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In Italy, 128,948 confirmed cases and 15,887 deaths of peo-
ple who tested positive for SARS-CoV-2 were registered as 
of 5 April 2020. Ending the global SARS-CoV-2 pandemic 
requires implementation of multiple population-wide strate-
gies, including social distancing, testing and contact tracing. 
We propose a new model that predicts the course of the epi-
demic to help plan an effective control strategy. The model 
considers eight stages of infection: susceptible (S), infected 
(I), diagnosed (D), ailing (A), recognized (R), threatened (T), 
healed (H) and extinct (E), collectively termed SIDARTHE. 
Our SIDARTHE model discriminates between infected indi-
viduals depending on whether they have been diagnosed and 
on the severity of their symptoms. The distinction between 
diagnosed and non-diagnosed individuals is important 
because the former are typically isolated and hence less likely 
to spread the infection. This delineation also helps to explain 
misperceptions of the case fatality rate and of the epidemic 
spread. We compare simulation results with real data on the 
COVID-19 epidemic in Italy, and we model possible scenarios 
of implementation of countermeasures. Our results demon-
strate that restrictive social-distancing measures will need to 
be combined with widespread testing and contact tracing to 
end the ongoing COVID-19 pandemic.

After a novel strain of coronavirus, SARS-CoV-2, was identi-
fied in Wuhan (Hubei), China1,2, an exponentially growing num-
ber of patients in mainland China were diagnosed with COVID-19, 
prompting Chinese authorities to introduce radical measures to con-
tain the outbreak3. Despite these measures, a COVID-19 pandemic 
ensued in the following months. The World Health Organisation 
report dated 5 April 2020 reported 1,133,758 total cases and 62,784 
deaths worldwide4.

Italy has been severely affected5. After the first indigenous case 
on 21 February 2020 in Lodi province, several suspect cases (initially 
epidemiologically linked) began to emerge in the south and south-
west territory of Lombardy6. A ‘red zone’, encompassing 11 munici-
palities where SARS-CoV-2 infection was endemic, was instituted 
on 22 February 2020, and put on lockdown to contain the emerging 
threat. A campaign to identify and screen all close contacts with 
confirmed cases of COVID-19 resulted in taking 691,461 nasal 
swabs as of 5 April 2020. Of the 128,948 detected cases, 91,246 were 
currently infected (28,949 hospitalized, 3,977 admitted to intensive 
care units (ICUs) and 58,320 quarantined at home), 21,815 had been 

discharged due to recovery and 15,887 had died7. In the early days of 
the epidemic in Italy, both symptomatic and asymptomatic people 
underwent screening. A government regulation dated 26 February 
2020 limited screening to symptomatic subjects only8. On 8 March 
2020, to further contain the spread of SARS-CoV-2, the red zone 
was extended to the entire area of Lombardy and 14 more northern 
Italian provinces. On 9 March 2020, lockdown was declared for the 
entire country9 and progressively stricter restrictions were adopted.

COVID-19 displays peculiar epidemiological traits when com-
pared with previous coronavirus outbreaks of SARS-CoV and 
MERS-CoV. According to Chinese data10, a large number of trans-
missions, both in nosocomial and community settings, occurred 
through human-to-human contact with individuals showing no or 
mild symptoms. The estimated basic reproduction number (R0) for 
SARS-CoV-2 ranges from 2.0 to 3.511–13, which seems comparable, 
or possibly higher, than for SARS-CoV and MERS-CoV. High viral 
loads of SARS-CoV-2 were found in upper respiratory specimens of 
patients showing little or no symptoms, with a viral shedding pat-
tern akin to that of influenza viruses14. Hence, inapparent transmis-
sion may play a major and underestimated role in sustaining the 
outbreak.

Predictive mathematical models for epidemics15–18 are fun-
damental to understand the course of the epidemic and to plan 
effective control strategies. One commonly used model is the SIR 
model19 for human-to-human transmission, which describes the 
flow of individuals through three mutually exclusive stages of infec-
tion: susceptible, infected and recovered. More complex models can 
accurately portray the dynamic spread of specific epidemics. For 
the COVID-19 pandemic, several models have been developed. Lin 
and colleagues extended a SEIR (susceptible, exposed, infectious, 
removed) model considering risk perception and the cumulative 
number of cases20, Anastassopoulou and colleagues proposed a 
discrete-time SIR model including dead individuals21, Casella devel-
oped a control-oriented SIR model that stresses the effects of delays 
and compares the outcomes of different containment policies22 and 
Wu and colleagues used transmission dynamics to estimate the clin-
ical severity of COVID-1923. Stochastic transmission models have 
also been considered24,25. Here, we propose a new mean-field epide-
miological model for the COVID-19 epidemic in Italy that extends 
the classical SIR model, similar to that developed by Gumel and col-
leagues for SARS26. A summary of the main findings, limitations 
and implications of the model for policymakers is shown in Table 1.
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Our model, named SIDARTHE, discriminates between detected 
and undetected cases of infection and between different severity of  
illness (SOI), non-life-threatening cases (asymptomatic and pauci- 
symptomatic; minor and moderate infection) and potentially life- 
threatening cases (major and extreme) that require ICU admission.

