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Abstract— We proposed network-decentralised control
strategies, in which each actuator can exclusively rely on
local information, without knowing the network topology
and the external input, ensuring that the flow asymptotically
converges to the optimal one with respect to the p-norm.
For 1 < p < ∞, the flow converges to a unique con-
stant optimal u∗p . We show that the state converges to the
optimal Lagrange multiplier of the optimisation problem.
Then, we consider networks where the flows are affected by
unknown spontaneous dynamics and the buffers need to be
driven exactly to a desired set-point. We propose a network-
decentralised proportional-integral controller that achieves
this goal along with asymptotic flow optimality; now it is
the integral variable that converges to the optimal Lagrange
multiplier. The extreme cases p = 1 and p = ∞ are of
some interest since the former encourages sparsity of the
solution while the latter promotes fairness. Unfortunately,
for p = 1 or p = ∞ these strategies become discontinuous
and lead to chattering of the flow, hence no optimality is
achieved. We then show how to approximately achieve the
goal as the limit for p → 1 or p → ∞.

Index Terms— Decentralized control, p-norm minimisa-
tion, flow networks, unknown dynamics, buffer level control

I. INTRODUCTION

FLOW networks [2] are relevant in many applications,
including data transmission [16], [18], traffic and trans-

portation networks [11], [13], [14], [15], [19], production-
distribution systems [3], [5], irrigation [12], heating [20],
[21], cyber-physical energy networks [1], and compartmental
systems in general [7], [17], [22]. Large scale, geographical
sparsity, and privacy issues often require decentralised control
strategies. The concept of network-decentralised flow control
was introduced by Iftar and Davison [15], [16] and later recon-
sidered in [5], [6], [7]. Given a dynamic network with buffers
(associated with the nodes), controlled flows (associated with
the arcs), and an external (uncontrolled) demand, a feedback
control is called network-decentralised if each actuated arc
decides its flow exclusively based on local information about
the buffer levels at its extreme nodes.

We are concerned here with the asymptotic optimality of
the resulting flow. A saturated network-decentralised control

a Dipartimento di Matematica, Informatica e Fisica,
Università degli Studi di Udine, Italy; blanchini@uniud.it,
rosset.francesca@spes.uniud.it

b Delft Center for Systems and Control, Delft University of Technology,
The Netherlands. c.a.deviapinzon@tudelft.nl

c Department of Industrial Engineering, University of Trento, Italy;
giulia.giordano@unitn.it

d Dipartimento di Management, Università Ca’ Foscari, Italy;
pesenti@unive.it

that asymptotically minimises the 2-norm was proposed in [4],
with extensions to more general classes of functionals in [8].
These results hold under the technical assumption that the
functional is smooth and strictly convex. For flow networks
with a single source and a single destination, [9] proposed a
network-decentralised strategy that asymptotically drives the
whole flow along the shortest path; this optimality mechanism
can explain natural phenomena, e.g. lightning discharge [10].

Here, we consider the asymptotic optimisation of

lim
t→∞

∥u(t)∥p = lim
t→∞

p

√∑
i

|ui(t)|p.

We first show that, for 1 < p < ∞, the problem has a simple
solution. Then, we investigate the limit cases of p = ∞ and
p = 1. The former promotes fair solutions: in the ∞-optimal
flow, the workload of any of the most exploited actuators
cannot be reduced without imposing an even stronger effort
to some other actuator. Conversely, the 1-norm encourages
sparse solutions: the whole workload is assigned to some of
the actuators, while the others are left inactive, although this
is not a strict rule.

When considering ∞ and 1-norms, the lack of strict convex-
ity renders the solution proposed in [8] not applicable. Indeed,
the resulting controls would be discontinuous: although they
may be stabilising [5], they introduce chattering, and hence
no asymptotic flow optimality can be ensured.

The contributions of this paper are summarised as follows.
• We propose a general network-decentralised control strat-

egy that stabilises the network and asymptotically min-
imises the norm ∥u∥p, 1 < p < ∞.

• The proposed control, for a given p with 1 < p < ∞,
is continuous. The state converges to the unique steady-
state x̄p, corresponding to the Lagrange multiplier λ∗ of
the optimisation problem.

