/maximization problem.

A very preliminary version of these results has been pre-
sented at a conference (Blanchini, Bolzern, Colaneri, De Nicolao,
& Giordano, 2021).

1.1. Notation

Given a vector v = [v1, v2, . . . , vm] ∈ Rm, we denote

iag(v) =

⎡⎢⎢⎣
v1 0 . . . 0
0 v2 . . . 0
...

...
. . .

...

0 0 . . . vm

⎤⎥⎥⎦ and

sign(v) =

⎡⎢⎢⎣
sign(v1)
sign(v2)

...

sign(vm)

⎤⎥⎥⎦ ,

here

ign(vi) =

{
1 if vi ≥ 0
−1 if vi < 0

he inequality u < v (u ≤ v) has to be interpreted compo-
nentwise. We write |U | = I to mean that U belongs to the
set

{U : |U | = I} .
= {diag(u1, u2, . . . , um), |uk| = 1}

and |U | ≤ I to mean that U belongs to the set

{U : |U | ≤ I} .
= {diag(u1, u2, . . . , um), |uk| ≤ 1} .

square matrix M is Metzler if Mij ≥ 0 for i ̸= j and it is
rreducible if there is no variable permutation that brings M in
block-triangular form.

. Model description

The class of models we consider can be written as

˙(t) = Ãx(t) + F̃V (t)G̃x(t), (1)

here the state x(t) ∈ Rn represents the amount of resource
tored at the nodes (compartments) and the diagonal matrix V (t)
f control variables is associated with the flows along some of the
rcs connecting the nodes. For example, in a fluid network (cf.
ection 8.1), each state component represents the fluid level in a
eservoir, while the arc control variables represent the opening
f the valves that regulate the flow along some of the pipes
onnecting the reservoirs.
We consider the following assumptions.

ssumption 1. Matrix V (t) ∈ Rm×m is diagonal and has elements
−

i ≤ vi(t) ≤ v+

i .

ssumption 2. Matrix Ã + F̃V G̃ ∈ Rn×n is Metzler for all choices
f vi ∈ [v−

i , v+

i ], i = 1, . . . ,m. Matrix G̃ ∈ Rm×n is nonnegative.

ssumption 3. The initial state x(0) = x0 is nonnegative.

We consider the problem of minimizing the positive cost

J = h⊤x(T ) +

∫ T

0
ℓ̃⊤x(t)dt +

∫ T

0
r⊤V (t)G̃x(t)dt, (2)

ith nonnegative weight vectors h, ℓ̃ and r . The first two terms

f the cost are linear functions of the state, while the last term
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s jointly bilinear in the state and the control. This cost penalizes
oth the presence of fixed assets (for instance, fluid) that remain
tored at the nodes over time, weighted by ℓ̃, and the controlled
lows V (t)G̃x(t) representing the control effort, weighted by r .

To simplify the notation, we can parameterize matrix V , with
ounds V−

≤ V ≤ V+, as

=
V−

+ V+

2
+ U

V+
− V−

2
,

with

|U | ≤ I (i.e., U = diag[u], |u| ≤ 1). (3)

Adding the constant part to Ã and scaling G̃ yields

Ã + F̃V G̃ = Ã + F̃
V−

+ V+

2
G̃ + F̃U

V+
− V−

2
G̃ .

= A + FUG,

y defining the new matrices A .
= Ã+ F̃ (V−

+V+)G̃/2, F .
= F̃ and

.
= (V+

− V−)G̃/2.
Henceforth, we thus consider a model of the form

ẋ(t) = Ax(t) + FU(t)Gx(t), |U | ≤ I. (4)

Note that the cost (2) remains of the same form

J = h⊤x(T ) +

∫ T

0
ℓ⊤x(t)dt +

∫ T

0
r⊤U(t)Gx(t)dt, (5)

with ℓ⊤
= ℓ̃⊤

+ r⊤(V−
+ V+)G̃/2, and the new matrix G is still

nonnegative.

Remark 1. System (4)–(5) encompasses (1)–(2) and Assump-
tions 1–3 remain valid: we just assume −v−

= v+
= 1̄, the

all-ones vector. The change of variables is useful to make the final
formulas much more compact.

Positivity of the cost implies that, in the new variable U , the
following assumption holds.

Assumption 4. For all |U | ≤ I , it holds componentwise that

ℓ⊤
+ r⊤UG ≥ 0.

We will reconsider this assumption later on.
We consider the control problem with a finite horizon T < ∞

and with an infinite horizon T = ∞; in the latter case, h = 0.

3. Finite horizon control

The main result of this section shows that we can solve the
finite horizon problem directly with a single integration of the
co-state equation, without resorting to shooting.

The Hamiltonian is

H(x, ξ , u) = ξ⊤ [A + FUG] x + r⊤UGx + ℓ⊤x.

The minimum is achieved componentwise by solving

min
|U |≤I

[
ξ⊤FU + r⊤U

]
Gx. (6)

Lemma 1. The minimizer in (6) is given by

U∗
= diag

(
u∗

)
= diag

(
−sign[F⊤ξ + r]

)
. (7)

The maximizer is U∗
= diag

(
sign[F⊤ξ + r]

)
.

Proof. The minimizer U∗ is found by considering only the part
depending on U: [ξ⊤F + r⊤

]UGx. Since Gx is nonnegative by
assumption, we immediately have (7). The same proof holds for
the maximizer. ■
3

Remark 2. In view of the definition of the sign function, U∗ is
uniquely defined.