The total population is partitioned into eight stages of dis-
ease: S, susceptible (uninfected); I, infected (asymptomatic or 
pauci-symptomatic infected, undetected); D, diagnosed (asymp-
tomatic infected, detected); A, ailing (symptomatic infected, 
undetected); R, recognized (symptomatic infected, detected); T, 
threatened (infected with life-threatening symptoms, detected); 
H, healed (recovered); E, extinct (dead). The interactions among 
these stages are shown in Fig. 1. We omit the probability rate of 
becoming susceptible again after having recovered from the infec-
tion. Although anecdotal cases are found in the literature27, the rein-
fection rate value appears negligible. A detailed discussion of the 
model considerations and parameters is provided in the Methods.

For the COVID-19 epidemic in Italy, we estimate the model 
parameters based on data from 20 February 2020 (day 1) to 5 April 
2020 (day 46) and show how the progressive restrictions, includ-
ing the most recent lockdown progressively enforced since 9 March 
2020, have affected the spread of the epidemic. We also model 
possible longer-term scenarios illustrating the effects of different 
countermeasures, including social distancing and population-wide 
testing, to contain SARS-CoV-2.

The model parameters have been updated over time to reflect 
the progressive introduction of increased restrictions. On day 1, 
the basic reproduction number was R0 = 2.38, which resulted in a 
substantial outbreak. On day 4, R0 = 1.66 as a result of the introduc-
tion of basic social distancing, awareness of the epidemic, hygiene 
and behavioral recommendations, and early measures by the Italian 
government (for example, closing schools). At day 12, asymptom-
atic individuals were almost no longer detected, and screening was 
focused on symptomatic individuals (leading to R0 = 1.80). On day 

Table 1 | Policy summary

Background Curbing the global spread of SARS-CoV-2 requires implementation of multiple population-wide strategies; however, how the 
timing and stringency of such measures will affect ‘flattening the curve’ remains unknown. We have proposed a new model that 
predicts the evolution of epidemics and helps to assess the impact of different strategies to contain the spread of the infection, 
including lockdown and social distancing, as well as testing and contact tracing.

Main findings and 
limitations

Testing is important because undetected infected people, most of whom are asymptomatic, largely sustain the epidemic spread. 
Several possible scenarios have been outlined. Under the less stringent lockdown conditions with limited testing, we predict that 
more than 70,000 people could die in Italy in the first year. However, if strict lockdown measures continue to be maintained and 
population-wide testing and contact tracing efforts are substantially increased, the number of deaths could potentially be limited 
to 25,000 people overall. As with all modeling studies, our predictions are based on reasonable assumptions, but the actual 
course of the epidemic heavily relies on how and when isolation and safety measures are implemented.

Policy implications Our findings confirm that the adopted social-distancing measures are necessary and effective, and should be promptly enforced 
at the earliest stage. Lockdown measures can only be relieved safely in the presence of widespread testing and contact tracing. 
Combining lockdown and population-wide testing is key to rapidly ending the COVID-19 pandemic.
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Fig. 1 | The model. Graphical scheme representing the interactions among different stages of infection in the mathematical model SIDARTHE: S, 
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22, a partially incomplete lockdown, of which the effectiveness was 
reduced by the movement of people from the north to the south 
of Italy when the country-wide lockdown was announced but not 
yet enforced, yielded R0 = 1.60. When the national lockdown was 
fully operational and strictly enforced, after day 28, R0 = 0.99, finally 
reaching below 1. Moreover, R0 = 0.85 was achieved after day 38 
due to a wider testing campaign that identified more mildly symp-
tomatic infected individuals. Figure 2a shows the model evolution 
with the estimated parameters up to day 46; in the earliest epidemic 
phase, the number of infected was considerably underestimated.  
Of the total cases, 35% were undetected. In Fig. 2b, the infected  
individuals are partitioned into the different subpopulations (diag-
nosed or not, with different SOI classification). Over a 350-day 
horizon, in the absence of further policy changes, Fig. 2c predicts 
that 0.61% of the population will contract the virus (and 0.45% will 
be diagnosed), while 0.06% of the population will die from COVID-
19. The peak of the number of concurrently infected individu-
als will occur on around day 50 at 0.19% of the population, while 
the peak of concurrently diagnosed infected individuals will occur 
later (around day 56) and amounts to 0.17% of the population. The 
actual case fatality rate (CFR) is 9.8% and the perceived CFR is 13%. 
Figure 2d shows that each infected subpopulation reaches its peak 
at a different time.