• For p → ∞ (respectively p → 1), the ∞ (resp. 1) norm
of the optimal solutions is arbitrarily close to the optimal
∞ (resp. 1) norm.

• When an unknown, possibly unstable, dynamics affects
the system flows, asymptotic optimality and buffer levels
converging to 0 (i.e., to the desired set-point) can be
achieved by adding an integrator to the proposed solution,
if p ≥ 2. We provide a counterexample explaining why
the scheme does not work for p < 2.

• We propose a different solution for the case 1 < p < 2
and show that the control ensures local stability.

• In the presence of the integrator, while the state converges



to 0, the integral variable converges to the Lagrange
multiplier λ∗ of the optimisation problem.

To focus on the main results, the proofs are in the Appendix.

II. INTRODUCTION AND MOTIVATION

We consider a class of systems of the form

ẋ(t) = Bu(t)− d, (1)

where the equality holds component-wise; the state x(t) ∈ Rn

is the vector of buffer levels, u(t) ∈ Rm is the vector of
controlled flows, B ∈ Rn×m is an assigned matrix and d ∈ Rn

is an external, unknown, constant demand. We assume that
x̄ = 0 is the reference (not the absolute) level: a negative state
is to be interpreted as below this point. A negative flow is to
be interpreted as directed in the opposite direction with respect
to the assigned flow orientation.

The next standing assumption is required for stabilisability
and ensures the existence of a solution u of Bu = d for every
possible d [4], [5].

Assumption 1: Matrix B has full row rank (m ≥ n).
Definition 1: A state feedback control u is network-

decentralised if each component uk only depends on the buffer
levels xi corresponding to nonzero entries Bik of the kth
column of B, and is independent of d.

Our goal is to find a network-decentralised flow control
strategy u that stabilises the flow network and asymptotically
yields the minimum ∥u∥p.

Remark 1: To minimise a weighted norm, p
√∑

i |ui/ωi|p,
with ωi assigned weights, we need to rescale the actual flow
components ui as ûi

.
= ui/ωi. The flow term in (1) is changed

as Bu = BΩ (Ω−1u) = B̂û, with Ω = diag{ωi}.

The network-decentralised minimisation of the p-norm can
lead to different outcomes depending on the value of p.
Roughly speaking, small values of p tend to concentrate the
flow along preferred channels with shortest path. Conversely,
large values of p tend to spread the flow among the arcs.

Example 1: Consider the steady state equation Bu−d = 0
with B = [4 3] and a generic d:

4u1 + 3u2 = d.

As shown in Fig. 1, the minimum p-norm flow is: for p = 1,
u(1) = [d/4 0]⊤ (only one actuator working); for p = 2,
u(2) = (BB⊤)−1B⊤d = [4d/25 3d/25]⊤ (minimum “en-
ergy" u2

1+u2
2); for p = ∞, u(∞) = [d/7 d/7]⊤ (the actuators

are working with equal intensity, u1 = u2). ■

Fig. 1. The flow problem in Example 1 and the optimal controlled flows
minimising the p-norm for p = 1 (yellow), p = 2 (cyan), p = ∞ (red).

In our model, each nonzero component of d can be either
an outflow (when positive) or an inflow (when negative).
In case d is not balanced, then the control u must have

(possibly negative) flow components leaving or coming from
the external environment. If B is an incidence matrix, each
column Bk of B corresponds to a controlled flow arc and
has a −1 in the departure node, 1 in the arrival node, 0
elsewhere; arcs from or to the external environment correspond
to columns with a single nonzero entry equal to 1 or −1
(see Example VI). Assumption 1 requires that at least one
column Bk of B has a single non-zero entry, associated with
a controlled flow from or to the external environment.