Since u∗(ξ ) = −sign
[
F⊤ξ + r

]
does not depend on x, the

adjoint equation is

− ξ̇ (t)⊤ = ξ⊤
[
A + FU∗(t)G

]
+ r⊤U∗(t)G + ℓ⊤ (8)

U∗
= diag

[
u∗(ξ )

]
(9)

ξ (T ) = h (10)

which has to be solved backward in time and can be solved
independently of x.

Proposition 1. Let Assumptions 1–4 be satisfied. Then the optimal
control function u∗ can be computed by means of a single integration
of (8)–(9), backward in time, with final condition (10). The optimal
control is independent of x(0).

The proof is given in the next subsection.
The same property holds if we wish to maximize the cost

function: we just need to replace u∗(ξ ) = −sign
[
F⊤ξ + r

]
by

u∗(ξ ) = sign
[
F⊤ξ + r

]
.

Example 1. Consider a system of the form (1) with

Ã = 0, F̃V (α, β) =

[
−α 0

α −β

]
, G̃ = I.

With T = 1, take the parameters α ∈ [1, 4] and β ∈ [2, 3] as
control variables and assume the cost weights h⊤

= [0 1], r = 0
and ℓ̃ = 0 in (2). The differential Eq. (8) is

−
[

ξ̇1 ξ̇2
]

=[
ξ1 ξ2

]

×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[

−
5
2 0
5
2 −

5
2

]
  

A

+

[
−1 0
1 −1

]
  

F

[
u1 0
0 u2

]
  

U

[ 3
2 0
0 1

2

]
  

G

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

with
[

ξ1(T ) ξ2(T )
]⊤

=
[

0 1
]⊤

If we take u∗
= −sign[ξ⊤F ], we obtain the minimizer functions

, β in Fig. 1, upper panel. To maximize, we take u∗
= sign[ξ⊤F ],

eading to the maximizer functions α, β in Fig. 1, middle panel.
hile β is constant, α switches at some point. The lower panel

of Fig. 1 reports the bounds on the state evolution and a set
of randomly generated curves, obtained by extracting random
constant values of parameters α ∈ [1, 4] and β ∈ [2, 3] from
niform distributions. It is worth stressing that the bounds are
alid only at the final time t = T = 1, as can be seen in Fig. 1

(lower panel).
To achieve bounds valid at an intermediate time 0 < T ′ < T ,

one should re-run the procedure with the new final time T ′ and
the curves would be different on [0, T ′

]. So, to have an overall
bounding function at intermediate times, we just need to iterate
over different values of the final time: the computation is so fast
that this goal is straightforward.

The example shows that the maximum and the minimum are
not achieved for constant values of the control parameters on a
finite horizon. This is not the case for infinite horizons, as we will
see later.

Pontryagin’s maximum principle provides a convenient
theoretical framework to solve the problem. Unfortunately, in
general, it provides necessary conditions only (Lewis, Vrabie, &
Syrmos, 2012). To show that these conditions are also sufficient,
we exploit the Hamilton–Jacobi–Bellman theory.
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Fig. 1. Time evolution of: the minimizer functions α(t), blue, and β(t), orange
(upper panel); the maximizer functions α(t), blue, and β(t), orange (middle
panel); curves generating the lower- (blue) and upper- (red) bounding values
for x2(T ), along with a set of randomly generated (black) curves (lower panel).
It is important to note that the bounds only hold at the final time T = 1.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

3.1. The finite-time Hamilton–Jacobi-Bellman equation

Sufficient conditions can be derived by considering the
Hamilton–Jacobi–Bellman equation on the finite horizon [0, T ],
hich turns out to be

min
U |≤I

{
∂Ψ (x, t)

∂t
+ ∇Ψ (x) [A + FUG] x + ℓ⊤x + r⊤UGx

}
0. (11)

or this equation, we try a solution of the form

(x, t) = z⊤(t)x. (12)

y substituting (12) into (11), we get

min
|U |≤I

[
ż⊤(t) + z⊤(t) [A + FUG] + ℓ⊤

+ r⊤UG
]
x = 0. (13)

rom Lemma 1, the minimizer is u∗
= −sign[F⊤z(t) + r]. Setting

U∗
= diag[u∗

] in (13) yields the following ordinary differential
equation, with final condition h⊤:

ż⊤(t) + z⊤(t)A − |z⊤(t)F + r⊤
|G + ℓ⊤

= 0 (14)
⊤(T ) = h⊤ (15)

q. (14) is nonlinear. However, it is Lipschitz, hence it admits a
nique solution z(t). We are therefore in a position to prove the
ollowing result.

heorem 1. Let Assumptions 1–4 be satisfied. The cost-to-go func-
ion of the finite-horizon optimal control problem is given by (12),
here z(t) solves (14)–(15). The optimal control is given by (7) with
= z. The optimal cost is Jopt = z⊤(0)x(0).

roof. The HJB theory provides sufficient optimality conditions,
hile the solution of (14)–(15) exists and it is uniquely defined,
ielding Ψ = z⊤(t)x. ■

Note that the solution z(t) of (14)–(15) is the same we get
ith (8)–(10) if we consider the corresponding, uniquely defined,
∗ ⊤ ⊤
(t) = diag[sign(ξ F + r )].

4

.2. Model generalization

The model can be generalized to the case in which the Metzler
atrix A(t) and the nonnegative matrix G(t) are time-varying,

also in the presence of a linear control term Ec(t) and of a
nonnegative drift term d(t) ≥ 0:

ẋ(t) = A(t)x(t) + FU(t)G(t)x(t) + Ec(t) + d(t), (16)

where matrix E is given and c is a control vector.