Extended Data Fig. 1 shows how the situation could have evolved 
if milder or stronger measures had been implemented earlier. The 
curve following day 22 shows the importance and effectiveness of 
a prompt lockdown. The actual epidemic evolution corresponds to 
an intermediate scenario: the lockdown measures had a moderate 
effect, probably due to their incremental nature.

We predict a range of possible future scenarios, with different 
measures enforced after day 50.

Figure 3a,b shows, if the lockdown is weakened, a sudden and 
strong increase of the spread of disease, a prolonged emergency 
and more deaths (0.12% of the population in the first 350 days). 
Figure 3c,d shows the benefits of stricter lockdown measures: after 
350 days, 0.41% of the population would contract the virus (0.30% 
diagnosed) and 0.04% of the population would die.

A policy of population-wide testing and contact tracing would 
help to rapidly end the epidemic, as suggested by Peto28. Figure 
4a,b shows the effect of such measures: the peak would be reached 
sooner and, after 350 days, 0.43% of the population would con-
tract the virus (0.33% diagnosed), with an estimated 0.05% dying. 
Figure 4c,d shows the effect of combining a milder lockdown with 
widespread testing and contact tracing: after 350 days, 0.52% of the 
population would contract the virus (0.41% diagnosed) and 0.05% 
would die.
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Fig. 2 | Fitted and predicted epidemic evolution. Epidemic evolution predicted by the model based on the available data about the COVID-19 outbreak 
in Italy. a,b, The short-term epidemic evolution obtained by reproducing the data trend with the model. c,d, The long-term predicted evolution over a 
350-day horizon. a,c, The difference between the actual evolution of the epidemic (solid lines; this refers to all cases of infection, both diagnosed and 
non-diagnosed, predicted by the model, although non-diagnosed cases are of course not counted in the data) and the diagnosed epidemic evolution 
(dashed lines; this refers to all cases that have been diagnosed and are thus reported in the data). The plots in b and d distinguish between the different 
categories of infected patients: non-diagnosed asymptomatic (ND AS), diagnosed asymptomatic (D AS), non-diagnosed symptomatic (ND S), diagnosed 
symptomatic (D S) and diagnosed with life-threatening symptoms (D IC). Note that a,c and b,d have different scales.
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Hence, the current adopted lockdown measures are vital to con-
tain the epidemic and cannot be relieved. Rather, they should be 
even more restrictive. The enforced lockdown could be mitigated 
in the presence of widespread testing and contact tracing, which 
would strongly contribute to a rapid resolution of the epidemic.

Distinguishing between diagnosed and non-diagnosed cases 
highlights a distortion in disease statistics. The discrepancy between 
the actual CFR (total number of deaths due to the infection, divided 
by the total number of infected people) and the perceived CFR 
(number of deaths ascribed to the infection, divided by the number 
of people diagnosed as infected) can be quantified, which explains 
the gap between the actual infection dynamics and perception of 
the outbreak. Performing an insufficient number of tests underesti-
mates the transmission rate and overestimates the CFR. Our model 
can predict the long-term effects of underdiagnosis.

Concerning diagnostic tests for COVID-19, currently, standard 
molecular methods to detect the presence of SARS-CoV-2 in respi-
ratory samples are based on non-specific real-time polymerase 
chain reaction with reverse transcription methods, which target 
RNA-dependent RNA polymerase and E genes29. These tests are 
time-consuming and cannot be done on all susceptible individuals 
in the population; high false negatives rates have been reported and 
certified laboratories with expensive equipment are needed. Rapid 
tests with high sensitivity and specificity that can be easily adapted 
to real-life settings (schools, airports, train stations) are urgently 

required. Some laboratories are moving in this direction, develop-
ing a 15 min test to detect SARS-CoV-2 immunoglobulins IgM and 
IgG simultaneously in human blood30.

Our model confirms that diagnosis campaigns can reduce the 
infection peak (the diagnosed population enters quarantine and is 
therefore less likely to affect the susceptible population) and help 
end the epidemic more quickly28. Healthcare workers are more 
likely to be exposed and their risk of infection is increased, as sup-
ported by reports from China31,32 suggesting that disease amplifica-
tion in healthcare settings will occur despite restrictive measures.

The model does not consider reduced availability of medical 
care due to the healthcare system reaching or even surpassing its 
capacity33. These analyses can only be done indirectly. For example, 
when the number of seriously affected individuals is high (above 
a threshold), the mortality coefficient will be increased due to an 
insufficient number of ICUs.