III. PRELIMINARY: p-NORM MINIMISATION

The following theorem is our starting point.
Theorem 1 (Strictly convex cost): Consider the cost

J(u) =

m∑
k=1

fk(uk),

where the functions fk : R → R are continuously differen-
tiable and strictly convex with strictly increasing derivatives,
hence invertible. Consider the unique solution u∗ to the
problem

u∗ = arg min
Bu−d=0

J(u), (2)

as well as the strictly increasing functions gk(uk) =
d

duk
fk(uk), g(u) = [g1(u1), . . . , gm(um)]⊤, and their inverse

functions ϕk = g−1
k , ϕ(ξ) = [ϕ1(ξ1), . . . , ϕm(ξm)]⊤. Then,

under Assumption 1, the network-decentralised control

u(t) = ϕ(−B⊤x(t))

ensures convergence of the trajectories of system (1) to the
unique steady state x̄, whose components are equal to the
Lagrange multipliers of the optimisation problem (2), and
u(t) → u∗. ■

To consider the p-norm as a cost function, let us now define
component-wise the control function

Φp(ξ) = sign(ξ) |ξ|
1

p−1 ,

visualised in Fig. 2. The control law

u(t) = Φp(−γB⊤x(t)), γ > 0, (3)

is network-decentralised as required.
Proposition 1 (p-norm minimisation): Let Assumption 1 be

satisfied. For any real p, with 1 < p < ∞, consider the vector
u∗
p as the unique solution to the problem

u∗
p = arg min

Bu−d=0
∥u∥p. (4)

For any γ > 0, control (3) ensures convergence of the state
of (1) to the equilibrium x̄ = λ∗, the Lagrange multiplier of
the optimisation problem (4), unique solution of

Bϕ(−B⊤λ∗)− d = 0. (5)
The control at steady state u∗

p = Φp(−γB⊤x̄) minimises ∥u∥p
under the constraint Bu− d = 0. ■
The proposition considers values of p with 1 < p < ∞. The
limit for p → ∞ of control (3) is no longer continuous:
Φ∞(ξ) = sign(ξ). For p → 1, (3) is not even a proper
function: Φ1(ξ) = 0 for |ξ| ≤ 1 and Φ1(ξ) = sign(ξ)∞
elsewhere (see Fig. 2). To face this discontinuity we use the
continuous control (3) for p either large or close to 1.
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Fig. 2. Function Φp(ξ) for some values of p.

The following property concerns the p-optimal u∗
p, in the

case of a flow graph in which B is an incidence matrix.
Proposition 2 (No-waste at steady-state): Let B be an in-

cidence matrix under Assumption 1. Then, the total controlled
net inflow (i.e., sum of the controlled inflows minus sum of the
controlled outflows) matches the total uncontrolled net outflow∑

k dk. Moreover, assume that dk ≥ 0 ∀k (resp. dk ≤ 0 ∀k).
Then, the optimal p-norm controlled flow u∗

p, 1 < p < ∞, has
no outflow (resp. no inflow) components associated with arcs
to/from the external environment. ■
The proposition means that resources injected to meet a
positive demand are not subsequently ejected and wasted.

IV. SUB-OPTIMALITY

Here we study the limits of ∥u∗
p∥p for p → ∞ and p → 1.

Theorem 2 (∞-norm): As p → ∞, the p-norm optimal
costs converge from above to the ∞-norm optimal cost:

∥u∗
p∥p → ∥u∗

∞∥∞. ■
To assess sub-optimality, we compare ∥u∗

p∥∞ and its limit
∥u∗

∞∥∞ by considering the bound (see the proof of Th. 2)

∥u∗
p∥∞ ≤ ∥u∗

p∥p ≤ ∥u∗
∞∥p ≤ p

√
m∥u∗

∞∥∞.

Theorem 3 (1-norm): As p → 1 from above, the p-norm
optimal costs converge from below to the 1-norm optimal cost:

∥u∗
p∥p → ∥u∗

1∥1. ■
Again we may compare ∥u∗

p∥1 with its limit ∥u∗
1∥1:

∥u∗
p∥1 ≤ m(1− 1

p )∥u∗
p∥p ≤ m( p−1

p )∥u∗
1∥1.

Since the 1-norm (resp. the ∞-norm) is not strictly convex,
the optimal solution u∗

1 (resp. u∗
∞) may be non-unique. If it is

unique, however, the optimal flow u∗
p converges to the unique

optimal solution when p → 1 (resp. p → ∞).