Assumption 5. Vector c(t) has elements −1 ≤ ci(t) ≤ 1 and
Ec(t) + d(t) ≥ 0 for all c(t).

Again, normalizing to unitary lower and upper bounds is not
a restriction, since we can scale E and absorb any constant term
into d.

Remark 3. If, in the original model (1), the bounds on V (t) are
time-varying, v−

i (t) ≤ vi(t) ≤ v+

i (t), we can still reduce the
analysis to the constant bound case

ẋ(t) = A(t)x(t) + FU(t)G(t)x(t), with |U(t)| ≤ I,

with A(t) Metzler, G(t) nonnegative as we did in Section 2.

We consider the problem of minimizing the positive cost

J = h⊤x(T ) +

∫ T

0
[ℓ⊤

+ r⊤U(t)G]x(t)dt +

∫ T

0
s⊤c(t)dt, (17)

with the additional term s⊤c(t), where s is a nonnegative vector.
The new Hamiltonian is

H(x, ξ , u, c, d, t) = ξ⊤ [A(t)x + FUG(t)x + Ec + d]
+ r⊤U(t)G(t)x + ℓ⊤x + s⊤c.

As long as x(t) ≥ 0, the minimizers of the expression are:

u∗(ξ ) = −sign
[
F⊤ξ + r

]
,

c∗(ξ ) = −sign
[
E⊤ξ + s

]
,

while the adjoint equation is the same as before:

−ξ̇ (t)⊤ = ξ⊤
[
A(t) + FU∗(t)G(t) + r⊤U∗(t)G(t) + ℓ⊤

]
(18)

U∗
= diag

[
u∗(ξ )

]
(19)

ξ (T ) = h (20)

Again, this equation does not depend on x, and hence no shooting
is required. However, since variable x(t) is assumed nonnegative,
the control is optimal as long as x(t) ≥ 0.

Proposition 2. Under Assumptions 1–5, the control functions u∗ and
c∗ can be computed by means of a single integration of (18)–(20),
backward in time. The obtained control is independent of x(0) and it
is optimal as long as we have x(t) ≥ 0 on [0, T ].

Conditions (18)–(20) are quite convenient for computation,
but they are only necessary in principle. As done before, to
guarantee that the achieved solution is indeed the optimal one,
we resort to the Hamilton–Jacobi–Bellman theory, which gives
sufficient conditions, and leads to the same solution.

4. Infinite horizon problem

We now consider system (4) and wish to solve the infinite
horizon problem of minimizing the cost

J =

∫
∞

0
ℓ⊤x(t)dt +

∫
∞

0
r⊤U(t)Gx(t)dt, (21)

under Assumptions 1–4.

For infinite horizons, we need a stabilizability assumption.
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ssumption 6. There exists a matrix Ū such that A + FŪG is
Hurwitz.

We consider again the Hamilton–Jacobi–Bellman theory. Since
we assume a nonnegative initial condition, we consider a cost-to-
go function Ψ defined in the positive orthant. The infinite-horizon
HJB equation is

min
|U |≤I

{
∇Ψ (x) [A + FUG] x + ℓ⊤x + r⊤UGx

}
= 0. (22)

ith an abuse of notation, we consider ∇Ψ as the gradient of Ψ ,
hich is not necessarily differentiable. The utmost regularity we
an ensure to Ψ is its concavity.

roposition 3. Under Assumptions 1–4 and 6, Ψ is concave and
opositively homogeneous of order 1: for λ ≥ 0, Ψ (λx) = λΨ (x).

roof. It goes as in Hernandez-Vargas et al. (2011), where the
proof is given for discrete-time systems. Let x0 be a convex
ombination of xA and xB, x0 = αxA + βxB, α + β = 1, α, β ≥ 0.
enote by J(x, u) the cost with initial condition x and control u
nd denote by J∗(x0, u∗

0), J∗(xA, u∗

A), J∗(xB, u∗

B) the optimal costs,
ith the corresponding optimal controls u∗

0, u
∗

A, u
∗

B. Then
∗(x0, u∗) = αJ(xA, u∗) + βJ(xB, u∗)

≥ αJ(xA, u∗

A) + βJ(xB, u∗

B),

here the first equality is due to the linearity of the cost for fixed
∗. The fact that Ψ is copositively homogeneous of order 1 is

immediate. ■

Concavity ensures that the gradient ∇Ψ (x) is defined almost
everywhere. Consider a point x where

z⊤
= ∇Ψ (x)

is defined and let us study it locally, relying on the next important
lemma, whose proof is immediate.

Lemma 2. The minimum in (22) is obtained on the vertices

U∗(x) = argmin
|U |≤I

{
z⊤ [A + FUG] x + ℓ⊤x + r⊤UGx

}
= arg min

|Û |=I

{
z⊤

[
A + FÛG

]
x + ℓ⊤x + r⊤UGx

}
Letting U∗ denote the optimal control, the HJB equation be-

omes an algebraic equation
⊤

[
A + FU∗G

]
x + ℓ⊤x + r⊤U∗Gx = 0, (23)

hich is valid for z⊤
= ∇Ψ (x), namely for the specifically chosen

.
Motivated by these considerations we wonder whether the

uantity z can be constant for all x; equivalently, we look for a
solution of the form

Ψ (x) = z⊤x,

with a common z ≥ 0. By eliminating x, we get

z⊤
[
A + FU∗G

]
+ ℓ⊤

+ r⊤U∗G = 0. (24)

Substituting the expression (7) of U∗ into Eq. (24) yields

z⊤A −
⏐⏐z⊤F + r⊤

⏐⏐G + ℓ⊤
= 0. (25)

To find the solution of (25) we proceed as follows.