We compare scenarios with control measures of varying strength 
and nature, predicting for each the timing and magnitude of the 
epidemic peak, including the peak of ICU admissions. According 
to our findings, a partial implementation of lockdown measures 
results in a delay in the peak of infected individuals and patients 
admitted to the ICU, contrasting with an only moderate decrease 
in the total number of infected individuals and ICU admissions. 
Conversely, the implementation of very strong social-distancing 
strategies would result in an anticipated lower peak of infected  
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Fig. 3 | The effect of lockdown. a–d, Epidemic evolution predicted by the model for the COVID-19 outbreak in Italy when, after day 50, the social 
distancing countermeasures are weakened, leading to a larger R0 = 0.98 (a,b), or strengthened, leading to a smaller R0 = 0.50 (c,d). a,c, The difference 
between the actual (real cases) and perceived (diagnosed cases) evolution of the epidemics. The plots in b and d distinguish between the different 
categories of infected patients: non-diagnosed asymptomatic (ND AS), diagnosed asymptomatic (D AS), non-diagnosed symptomatic (ND S), diagnosed 
symptomatic (D S) and diagnosed with life-threatening symptoms (D IC). Note that a,c and b,d have different scales.
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individuals and patients admitted to the ICU, with a marked 
decrease in the total number of infected individuals and ICU admis-
sions due to the disease.

Our findings provide policymakers with a tool to assess the 
consequences of possible strategies, including lockdown and social 
distancing, as well as testing and contact tracing. Our simulation 
results, achieved by combining the model with the available data 
about the COVID-19 epidemic in Italy, suggest that enforcing 
strong social-distancing measures is urgent, necessary and effec-
tive, in line with other reports in the literature2,22,24. The earlier the 
lockdown is enforced, the stronger the effect obtained. The model 
results also confirm the benefits of mass testing, whenever facilities 
are available28. We believe these indications can be useful to manage 
the epidemic in Italy, as well as in countries that are still in the early 
stages of outbreak.

Although the mortality rate (number of deaths in the whole pop-
ulation) of COVID-19 can be decreased with restrictive measures 
that reduce the spread of SARS-CoV-2, the CFR (number of deaths 
in the infected population) is essentially constant in different scenar-
ios, unaffected by the extent of social restriction and testing. Despite 
rigid isolation policies, COVID-19 patients may still be burdened 
with excess case fatality, and efforts should be focused on developing 
more effective treatment strategies to combat COVID-19. As new 
drugs and vaccines are being tested and evaluated, the current sce-
nario will evolve to account for these ongoing innovations34–37.
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Methods
SIDARTHE mathematical model. The SIDARTHE dynamical system consists of 
eight ordinary differential equations, describing the evolution of the population in 
each stage over time:

_S tð Þ ¼ �S tð Þ αI tð Þ þ βD tð Þ þ γA tð Þ þ δR tð Þð Þ ð1Þ

_I tð Þ ¼ S tð Þ αI tð Þ þ βD tð Þ þ γA tð Þ þ δR tð Þð Þ � εþ ζ þ λð ÞI tð Þ ð2Þ

_D tð Þ ¼ εI tð Þ � ηþ ρð ÞD tð Þ ð3Þ

_A tð Þ ¼ ζI tð Þ � θ þ μþ κð ÞA tð Þ ð4Þ

_R tð Þ ¼ ηD tð Þ þ θA tð Þ � ν þ ξð ÞR tð Þ ð5Þ

_T tð Þ ¼ μA tð Þ þ νR tð Þ � σ þ τð ÞT tð Þ ð6Þ

_H tð Þ ¼ λI tð Þ þ ρD tð Þ þ κA tð Þ þ ξR tð Þ þ σT tð Þ ð7Þ

_E tð Þ ¼ τT tð Þ ð8Þ

where the uppercase Latin letters (state variables) represent the fraction of 
population in each stage, and all the considered parameters, denoted by Greek 
letters, are positive numbers. The interactions among different stages of infection 
are visually represented in the graphical scheme in Fig. 1. The parameters are 
defined as follows:
•	 α, β, γ and δ respectively denote the transmission rate (the probability of 

disease transmission in a single contact multiplied by the average number 
of contacts per person) due to contacts between a susceptible subject and an 
infected, a diagnosed, an ailing or a recognized subject. Typically, α is larger 
than γ (assuming that people tend to avoid contacts with subjects showing 
symptoms, even though diagnosis has not been made yet), which in turn is 
larger than β and δ (assuming that subjects who have been diagnosed are 
properly isolated). These parameters can be modified by social-distancing 
policies (for example, closing schools, remote working, lockdown). The risk 
of contagion due to threatened subjects, treated in proper ICUs, is assumed 
negligible.

•	 ε and θ capture the probability rate of detection, relative to asymptomatic and 
symptomatic cases, respectively. These parameters, also modifiable, reflect 
the level of attention on the disease and the number of tests performed over 
the population: they can be increased by enforcing a massive contact tracing 
and testing campaign28. Note that θ is typically larger than ε, as a symptomatic 
individual is more likely to be tested.