V. NETWORKS WITH UNKNOWN DYNAMICS AND BUFFER
LEVEL CONTROL

We consider the generalised model

ẋ(t) = A(x) +Bu(t)− d. (6)

Assumption 2: The nonlinear term A(·) is unknown. We
assume A(0) = 0 and ∥A(z)−A(x)∥2 ≤ L∥z − x∥2.

The assumption A(0) = 0 does not compromise generality,
because a nonzero term A(0) could always be embedded in d,
by redefining A(x) := A(x)− A(0) and d̂ := d− A(0). It is
also reasonable to assume that A(x) is Lipschitz in physical
systems, since realistic dynamics of interest have a finite rate
of variation in practice.

Due to the presence of A(x), the previous control law (3)
does no longer ensure optimality unless x = 0. Hence, our goal

is now to find a network-decentralised flow control strategy
u that stabilises the flow network, asymptotically yields the
minimum ∥u∥p, and simultaneously guarantees that x(t) → 0,
the reference set-point, as t → ∞.

We need the next technical lemma to arrive to a domain of
attraction measured by a parameter ρ.

Lemma 1: The following identity holds[
Φp(−γB⊤(z + ξ̄))− Φp(−γB⊤ξ̄)

]
= −B∆(z, ξ̄)B⊤z,

where ∆ is a positive diagonal matrix, for any z, γ > 0, ξ̄,
p > 1, and B satisfying Assumption 1. Moreover, assume
p ≥ 2 and ρ > 0 be given such that ∥ξ̄∥ ≤ ρ/2. Then, for all
δ > 0, there exists γ > 0 such that ∆ ⪰ δI , for all z such
that ∥z∥ ≤ ρ/2. ■

The next is the first result of the section.
Theorem 4 (Dynamic network-decentralised control):

For p ≥ 2, under Assumptions 1 and 2, consider the
proportional-integral control

u = Φp

(
−γB⊤(x+ ξ)

)
, (7)

ξ̇ = αx, ξ(0) = 0, (8)
with α > 0 arbitrarily given. Consider the initial domain

x(0) ∈ X0 =

{
x : ∥x∥2 ≤ ρ20 =

ρ2

8
− 3

2
∥ξ̄∥2

}
,

with given ρ2 > 12∥ξ̄∥2, where ξ̄ = λ∗, the Lagrange
multiplier of the optimisation problem (4) (we remind that
A(0) = 0 at x̄ = 0), is the unique vector that solves

BΦp

(
−γB⊤ξ̄

)
− d = 0.

Then, there exist γ > 0 such that x(t) → 0, u(t) → u∗
p and

ξ(t) → ξ̄. ■
Remark 2: Instead of assuming A(x) is Lipschitz every-

where, we can assume A(x) is smooth on a compact set C
(hence Lipschitz in C) including ∥x∥ ≤ ρ, our domain of
attraction (as defined in the proof of Theorem 4).

Assuming p ≥ 2 is crucial to apply Lemma 1. Indeed, the
following example shows a case in which control (7) cannot
be effective when 1 < p < 2.

Example 2: Consider ẋ = ax + u, with a > 0. Apply
control (7)-(8) and let κ = 1/(p− 1). We get

ẋ = ax− γ(x+ ξ)|x+ ξ|κ−1,

ξ̇ = αx,
with equilibrium x̄ = 0 and ξ̄ = 0. When 1 < p < 2, we have
κ > 1. The linearised system in (0, 0) has matrix

[
a 0
α 0

]
,

hence the equilibrium is unstable for any a > 0. ■
We face the problem of p ≤ 2 by changing the control strategy:
we stabilise the system by means of a linear term; then, we
insert the integral variable in the nonlinear function

u = −γB⊤x+Φp

(
−γB⊤ξ

)
, (9)

ξ̇ = αx, ξ(0) = 0. (10)

The following assumption basically rules out both singularities
and under-exploitation of the network.

Assumption 3: The optimal flow u∗
p corresponding to d has

at least n nonzero components. The submatrix of B formed
by the corresponding columns has rank n.