Theorem 2. Let Assumptions 1–4 and 6 be satisfied. Assume that
Eq. (25) admits a single solution z⊤

opt > 0, and that u∗
=

sign[F⊤zopt + r] is stabilizing, namely, A + FU∗G is Hurwitz with
∗

= diag[u∗
]. Then the function

(x) = z⊤ x
opt

5

satisfies the HJB equation and control (7) is optimal with the constant
control law U∗.

The theorem has to be completed by showing the existence
and uniqueness of the solution, as we discuss in the next section.

Remark 4. To solve the maximization problem, we just need to
consider U∗

= sign[F⊤zopt + r], where zopt now solves

z⊤A +
⏐⏐z⊤F + r⊤

⏐⏐G + ℓ⊤
= 0. (26)

Clearly, this solution has no practical significance if U∗ destabi-
lizes the system: hence, in the infinite horizon case, we need to
assume that A + FUG is Hurwitz for all |U | ≤ I . Note that this
new assumption is limited to the claim of this remark and needed
nowhere else.

5. Uniqueness and existence of a stabilizing solution

We now tackle the issue of existence and uniqueness of the
solution of Eq. (25). We first consider the problem of the existence
of a vector z along with a stabilizing U∗. To keep the presentation
simple we strengthen Assumption 4 as follows; we will comment
on this aspect later on.

Assumption 7. For all |U | ≤ I , componentwise,

ℓ⊤
+ r⊤UG > 0.

To find a solution to (24), we propose a procedure described
as pseudo-code that generates sequences zk > 0, k = 1, 2, 3 . . .

and U∗

k , k = 1, 2 . . . converging to the solution.

Procedure 1. Inputs: [r , ℓ, A, F , G, U∗

0 ], with U∗

0 stabilizing.

Step 0. Check the stability of [A + FU∗

0G] and compute

z⊤

1 = −
[
ℓ⊤

+ r⊤U∗

0G
] [

A + FU∗

0G
]−1

;

(where z⊤

1 is the solution z⊤ to (24) with U∗
= U∗

0 .)
Set k := 1.

Step 1. Compute

U∗

k = −diag{sign[r⊤
+ z⊤

k F ]}; (27)

(i.e., U∗

k is the minimizer argmin|U |≤I [r⊤
+ z⊤

k F ]UGx.)

Step 2. Compute the solution z⊤

k+1 > 0 to the linear equation

z⊤

k+1[A + FU∗

k G] + r⊤U∗

k G + ℓ⊤
= 0. (28)

Step 3. IF zk+1 = zk STOP and provide as Output: z⊤
= z⊤

k+1 and
U∗

= U∗

k , ELSE set k := k + 1 and GOTO Step 1.

Theorem 3. Under Assumptions 1–3, 6 and 7, the proposed
Procedure 1 converges to the solution z⊤ > 0 to Eq. (24), and
provides a stabilizing U∗.

Proof. We need three steps.
Step (a) We first show that Eq. (28) can be solved for all k

o find z⊤

k+1, which is positive, because the considered matrix
A + FU∗

k G is Hurwitz and Assumption 7 holds, and therefore
−(r⊤U∗

k G + ℓ⊤)[A + FU∗

k G]
−1 > 0.

Matrix A + FU∗

0G is Hurwitz because U∗

0 is stabilizing. Hence
there exists z⊤

1 > 0 solving the equation. For k ≥ 1, given U∗

k
computed as in (27), and assuming [A + FU∗G] Hurwitz, so that
k
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e can compute z⊤

k+1 > 0 from (28), we show that [A + FU∗

k+1G]

s Hurwitz as well. Indeed

z⊤

k+1[A + FU∗

k+1G] = z⊤

k+1[A + FU∗

k G]

z⊤

k+1F [U∗

k − U∗

k+1]G = −ℓ⊤
− r⊤U∗

k G

z⊤

k+1F [U∗

k − U∗

k+1]G ± r⊤U∗

k+1G

−ℓ⊤
− r⊤U∗

k+1G  
<0 (Assumption 7)

−[r⊤
+ z⊤

k+1F ][U∗

k − U∗

k+1]  
≤0 (U∗

k+1 minimizer)

his implies that A+FU∗

k+1G is Hurwitz, hence a positive z⊤

k+1 can
e found. This proves that matrices A + FU∗

k G recursively gener-
ted by the procedure are Hurwitz and vectors zk are positive.
Step (b) We now prove that the positive sequence is non-

ncreasing: zk+1 ≤ zk for all k.

z⊤

k − z⊤

k+1][A + FU∗

k G] = z⊤

k [A + FU∗

k G] + r⊤U∗

k G + ℓ⊤

r⊤U∗

k−1G ± z⊤

k FU∗

k−1G = [z⊤

k F + r⊤
][U∗

k − U∗

k−1]G  
≤0 (U∗

k minimizer)

z⊤

k [A + FU∗

k−1G] + ℓ⊤
+ r⊤U∗

k−1G  
=0, because of (28)