•	 ζ and η denote the probability rate at which an infected subject, respectively 
not aware and aware of being infected, develops clinically relevant symptoms, 
and are comparable in the absence of specific treatment. These parameters are 
disease-dependent, but may be partially reduced by improved therapies and 
acquisition of immunity against the virus.

•	 µ and ν respectively denote the rate at which undetected and detected infected 
subjects develop life-threatening symptoms; they are comparable if there is 
no known specific treatment that is effective against the disease, otherwise µ 
may be larger. Conversely, ν may be larger because infected individuals with 
more acute symptoms, who have a higher risk of worsening, are more likely to 
have been diagnosed. These parameters can be reduced by means of improved 
therapies and acquisition of immunity against the virus.

•	 τ denotes the mortality rate (for infected subjects with life-threatening symp-
toms) and can be reduced by means of improved therapies.

•	 λ, κ, ξ, ρ and σ denote the rate of recovery for the five classes of infected sub-
jects; they may differ significantly if an appropriate treatment for the disease 
is known and adopted for diagnosed patients, but are probably comparable 
otherwise. These parameters can be increased thanks to improved treatments 
and acquisition of immunity against the virus.

Discussion on modeling choices. In the model, we omit the probability rate of 
becoming susceptible again, after having already recovered from the infection, 
because this appears to be negligible based on early evidence27. Given the scarcity 
of available data, it is impossible to have conclusive evidence about immunity at 
this stage. Immunity might also be temporary38. Although some reports suggest the 
possibility of SARS-CoV-2 reinfection27,39,40, the indicated presence of viral RNA 
in respiratory samples might reflect a persistence rather than a true recurrence. 
The literature on the recrudescence of related members of the coronavirus 
family, such as SARS-CoV and MERS-CoV, is similarly sporadic. MERS-CoV 
reinfection despite serum detection of neutralizing antibodies has been described 

only in animals41,42, while the presence of neutralizing antibodies in serum via 
primary infection or passive transfer has been shown to prevent respiratory tract 
replication of SARS-CoV in a murine model43. From a modeling perspective, we 
are particularly interested in predictions over a relatively short horizon within 
which the temporary immunity is likely still to be in place, and the possibility of 
reinfection would negligibly affect the total number of susceptible individuals and 
so there would be no substantial difference in the evolution of the epidemic curves 
we consider. To provide solid support to this claim, Extended Data Fig. 2 shows 
the results of numerical simulation of the model when the possibility of reinfection 
is introduced: the evolution is almost identical, with the only difference being 
that the recovered population of course decreases over time. Hence, based on the 
evidence at hand, although we cannot rule out that adaptive immunity against 
SARS-CoV-2 may not provide long-lasting protection, we may reasonably consider 
the probability of reinfection to be negligible within the scope of our model.

Also, our model accounts for a distinction between non-diagnosed individuals, 
who spread the infection more because they are not in isolation, and diagnosed 
individuals, who transmit the disease much less thanks to proper isolation and 
complying with strict rules, either in hospital or at home. Because Italy is on 
lockdown, extended emergency measures nationwide are being applied to contain 
the epidemic: unless indispensable for fundamental activities, people are forced 
to stay at home in family settings, drastically reducing the risk of spreading the 
disease. Person-to-person household transmission of SARS-CoV-2 has been 
described in China44,45. Although the infection of household members of COVID-
19-positive individuals is possible, the rate of this occurrence is difficult to 
estimate so far. The only way to completely avoid such risk is to separate infected 
individuals in dedicated quarantine centers46, as has been done partially in Italy, 
confining infected people in individual hotel rooms. Even with reduced admissions 
to hospital, patients that are treated at home and assisted by household members 
strictly comply with the home isolation guidelines issued by experts47, ranging 
from sanitary hygiene measures (including waste management, cleaning of 
contaminated surfaces and household laundering) to interhuman contact measures 
among family members (the caregiver of a suspected or confirmed COVID-
19-infected individual in home isolation must be in good health and maintain  
a distance of at least 1 m, avoiding direct contact with oral or respiratory  
secretions, faeces and urine; moreover, a surgical mask and disposable gloves 
should always be used). Hence, we can safely assume that in-house transmission  
is severely limited.

Although we do consider a delay in the emergence of symptoms, through 
asymptomatic (or pauci-symptomatic) patients, categorized as undetected 
(infected) and detected (diagnosed), our model does not account for a possible 
latency between exposure to the virus and onset of infectiousness, because there 
is mounting evidence that an infected individual can transmit the virus at an 
early, preclinical stage of the disease, based on epidemiological investigation 
of COVID-19 clusters45,48–50. Moreover, recent studies estimated median serial 
interval values for COVID-19 to be close to or shorter than the median incubation 
period51,52, further proving the possibility of presymptomatic transmission of the 
disease. For this reason, we deemed it unnecessary to include an additional stage: 
although asymptomatic, individuals exposed to the virus retain a potential of viral 
transmission and thus reasonably fit within the infected and diagnosed stages.