Theorem 5: Let p ≤ 2 and Assumptions 1, 2 and 3 be
satisfied with A(x) smooth. The closed-loop system admits
the unique steady state x = 0 and ξ = ξ̄ and u is the optimal
u∗
p. The steady state is locally stable for γ > 0 large enough

(which exists because BB⊤ is positive definite), such that

[Ā− γBB⊤]⊤ + [Ā− γBB⊤] = −Q ≺ 0,

where Ā is the Jacobian of A(x) evaluated at 0. ■
Remark 3: Proposition 2 holds as well if the external un-

controlled demand also takes into account the effect of the
dynamics: d̂ = d−A(0).

VI. EXAMPLE: SYSTEM OF INTERCONNECTED TANKS

Consider the fluid network in Fig. 3. There are n = 9 tanks,
whose levels are h ∈ R9, and m = 19 controlled flows. The
graph incidence 9× 19 matrix is

B̃ =



−1−1 0 0 0 0 0 0 0 0 0 0−1 0 0 0 1 0 0
0 1−1 0 0 0 0 0 0−1 0 0 0 0−1 0 0 1 0
0 0 1 0 0 0−1 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0−1−1 0 0 0 0 0 0 0 0 0 0−1 0 0 0
0 0 0 0 1−1 0 0−1 1 0 0 1−1 0 0 0 0 0
0 0 0 0 0 1 1−1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0−1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1−1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0

 .

Given the weights, ω = [1, 2.5, 2.5, 1, 2.5, 2.5, 1, 2.5, 2.5,
1, 2.5, 2.5, 2.5, 1, 2.5, 2.5, 2.5, 2.5, 2.5], we take B = B̃Ω
(Remark 1). Let d = [0, 0, 0, 0, 0, 0, 0.7, 0, 0.3]⊤. The state
is x(t) = h(t) − h̄ with set-point h̄ = [17.69, 20.37, 22.70,
16.59, 22.42, 17.93, 19.54, 20.68, 15.66]⊤.
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Fig. 3. Fluid network: controlled arcs (red arrows), with weight 1/ωk for
each controlled arc k; losses (green arrows); demands (blue arrows).

There are unknown losses from 3 tanks, n. 4, 6 and
8, which are modelled for numerical purposes by function
A(h) = b −

√
b2 +Hh. We take (H4, b4) = (0.001, 0.002),

(H6, b6) = (0.002, 0.003) and (H8, b8) = (0.001, 0.003). This
information is not used in the control synthesis. The system
(6) is ẋ = A(x+ h̄)+Bu−d, where the nonzero components
of A are those related to tanks 4, 6 and 8.

We apply control (7)-(8) for p ≥ 2 and control (9)-(10) for
p < 2, with α = 0.05. We consider three consecutive time
intervals of length 600. In these intervals we take: first, p = 2
and γ = 0.03; second, p = 9 and γ = 10−6; third, p = 1.1
and γ = 0.06. The initial conditions are h0 = [15.51, 18.41,
19.01, 18.80, 17.34, 18.36, 19.63, 18.12, 19.77]⊤.

In Fig. 4 we report the norm of the state x(t) (top) and
relevant norms of the inputs u(t) (bottom). As expected, the
state x(t) converges to zero in all cases (i.e., h(t) → h̄).
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Fig. 4. Top: norm of the state ∥x(t)∥2. Bottom: solid lines rep-
resent the norms ∥up∥1 (red), ∥up∥2 (blue) and ∥up∥∞ (green),
which respectively get close to the optimal ∥u∗

1∥1, ∥u∗
2∥2 and

∥u∗
∞∥∞ (dashed lines) in the third (p = 1.1), first (p =

2), and second (p = 9) intervals. Animations are available at:
https://users.dimi.uniud.it/~franco.blanchini/oneinf.html.

Moreover, the steady-state control up has 1, 2 and ∞-norms
that get close to the optimal values for p = 1.1, p = 2 and
p = 9. The steady-state controls are reported in Table I. The
steady-state total actual controlled inflow (which is given by
ω17u

∗
p,17+ω18u

∗
p,18+ω19u

∗
p,19 ≈ 1.454 for any p) matches the

total uncontrolled outflow (given by
∑

k d̂k = [d− A(h̄)]k =
1.454) including both the demand and the losses modelled by
the nonlinear dynamics.