≤ 0

ince [z⊤

k − z⊤

k+1][A+ FU∗

k G] ≤ 0, we multiply by the nonnegative
[A + FU∗

k G]
−1, preserving the inequality, to have

[z⊤

k − z⊤

k+1][A + FU∗

k G][−(A + FU∗

k G)
−1

]

= −[z⊤

k − z⊤

k+1] ≤ 0

Step (c) Since zk > 0 decreases, it has a limit z̄ ≥ 0. Now we need
to prove that z̄ > 0, strictly (in principle, it might have some zero
components). We have to remind that U∗

k is always assumed on
he vertices, therefore there are finitely many possible solutions
⊤

k of (28). Therefore the sequence z⊤

k takes values in a finite set.
As a consequence, convergence occurs for finite k, i.e. there

xists k such that z⊤

k = z⊤

k+1 = z̄⊤. On the other hand zk > 0 for
all k hence the limit is positive, z̄ > 0. ■

Remark 5. In principle one could consider all possible solutions
to (28) for U on the vertices in a combinatorial way and find a
stabilizing one. It turns out that Procedure 1 converges quickly to
the right solution in a finite number of steps and is much more
efficient than the combinatorial approach.

The procedure converges to some z̄ that might depend on
the initial choice of U∗

0 . However, we can prove uniqueness,
regardless of U∗

0 .

Theorem 4. Under Assumptions 1–3, 6 and 7, there cannot be two
istinct positive solutions za and zb with the property that ua =

−sign[z⊤
a F + r⊤

] and ub = −sign[z⊤

b F + r⊤
] are both stabilizing.

Proof. By contradiction, consider the corresponding U∗
a and U∗

b
nd assume both
⊤

a

[
A + FU∗

aG
]
x + ℓ⊤x + r⊤U∗

aGx = 0,
⊤

b

[
A + FU∗

bG
]
x + ℓ⊤x + r⊤U∗

bGx = 0.

hen

(z⊤

a − z⊤

b )[A + FU∗

aG]

= z⊤

a [A + FU∗

a ]G − z⊤

b [A + FU∗

b ]G
+ z⊤

b [A + FU∗

b ]G − z⊤

b [A + FU∗

a ]G
= −r⊤U∗

aG + r⊤U∗

bG + z⊤

b FU∗

bG − z⊤

b FU∗

aG
= −(r⊤

+ z F )[U∗
− U∗

]G ≤ 0,
b a b

6

where the last inequality holds because U∗

b is the minimizer.
gain, since (z⊤

a − z⊤

b )[A + FU∗
aG] ≤ 0, we multiply by the

onnegative −[A + FU∗
aG]

−1, to get z⊤

b ≤ z⊤
a . With the same

approach, we can show the opposite inequality, z⊤
a ≤ z⊤

b . Hence,
it must be z⊤

b = z⊤
a . ■

Remark 6. Assumption 7, a stronger version of Assumption 4,
is fundamental to ensure z⊤ > 0 and the overall system stabi-
lization. This issue is similar to the one with LQ control, when
the control may be non-stabilizing if the state cost is assumed
positive semi-definite. A possible relaxation is that the solutions
to (28) are positive for all |U | = I: this can happen even if we
weakly assume nonnegativity of the cost as in Assumption 4.

6. Optimality with an external disturbance

Consider the system with an additive external disturbance:

ẋ(t) = Ax(t) + FU(t)Gx(t) + Bw(t), (29)

with B a nonnegative matrix and vector w(t) a nonnegative
external disturbance. We introduce the objective function

J =

∫
∞

0 [ℓ⊤x(t) + r⊤U(t)Gx(t)]dt∫
∞

0 1⊤w(t)dt
(30)

nd we aim to solve min|U |≤I supw J , for some stabilizing U .
he ratio in (30) is an input–output amplification measure that
eighs the performance integral with the disturbance amplitude.
or instance, in a flood problem, such as the one considered in
ection 8.1, the numerator could be the weight of a persistent in-
oming flow (e.g., rain), instead of a flooding action concentrated
t t = 0. We derive the next result.

heorem 5. Let Assumptions 1–3, 6 and 7 be satisfied. Assume
x(0) = 0 and w(t) ≥ 0, w ∈ L1. Then

min
|U(t)|≤I

sup
w

J = max
k

q̂⊤Bek, (31)

where we denote by ek the kth vector of the canonical basis, while
vector q̂ > 0 solves the equation

q̂⊤A − |q̂⊤F + r⊤
|G + ℓ⊤

= 0. (32)

The optimal control is constant,

U∗
= diag

[
−sign[q̂⊤F + r⊤

]
]
, (33)

and the worst-case disturbance is

w∗
= δ(t)eν,

where δ(t) is the Dirac function and

ν = argmax
k

[q̂⊤Bek].

Proof. Consider the function V (x) = q⊤x, q > 0. We have

V̇ + (ℓ⊤
+ r⊤UG)x =

(
q⊤A − |q⊤F + r⊤

|G + ℓ⊤
)
x

+ |q⊤F + r⊤
|(I − U∗U)Gx + q⊤Bw

or all w ≥ 0 and |U | ≤ 1, where we set
∗

= −diag [sign(q⊤F + r⊤)].

ake q̂ > 0 that solves (32), to annihilate the term in round
rackets and get

˙ + (ℓ⊤
+ r⊤UG)x − q̂⊤Bw = |q̂⊤F + r⊤

|(I − U∗U)Gx ≥ 0.
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ote that (I − U∗U) ≥ 0 and the inequality becomes an equality
or U = U∗. Now integrate, divide by