Finally, the SIDARTHE model is a mean-field type of model, where the 
average effect of phenomena involving the whole population is captured. Social 
mixing patterns are incorporated into our contagion parameters in an averaged 
fashion over the whole population, irrespective of age. However, our model is fully 
flexible and suited to include, for example, a distinction between age classes, which 
would require splitting each variable of the model into N variables if N age classes 
are considered. Another possible future development is to extend the model to 
predict the simultaneous evolution of other diseases, which, due to the epidemic 
emergency, may be overestimated, underestimated or not treated appropriately 
because the healthcare system is overloaded, thus leading to an increased number 
of ‘collateral’ deaths not directly linked to the virus.

Analysis of the mathematical model. The SIDARTHE model (1)–(8) is a bilinear 
system with eight differential equations. The system is positive: all the state 
variables take non-negative values for t ≥ 0 if initialized at time 0 with non-negative 
values. Note that H(t) and E(t) are cumulative variables that depend only on the 
other ones and their own initial conditions.

The system is compartmental and demonstrates the 
mass conservation property: as can be immediately checked, 
_S tð Þ þ _I tð Þ þ _D tð Þ þ _A tð Þ þ _R tð Þ þ _T tð Þ þ _H tð Þ þ _EðtÞ ¼ 0
I

, hence the sum of 
the states (total population) is constant. Because the variables denote population 
fractions, we can assume

SðtÞ þ IðtÞ þ DðtÞ þ AðtÞ þ RðtÞ þ TðtÞ þ HðtÞ þ EðtÞ ¼ 1

where 1 denotes the total population, including deceased.
Given an initial condition S(0), I(0), D(0), A(0), R(0), T(0), H(0), E(0) 

summing to 1, we can show that the variables converge to an equilibrium

�S≥0;�I ¼ 0; �D ¼ 0; �A ¼ 0; �R ¼ 0; �T ¼ 0; �H≥0; �E≥0
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with �Sþ �H þ �E ¼ 1
I

. So only the susceptible, the healed and the deceased 
populations are eventually present, meaning that the epidemic phenomenon 
is over. All the possible equilibria are given by �S; 0; 0; 0; 0; 0; �H; �Eð Þ

I
, with 

�Sþ �H þ �E ¼ 1
I

.
To understand the system behavior, we partition it into three subsystems:  

the first includes just variable S (corresponding to susceptible individuals),  
the second includes I, D, A, R and T (the infected individuals), which are  
non-zero only during the transient, and the third includes variables H and E 
(representing healed and defunct). We focus on the second subsystem, which 
we denote the IDART subsystem. An important observation is that when (and 
only when) the infected individuals I + D + A + R + T are zero are the remaining 
variables S, H and E at equilibrium. Variables H and E (which are monotonically 
increasing) converge to their asymptotic values �H and �E, and S (which is 
monotonically decreasing) converges to �S if and only if I, D, A, R and T  
converge to zero.

The overall system can be recast in a feedback structure, where the IDART 
subsystem can be seen as a positive linear system subject to a feedback signal u as 
follows.

Defining x = [I D A R T]⊤, we can rewrite the IDART subsystem as

_x tð Þ ¼ Fx tð Þ þ bu tð Þ ¼

�r1 0 0 0 0

ε �r2 0 0 0

ζ 0 �r3 0 0

0 η θ �r4 0

0 0 μ ν �r5

2
6666664

3
7777775
x tð Þ þ

1

0

0

0

0

2
6666664

3
7777775
uðtÞ ð9Þ

yS tð Þ ¼ c>x tð Þ ¼ α β γ δ 0½ xðtÞ ð10Þ

yH tð Þ ¼ f >x tð Þ ¼ λ ρ κ ξ σ½ xðtÞ ð11Þ

yE tð Þ ¼ d>x tð Þ ¼ 0 0 0 0 τ½ xðtÞ ð12Þ

u tð Þ ¼ SðtÞyS tð Þ ð13Þ

where r1 = ε + ζ + λ, r2 = η + ρ, r3 = θ + μ + κ, r4 = ν + ξ and r5 = σ + τ. The remaining 
variables satisfy the differential equations

_SðtÞ ¼ �SðtÞySðtÞ ð14Þ

_HðtÞ ¼ yHðtÞ ð15Þ

_EðtÞ ¼ yEðtÞ ð16Þ

Because the time-varying feedback gain S(t) eventually converges to a constant 
value �S, we can proceed with a parametric study with respect to the asymptotic 
feedback gain �S. A key property is given in the following proposition.
Proposition 1. The IDART subsystem with susceptible population �S is asymptotically 
stable if and only if