VII. CONCLUSIONS

We proposed a robust network-decentralised proportional
integral controller for flow systems ensuring exact conver-
gence to the desired steady-state setpoint and asymptotic flow
optimality. The control works in the presence of unknown
Lipschitz dynamics and external demand flows. In view of
its structure, the scheme works in the presence of failures as
long as the rank assumptions remain satisfied.
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APPENDIX

Proof of Theorem 1. The proof can be inferred from [8].
Here we give a different proof that points out the uniqueness
of the steady state. Consider the Lagrange multiplier vector λ
and the Lagrangian

L(u, λ) = J(u) + λ⊤(Bu− d).

The optimality condition with respect to u requires

∇J(u) + λ⊤B = [g(u)]⊤ + λ⊤B = 0.

Considering the inverse, the optimal flow is

u∗ = ϕ(−B⊤λ∗), (11)

and λ∗ is the unique vector that satisfies (5). To prove that
x(t) → λ∗, take the Lyapunov function V (x) = 1

2∥x− λ∗∥2.
Being ϕk strictly increasing, (z⊤1 −z⊤2 )(ϕ(−z1)−ϕ(−z2)) < 0

for z1 ̸= z2. Therefore,

V̇ (x) = (x− λ∗)⊤
[
Bϕ(−B⊤x)− d

]
= (x⊤B − λ∗⊤B)

[
ϕ(−B⊤x)− ϕ(−B⊤λ∗)

]
< 0,

for x ̸= λ∗. Hence, x converges to the multiplier. ■
Proof of Proposition 1. Minimising ∥u∥p is equivalent to

minimising
1

pγ
∥u∥pp =

m∑
k=1

1

pγ
|uk|p,

which is a cost of the same type as that considered in Theorem
1, with fk(uk) = 1

pγ |uk|p. The derivative of fk(uk) is
gk(uk) = sign(uk) |uk|p−1/γ, whose inverse function is

uk(ξk) = ϕk(ξk) = sign(ξk) p−1
√

γ|ξk| = Φp(γξk).

Then, if we evaluate ϕ(ξ) at ξ = −B⊤x, we get (3). The
statement follows from Theorem 1. ■

Proof of Theorem 2. We first show that ∥u∗
p∥p is decreasing

as p increases. In fact, for p2 > p1,

∥u∗
p2
∥p2 ≤ ∥u∗

p1
∥p2 ≤ ∥u∗

p1
∥p1 .

The first inequality is true because, by definition, u∗
p2

is the
minimiser of ∥ · ∥p2 . The second follows from the property
that, for any vector u of size m and 1 ≤ k ≤ h,

∥u∥h ≤ ∥u∥k ≤ m( 1
k− 1

h )∥u∥h. (12)

The decreasing sequence ∥u∗
p∥p has a limit µ

µ
.
= lim

p→∞
∥u∗

p∥p = inf
p≥1

∥u∗
p∥p.

We show that µ = ∥u∗
∞∥∞. Since, for the same reasons

invoked above, ∥u∗
∞∥∞ ≤ ∥u∗

p∥∞ ≤ ∥u∗
p∥p, we have

∥u∗
∞∥∞ ≤ µ, because ∥u∗

p∥p converges to µ.
To show that ∥u∗

∞∥∞ ≥ µ, consider that, in view of (12),
for h = ∞ and k = p, ∥u∥∞ ≤ ∥u∥p ≤ p

√
m∥u∥∞, for all

vectors. Hence, for all p,

∥u∗
∞∥∞ ≥ ∥u∗

∞∥p/ p
√
m ≥ ∥u∗

p∥p/ p
√
m.

When p → ∞, ∥u∗
p∥p/ p

√
m → µ, because p

√
m → 1, and

hence ∥u∗
∞∥∞ ≥ µ. Therefore, it must be µ = ∥u∗

∞∥∞. ■
Proof of Theorem 3. It is almost identical to that of

Theorem 2, and it is hence omitted. ■
Proof of Lemma 1. Given any increasing function φ of a

real variable y, defined on |y| ≤ a, which admits a (possibly
unbounded) derivative, we can write, for any y1, y2 ∈ R,

φ(y1)− φ(y2) = D(y1, y2)(y1 − y2), (13)



with D(y1, y2)
.
= [φ(y1) − φ(y2)]/[y1 − y2] (assuming

D(y1, y1)
.
= φ′(y1)). Note that D(y1, y2) ≥ min|y|≤a φ′(y).