∫
∞

0 1⊤w(t)dt and consider
hat x(0) = 0, so V (x(0)) = V (x(∞)) = 0 and∫
∞

0 (ℓ⊤
+ r⊤U(t)G)x(t)dt∫

∞

0 1⊤w(t)dt
≥

∫
∞

0 q̂⊤Bw(t)dt∫
∞

0 1⊤w(t)dt
, ∀w ∈ L1, (34)

where the equality holds if and only if U(t) ≡ U∗.
The fraction in the right-hand side of (34) is maximized for

w∗(t) = δ(t) eν,

where ν is the index corresponding to the largest component
[q̂⊤B]k of q̂⊤B, formally ν = argmaxk q̂⊤Bek. Therefore

inf
|U(t)|≤1

sup
w∈L1

∫
∞

0 (ℓ⊤
+ r⊤U(t)G)x(t)dt∫

∞

0 1⊤w(t)dt
= γ ∗

= q̂⊤Beν,

where q̂ satisfies Eq. (32) and the infimum is achieved for
U(t) ≡ U∗. ■

Remark 7. Consistently with the results of the previous sections,
the optimal control is constant, U = U∗, and does not depend
on B. Conversely, the worst case disturbance w∗

= δ(t)eν does
epend on B.

. Minimization of the Frobenius eigenvalue

This section considers the problem of minimizing, over |U | ≤

, the Frobenius dominant eigenvalue λF (A + FUG) of matrix
+ FUG, namely the eigenvalue with maximum real part, which

s real because A + FUG is a Metzler matrix. Besides being of
nterest on its own, the solution to this problem is useful to check
ssumption 6 and to find a starting U0 in Procedure 1.
To this aim, consider the functions p−(λ) and p+(λ) of a real

ariable λ{
p−(λ) = min|U |≤I det[λI − A − FUG],

p+(λ) = max|U |≤I det[λI − A − FUG],
(35)

hich are tight lower and upper bounds for the characteristic
olynomial

(λ,U) .
= det[λI − A − FUG];

precisely,

p−(λ) ≤ p(λ,U) ≤ p+(λ).

We notice that limλ→∞ p+(λ) = +∞. So let λ∗ be defined as the
largest real root of function p+(λ):

λ∗
= max{λ : p+(λ) = 0}.

We claim that the smallest Frobenius eigenvalue is

min
|U |≤I

λF (A + FUG) = λ∗.

By construction, p(λ∗,U) ≤ p+(λ∗) = 0.
Since any characteristic polynomial diverges, p(λ,U) → +∞

for λ → ∞, it must have a root larger or equal to λ∗. Hence,

λ∗
≤ min

|U |≤I
λF (A + FUG).

Now, since |U | ≤ I is a compact set, the maximum p+(λ) is
achieved for some U∗, hence p(λ∗,U∗) = p+(λ∗) = 0. Therefore,
λ∗ is the Frobenius eigenvalue of A+FU∗G, the minimum possible
one.

We conclude with this proposition.

Proposition 4. Under Assumptions 1 and 2, the value of U that
minimizes the Frobenius eigenvalue is on the vertices:

min λF (A + FUG) = min λF (A + FUG).

|U |≤I |U |=I

7

Fig. 2. Fluid network. The first compartment gets flooded: the fluid should flow
outside reservoirs 1, 2, 3 and 4, while the presence of fluid in reservoirs 5 and
6 is undesired.

Proof. For fixed λ = λ∗, p(λ∗,U) is a multiaffine function of
the diagonal entries ui of U . A multiaffine function defined on

hypercube (in our case |U | ≤ I) reaches its minimum and
aximum on the vertices (Giordano, Cuba Samaniego, Franco, &
lanchini, 2016), |U | = I . ■

The problem of minimizing the Frobenius eigenvalue is thus
olved by considering all possible vertices of U , computing all the
orresponding Frobenius eigenvalues λF (A+ FUG), and taking the
inimum one. A stabilizing U exists if and only if the minimum
robenius eigenvalue is negative.
The problem of maximizing the Frobenius eigenvalue, which

s important to check stability for all |U | ≤ I , has an analogous
ertex solution: max|U |≤I λ

F (A + FUG) = max|U |=I λ
F (A + FUG).

. Illustrative examples and applications

.1. A flood control problem

Consider the fluid network with six compartments shown in
ig. 2, which is modeled as

˙(t) = Ax(t) + FV (t)Gx(t),

ith

=

⎡⎢⎢⎢⎢⎢⎣
−α 0 0 0 0 0
0 −β 0 0 0 0
0 0 −(γ + µ) 0 0 0
0 0 0 −(δ + ν) 0 0
0 0 µ 0 −ϵ 0
0 0 0 ν 0 −φ

⎤⎥⎥⎥⎥⎥⎦ ,

=

⎡⎢⎢⎢⎢⎢⎣
−1 −1 −1 0 0
1 0 0 −1 0
0 1 0 0 −1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ ,

=

⎡⎢⎢⎢⎣
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤⎥⎥⎥⎦ .

The state components represent the fluid level in the reser-
oirs (compartments, associated with the nodes), while the con-
rol u(t) has components that represent the opening fractions
f the valves regulating the flow along some of the pipes that
onnect the reservoirs: ui = −1 if the valve is minimally opened
nd u = 1 if the valve is fully opened.
i
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Fig. 3. The optimal (switching) control evolution on the horizon T = 12 (top),
he corresponding optimal state evolution (bottom).