�S<�S* ¼ r1r2r3r4
αr2r3r4 þ βεr3r4 þ γζr2r4 þ δ ηεr3 þ ζθr2ð Þ ð17Þ

Proof of proposition 1. The dynamical matrix of the linearized system around the 
equilibrium �S; 0; 0; 0; 0; 0; �H; �Eð Þ

I
 is

J ¼

0 �α�S �β�S �γ�S �δ�S 0 0 0
0 α�S� r1 β�S γ�S δ�S 0 0 0
0 ε �r2 0 0 0 0 0
0 ζ 0 �r3 0 0 0 0
0 0 η θ �r4 0 0 0
0 0 0 μ ν �r5 0 0
0 λ ρ κ ξ σ 0 0
0 0 0 0 0 τ 0 0

2
66666666664

3
77777777775

where r1 = ε + ζ + λ, r2 = η + ρ, r3 = θ + μ + κ, r4 = ν + ξ and r5 = σ + τ.
The matrix has three null eigenvalues, and five eigenvalues roots of the 

polynomial

pðsÞ ¼ DðsÞ � �SNðsÞ

where

D sð Þ ¼ sþ r1ð Þ sþ r2ð Þ sþ r3ð Þ sþ r4ð Þ sþ r5ð Þ
N sð Þ ¼ sþ r5ð Þ α sþ r2ð Þ sþ r3ð Þ sþ r4ð Þ þ βε sþ r3ð Þ sþ r4ð Þþf

γζ sþ r2ð Þ sþ r4ð Þ þ δ ηε sþ r3ð Þ þ ζθ sþ r2ð Þ½ g

The transfer function from u to yS in the system (9)–(13) is G(s) = N(s)/D(s). 
Because the system is positive, the H∞ norm of G(s) is equal to the static gain 
G(0) = N(0)/D(0).

Then, by standard root locus (small gain argument) on the positive system 
G(s), we can say that the polynomial is Hurwitz (all roots in the left-hand plane) if 
and only if expression (17) holds, where �S* ¼ 1=G 0ð Þ

I
, which proves the result.

We observe that, therefore, we are well justified to define the basic 
reproduction parameter

R0 :¼
1
S*

¼ αþ βε=r2 þ γζ=r3 þ δ ηε= r2r4ð Þ þ ζθ= r3r4ð Þð Þ
r1

and stability of the equilibrium occurs for �SR0<1
I

.
(Notice also that R0 = G(0) is the H∞ norm of the transfer function G(s).) QED
The threshold �S*

I
 is of fundamental importance. Because, asymptotically, 

S(t) converges monotonically to a constant �S, such a constant �S must ensure 
convergence of the IDART subsystem to zero (hence stability; otherwise, S could 
not converge to �S). Therefore, we have the following result.
Proposition 2. For positive initial conditions, the limit value �S ¼ lim

t!1
SðtÞ

I

 cannot 
exceed �S*

I
.

Proof of proposition 2. Because S(t) is monotonically decreasing and non-negative, 
it has a limit �S≥0

I
. For t large enough, we have S tð Þ  �S

I
. Then the system 

converges to the linear system corresponding to the linearization in �S. If, by 
contradiction, �S renders this system unstable, then x(t) diverges, as the Metzler 
matrix F þ b�Sc>

I
 has a positive dominant eigenvalue. In turn, this implies that 

x(t) cannot converge to zero, hence its components remain positive, which 
means that αI + βD + γA + δR > 0 does not converge to zero. As a consequence, 
_S ¼ �S αI þ βDþ γAþ δRð Þ<0
I

 also does not converge to zero, hence S(t) cannot 
converge to a non-negative value �S≥0

I
. We have reached a contradiction. QED

The threshold value of expression (17) has a deep meaning. The limit �S 
represents the fraction of population that has never been infected. This value 
is a decreasing function of the parameters α, β, γ and δ, which are the infection 
parameters. The action

u tð Þ ¼ S tð ÞyS tð Þ ¼ S tð Þ αI þ βDþ γAþ δDð Þ

has a destabilizing effect on the IDART subsystem, which would be stable without 
this feedback. To preserve the stability of the IDART subsystem and ensure that the 
equilibrium �S is reached, either the infection coefficients are small or the final value 
�S is small. Defining the basic reproduction number as

R0 :¼
1
S*

¼ α

r1
þ βε

r1r2
þ γζ

r1r3
þ δηε

r1r2r4
þ δζθ

r1r3r4
ð18Þ

we have that stability of the equilibrium occurs for

�SR0<1 ð19Þ

At the outset of the epidemic we have �S ’ 1
I

, so that stability occurs for

R0<1

which essentially represents an immediate recovery with no large involvement 
of the population. Larger values of R0 imply a strong affection of the population 
according to equation (19).