If we consider function φ(y) = sign(y) p−1
√

|y| with p ≥ 2,
the minimum of the derivative φ′ is at the extrema and

D(y1, y2) ≥ a−
p−2
p−1 /(p− 1).

Let Bk be the kth column of B, y1 = −γB⊤
k (z + ξ̄) and

y2 = −γB⊤
k ξ̄. Assume ∥z∥ ≤ ρ/2 and ∥ξ̄∥ ≤ ρ/2. Then,

|y1| = |γB⊤
k (z + ξ̄)| ≤ γ∥Bk∥∥ξ̄ + z∥

≤ γ∥Bk∥(∥ξ̄∥+ ∥z∥) ≤ γ∥B∥ρ .
= a,

|y2| = |γB⊤
k ξ̄| ≤ γ∥Bk∥∥ξ̄∥ ≤ γ∥B∥∥ξ̄∥ ≤ a

(note that ∥Bk∥ ≤ ∥B∥). For each k, let Dk be defined as in
(13). Given δ, take γ such that

Dkγ ≥ γ
1

p− 1
(γ∥B∥ρ)−

p−2
p−1 =

(∥B∥ρ)−
p−2
p−1

p− 1
γ

1
p−1 ≥ δ,

for all k. Denoting as Φpk the kth component of Φp

B
[
Φp(−γB⊤(z + ξ̄))− Φp(−γB⊤ξ̄)

]
=

∑
k

Bk

[
Φpk(−γB⊤

k (z + ξ̄))− Φpk(−γB⊤
k ξ̄)

]
=

∑
k

BkDk

[
−γB⊤

k z
]
=

∑
k

−BkδkB
⊤
k z = −B∆B⊤z,

with ∆ diagonal matrix with entries δk = Dkγ not smaller
than δ, ∆ ⪰ δI . ■

Proof of Proposition 2 The fact that the net controlled
inflow compensates the demand d is trivial. For the next step
consider equation (5) and write it as

Bϕ(−B⊤λ∗) = −BD(λ∗)B⊤λ∗ = d ≥ 0,

where D(λ∗) is a positive diagonal matrix, computed as in the
proof of Lemma 1. We have that −BD(λ∗)B⊤ is a Metzler
matrix which is negative definite, and hence Hurwitz. Its
inverse is thus non-positive and λ∗ = [−BD(λ∗)B⊤]−1d ≤ 0
component-wise. From (11), since ϕk has the same sign as
its argument, we have that all the flows uk corresponding to
columns of B that have a single nonzero component, Bik, are
inflows coming from the external environment (if Bik > 0,
uk ≥ 0, while if Bik < 0, uk ≤ 0). ■

Proof of Theorem 4. First note that ∥ξ̄∥ ≤ ρ/2, a condition
we need to apply Lemma 1. Define z

.
= x+ω, and ω

.
= ξ− ξ̄

and write the system as

ẋ = A(x) +BΦp

(
−γB⊤(z + ξ̄)

)
−BΦp

(
−γB⊤ξ̄

)
,

ξ̇ = αx.

Considering that ω̇ = ξ̇ and exploiting Lemma 1, we have

ż = ẋ+ ω̇ = A(z − ω)−B∆B⊤z + α(z − ω),

ω̇ = α(z − ω).

Consider the Lyapunov function V =
[
∥z∥2 + ∥ω∥2

]
/2.