We set α = β = γ = δ = ϵ = µ = ν = 0.1 and φ = 0.2. The
bounds on the control parameters v are

v−
= [0.150 0.160 0.170 0.180 0.190],

+
= [1.150 1.160 1.170 1.180 1.190].

We consider the scenario where an excessive fluid level is
nitially present in the system (flood) and we study the optimal
mptying strategy. We assume that the presence of fluid in some
ompartments has to be avoided, yet it is temporarily necessary,
n order to clear the system. Taking as a cost the integral over
finite interval of a linear functional, we penalize the weighted
verage of the fluid levels in the reservoirs.
We consider the cost J =

∫ 12
0 ℓ⊤x(t)dt , over [0, 12], with

⊤
= [1 0 0 0 1.2 1],

hich penalizes the presence of fluid in reservoirs 1, 5 and 6.
The fluid is initially present in reservoir 1, while the others are

mpty:

(0) = [1 0 0 0 0 0]⊤.

ig. 3 shows the time evolution of the control variables (top) and
f the optimal state (bottom).
If we consider the infinite horizon problem (T = ∞), then,

olving (23), we get the cost-to-go function V = z⊤x with
⊤

= [3.2067 2.3571 4.5779 3.6667 20.0000 7.3333].

Correspondingly, the optimal constant control is

v = [v+

1 v−

2 v−

3 v−

4 v+

5 ],

meaning that, in the long run, the best strategy is to open pipes 1
and 5, and close 2, 3 and 4, as much as possible. Simulations over
long horizons confirm this property.
8

8.2. Sensitivity analysis in epidemic evolution

Consider the SIDARTHE epidemiological model proposed
by Giordano et al. (2020) and Giordano et al. (2021), rearranged
as

ẋ(t) =

⎡⎢⎢⎢⎣
−r1 0 0 0 0

ϵ −r2 0 0 0
ζ 0 −r3 0 0
0 η θ −r4 0
0 0 µ ν −r5

⎤⎥⎥⎥⎦ x(t) +

⎡⎢⎢⎢⎣
1
0
0
0
0

⎤⎥⎥⎥⎦ω(t)

(36)

(t) = S(t)c⊤x(t) (37)

˙(t) = −S(t)c⊤x(t) (38)

⊤
=

[
α β γ δ 0

]
(39)

here r1 = ϵ + ζ +λ, r2 = η+ρ, r3 = θ +µ+κ , r4 = ν + ξ , r5 =

+ τ . Vector x = [I D A R T ]
⊤ includes the fractions of Infected

not diagnosed), Diagnosed infected, Ailing (not diagnosed), Rec-
gnized (diagnosed with symptoms) and Threatened (diagnosed
ith severe illness, needing intensive care). S is the fraction of
usceptible population. We wish to analyze the sensitivity of
he model with respect to the parameters under either of the
ollowing assumptions:

• the susceptible population S(t) is slowly varying on the
interval, therefore it is assumed constant with some uncer-
tainty;

• the susceptible population S(t) is controlled, e.g. by a vacci-
nation campaign, hence it is known with some uncertainty.

Slowly varying S. In this first case, we can absorb the un-
certainty on S in the contagion parameters: α := Sα, β := Sβ ,
γ := Sγ , δ := Sδ. Taking into account the uncertainty of S results
in an additional modest uncertainty of these parameters. We then
get a model of the form

ẋ =

⎡⎢⎢⎢⎣
−r1 + α β γ δ 0

ϵ −r2 0 0 0
ζ 0 −r3 0 0
0 η θ −r4 0
0 0 µ ν −r5

⎤⎥⎥⎥⎦ x.

The adopted nominal values of the parameters (i.e., the compo-
nents of vector unom) are: αnom = 0.40; βnom = 0.005; γnom =

0.110; δnom = 0.0057; ϵnom = 0.171; ζnom = 0.034; λnom = 0.45;
ηnom = 0.34; ρnom = 0.40; θnom = 0.371; µnom = 0.007;
κnom = 0.017; νnom = 0.007; ξnom = 0.017; σnom = 0.034;
τnom = 0.01.

These parameters are uncertain and time-varying and we con-
sider them as the components of u. We assume that an un-
certainty is present in all parameters. Parameter α, the main
infection parameter, associated with the contact between sus-
ceptible and infected asymptomatic people, is notoriously the
most crucial one. It deeply affects the behavior of the disease
spread. On the other hand, it is typically accurately estimated,
possibly passing through the well known Rt parameter. According
to Giordano et al. (2020),

Rt := S
α + βϵ/r2 + γ ζ/r3 + δ(ηϵ/(r2r4) + ζθ/(r3r4))

r1
,

where parameters ri have been defined above. According to our
data, assuming the initial susceptible population fraction to be
almost 1, we get Rt = 0.6315. This number is mostly dominated
by the term R̃ = α/r ≈ 0.6107. From the computation of
t 1
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Fig. 4. Curves generating the infected upper and lower bounds (red and blue)
valid at time T = 60 days, with α = αnom ± 10% and all other parameters
considered with ±20% uncertainty. Randomly generated trajectories are shown
in black. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. Curves generating the upper and lower bounds for ICU occupancy (red
nd blue) valid at time T = 60 days, with ±10% uncertainty for α, ±20%
ncertainty for all other parameters. Randomly generated trajectories are shown
n black. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

t , we have a reasonable estimation of α. Hence, we assume an
ncertainty of ±10% for α.
Conversely, the other parameters are less accurately esti-

ated, although less crucial for the evolution. For these, we
ssume an uncertainty of ±20%: β ∈ [0.8βnom, 1.2βnom], γ ∈

0.8γnom, 1.2γnom], and so on.
To find the exact bounds of the evolution, we solve an optimal

ontrol problem with n = 5 state variables and m = 16 control
nputs. Note that the co-state equation introduces 5 new vari-
bles. With the proposed method, we need a single integration
f the co-state equation to find the optimum.
Given a horizon of 60 days, we wish to determine bounds for

he final number of infected people by selecting
⊤

= 0, h⊤
=

[
1 1 1 1 0

]
.

ig. 4 reports the bounds (red and blue) for the infected popula-
ion, which are valid at time T .

Among the maximizer parameters, just one (u6 = ζ ) switches
rom the maximum value 0.0408 to the minimum value 0.0272
t time t ≈ 58 days: we denote this switching behavior by ± in
he table below. The other parameters are constant, according to
he pattern:

α β γ δ ϵ ζ λ η ρ θ µ κ ν ξ σ τ
+ − ± − − − − − − − − − −

9

Fig. 6. Curves generating the bounds for the infected population, valid at time
T = 120 days, with α(t) = α0 − (t/T )[α0 − αfin] ± 10% and all other parameters
considered with ±20% parameter uncertainty.

The minimizer parameters are constant:

α β γ δ ϵ ζ λ η ρ θ µ κ ν ξ σ τ

− + + + + + + + + + + + +

We have also considered the bounds for the final values of ICU
occupancy, by setting

ℓ⊤
= 0, h⊤

=
[

0 0 0 0 1
]
.

The results are shown in Fig. 5. The maximizer parameters are
constant, with pattern:

α β γ δ ϵ ζ λ η ρ θ µ κ ν ξ σ τ

+ − − − + − − + − + − − −

As for the minimizer parameters, u5 = ϵ switches from the
ower to the upper bound at time t ≈ 51 days, while u6 = ζ

switches from the lower to the upper bound at time t ≈ 15 days;
we denote this behavior by ∓ in the table below. The remaining
parameters are constant, with pattern:

α β γ δ ϵ ζ λ η ρ θ µ κ ν ξ σ τ

− ∓ ∓ + − + + − + − + + +

Controlled S: vaccination campaign. In the second case, the
infection parameter α is assumed to decrease due to a vaccination
campaign. This parameter is proportional to the fraction of sus-
ceptible population, α = α0S, and deeply subject to uncertainty.
We assume the initial value S = 1 and the final value, after 4
months, Sfin = 0.5, so αfin = α0Sfin, meaning that 50% of the
population has been immunized. The term α is assumed to have
a linear decreasing behavior with uncertainty of 10%:

α(t) = α0 −
t
T

[α0 − αfin] ± 10%.

Fig. 6 reports upper and lower bounds for the infected popu-
ation (valid at time T ). The maximizer parameters do not switch
and follow the pattern:

α β γ δ ϵ ζ λ η ρ θ µ κ ν ξ σ τ

+ − − − + − − − − − − − −

The minimizer parameters are all constant but u5 = ϵ, which
witches twice: from the upper to the lower value at time t ≈ 78
ays, and back to the upper value at time t ≈ 115 days. We
enote this behavior by ±∓:

α β γ δ ϵ ζ λ η ρ θ µ κ ν ξ σ τ
− ±∓ − + − + + + + + + + +
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Fig. 7. Curves generating the bounds for ICU occupancy, valid at time T = 120
days, with α(t) = α0 −(t/T )[α0 −αfin]±10% and all other parameters considered
with ±20% parameter uncertainty.

Finally we consider ICU occupancy, shown in Fig. 7. The maxi-
mizing parameters are all constant but u5 = ϵ and u6 = ζ , which
switch from the lower to the upper bound (a behavior denoted
as ∓) at time t ≈ 39 days and t ≈ 104 days, respectively:

α β γ δ ϵ ζ λ η ρ θ µ κ ν ξ σ τ

+ ∓ ∓ − + − − + − + − − −

The minimizing parameters are all constant but u5 = ϵ, which
witches from the upper to the lower bound (a behavior denoted
s ±) at time t ≈ 4 days:

α β γ δ ϵ ζ λ η ρ θ µ κ ν ξ σ τ

+ ± − + − + + − + − + + +

Infection and ICU occupancy curves initially increase and even-
ually decrease, once the vaccination coverage reaches a sufficient
evel.

. Concluding discussion

We have solved an optimal control problem for linear com-
artmental systems in which some of the coefficients are control
ariables. This type of problem was previously addressed success-
ully under the assumption that the control coefficients appear on
he diagonal: in this case, the problem is convex (Colaneri et al.,
014; Rantzer & Bernhardsson, 2014). In general, however, the
roblem is harder to solve. We show that, over both a finite and
n infinite horizon, the problem can be solved by finding exact
olutions to the Pontryagin equations and to the HJB equations.
he key observation is that the state and co-state equations
re decoupled. This is one of the few cases in which the HJB
nd Pontryagin equations admit a computable solution, without
esorting to brute force numerical methods.

We have seen that the optimal solution in general may switch
n the finite horizon problem, but it is constant in the infinite
orizon case, meaning that, in the long run, the best strategy is
o keep all the control parameters constant.

A limitation of the proposed theory is that the considered cost
n the control action uk associated with an arc leaving node i has
een imposed on the flux ukxi, and not directly on uk; in this latter
ase, the state and the co-state would no longer be decoupled.
his more general problem is left for future investigation.
10
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