Matrix BB⊤ is positive definite in view of Assumption 1.
Denoting by σ > 0 the smallest eigenvalue of BB⊤ ≻ 0 and
exploiting the Lipschitz assumption on A(·), Lemma 1 under
the assumption that

∥z∥ ≤ ρ/2, (14)

and ∥z − ω∥ ≤ ∥z∥+ ∥ω∥, we get

V̇ = z⊤A(z − ω)− z⊤B∆B⊤z + αz⊤z − αz⊤ω +

+ αω⊤z − αω⊤ω

≤ ∥z∥∥A(z − ω)∥ − z⊤B∆B⊤z + α∥z∥2 − α∥ω∥2

≤ L∥z∥∥z − ω∥ − δz⊤BB⊤z + α∥z∥2 − α∥ω∥2

≤ L∥z∥∥z − ω∥ − δσ∥z∥2 + α∥z∥2 − α∥ω∥2

≤ −δσ∥z∥2 + L∥z∥2 + α∥z∥2 + L∥z∥∥ω∥ − α∥ω∥2

=
[
∥z∥ ∥ω∥

] [−δσ + L+ α L/2
L/2 −α

] [
∥z∥
∥ω∥

]
< 0,

for (z, ω) ̸= 0, as long as α(δσ − L− α)− L2/4 > 0.
According to Lemma 1 and its proof, this condition can be

ensured under (14) by taking a large γ to ensure that δ is large
enough, precisely δ > (L+ α+ L2/(4α))/σ.

So, we prove that (14) is satisfied for all t, if the initial
value of x is x(0) ∈ X0 (and the condition ∥ξ̄∥ ≤ ρ/2 is true
for X0 ̸= ∅). We have

V (0) = ∥z(0)∥2/2 + ∥ω(0)∥2/2 = ∥x(0)− ξ̄∥2/2
+ ∥ − ξ̄∥2/2 ≤ ∥x(0)∥2 + 3∥ξ̄∥2/2 ≤ ρ2/8,

since ∥x(0) − ξ̄∥2 ≤ ∥x(0)∥2 + ∥ξ̄∥2 + 2∥x(0)∥∥ξ̄∥ ≤
2(∥x(0)∥2 + ∥ξ̄∥2). Note that this implies ∥z(0)∥2/2 ≤ ρ2/8,
too. So, initially, V is not greater than ρ2/8 and hence (14)
is satisfied: this means that V is initially decreasing. As long
as (14) holds, V decreases; consequently, we have V (t) =
∥z(t)∥2/2+∥ω(t)∥2/2 ≤ ρ2/8, meaning that (14) will always
be satisfied for all t > 0.

Observe that, by the Lyapunov theorem, V̇ < 0 implies
z(t), ω(t) → 0, so ξ(t) → ξ̄ and x(t) = z(t)− ω(t) → 0.

Since BΦp

(
−γB⊤ξ̄

)
= d and ξ̄ is the Lagrange multiplier,

the limit u∗
p = Φp

(
−γB⊤ξ̄

)
is the optimal flow. ■

Proof of Theorem 5. The linearised system has the form

ẋ = [Ā− γBB⊤]x− γB∆B⊤ω,

ξ̇ = αx,

where ω = ξ − ξ̄. ∆ is the diagonal matrix including the
derivative of Φp. By Assumption 3, ∆ has at least n nonzero
entries corresponding to columns of B having rank n. Write
B∆B⊤ = B̃∆̃B̃⊤, where B̃ and ∆̃ are restrictions achieved
by eliminating the zero elements of ∆ and the corresponding
columns of B. Assumptions 1 and 3 imply that B̃ has rank n,
hence B∆B⊤ = B̃∆̃B̃⊤ is positive definite.

Take the (local) Lyapunov function V = x⊤x +
(γ/α)ω⊤B∆B⊤ω. Then,

V̇ = 2x⊤[Ā− γBB⊤]x− 2γx⊤B∆B⊤ω + 2γω⊤B∆B⊤x

= x⊤[Ā+ Ā⊤ − 2γBB⊤]x = −x⊤Qx ≤ 0,

and V̇ < 0 for x ̸= 0, where −Q = Ā + Ā⊤ − 2γBB⊤.
According to the LaSalle invariance principle, the state con-
verges to the set where x = 0. There is no trajectory of the
system included in the set {x = 0}, other than the steady-
state trajectory given by x ≡ 0 and ω ≡ 0, because on such
set ẋ = −B∆B⊤ω ̸= 0 unless ω ≡ 0. By the Krasowskii
theorem, both x and ω converge to 0. ■
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