We can provide an important formula that relates the coefficient R0 with the 
steady-state value �S (and �H, �E).
Proposition 3. For positive initial conditions, the limit values �S ¼ lim

t!1
SðtÞ

I

, 
�H ¼ lim

t!1
HðtÞ

I

 and �E ¼ lim
t!1

EðtÞ
I

 are given by

f0 þ R0 S 0ð Þ � �Sð Þ ¼ log
S 0ð Þ
�S

� �
ð20Þ

�H ¼ H 0ð Þ þ fH þ RH S 0ð Þ � �Sð Þ ð21Þ

�E ¼ E 0ð Þ þ fE þ RE S 0ð Þ � �Sð Þ ð22Þ

where f0 = −c⊤F−1x(0), fH = −f⊤F−1x(0), fE = −d⊤F−1x(0), RH = −f⊤F−1b and 
RE = −d⊤F−1b.
Proof of proposition 3. From expression (14), we have _S tð Þ=S tð Þ ¼ �yS tð Þ

I
, namely 

�yS tð Þ ¼ d log S tð Þð Þ
dt

I
. By integration we have

Z1

0

yS ϕð Þdϕ ¼ � log
�S

S 0ð Þ

 
¼ log

S 0ð Þ
�S

 

Now, with constant F and b, we integrate _x tð Þ
I

:
Z1

0

_x ϕð Þdϕ ¼ x 1ð Þ � x 0ð Þ ¼ F
Z1

0

x ϕð Þdϕþ b
Z1

0

u ϕð Þdϕ

¼ F
Z1

0

x ϕð Þdϕþ b
Z1

0

S ϕð ÞyS ϕð Þdϕ
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Since _S tð Þ ¼ �S tð ÞyS tð Þ
I

 and x(∞) = 0, we have

�x 0ð Þ ¼ F
Z1

0

x ϕð Þdϕ� b
Z1

0

_S ϕð Þdϕ ¼ F
Z1

0

x ϕð Þdϕ� b S� S 0ð Þð Þ

We pre-multiply by c⊤F−1 and take into account that yS(t) = c⊤x(t):

�c>F�1x 0ð Þ ¼
Z1

0

yS ϕð Þdϕ� c>F�1b �S� S 0ð Þð Þ ¼ log
S 0ð Þ
�S

 
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Simple calculations show that −c⊤F−1b = R0, with R0 defined in equation (18). 
Denoting f0 = −c⊤F−1x(0), we have

f0 þ R0 S 0ð Þ � �Sð Þ ¼ log
S 0ð Þ
�S

� �

The formulas for �H and �E can be obtained by pre-multiplying the expression of R1

0
x ϕð Þdϕ

I

 above by f⊤ and d⊤, respectively. QED
If we consider an initial condition in which only undiagnosed infected I(0) > 0 

are present, while D(0) = A(0) = R(0) = T(0) = 0, then we can explicitly compute 
f0 ¼ �c>F�1 Ið0Þ 0 0 0 0½ >
I

 as

f0 ¼ R0I 0ð Þ ð23Þ

It is important to stress that equation (23) could be totally misleading for a 
long-term prediction, because in the long run the coefficients of matrix F are going 
to change. So, if there is a change in the parameters at time t0, for example due 
to imposed restrictions and countermeasures, the prediction has to be adjusted 
by considering f0 = −c⊤F−1x(t0), where F includes the new parameter values and 
x(t0) = (I(t0) D(t0) A(t0) R(t0) T(t0))⊤. Clearly equation (20) also has to be updated by 
considering the new S(t0).

An important indicator of the dynamics of an epidemiologic model is the CFR, 
which is the ratio between the number of deaths and the number of infected. Our 
model allows us to distinguish between the actual CFR M(t) and the perceived CFR 
P(t), which are defined as

MðtÞ ¼ EðtÞ
R t
0 SðϕÞ½αIðϕÞ þ βDðϕÞ þ γAðϕÞ þ δRðϕÞdϕ ð24Þ

PðtÞ ¼ EðtÞ
R t
0½εIðϕÞ þ ðθ þ μÞAðϕÞdϕ ð25Þ

Taking into account that

S tð Þ ¼ S 0ð Þ þ I 0ð Þ � I tð Þ � r1
Zt

0

I ϕð Þdϕ ð26Þ

we can provide the explicit formulas

M tð Þ ¼ E tð Þ
Sð0Þ � SðtÞ ð27Þ

PðtÞ ¼ EðtÞ
εr3þðθþμÞζ

r1r3
½Ið0Þ þ Sð0Þ � IðtÞ � SðtÞ þ θþμ

r3
½Að0Þ � AðtÞ ð28Þ

with equilibria

�M ¼
�E

S 0ð Þ � �S
ð29Þ

�P ¼
�E

εr3þðθþμÞζ
r1r3

½Ið0Þ þ Sð0Þ � �S þ θþμ
r3

Að0Þ ð30Þ

Fit of the model for the COVID-19 outbreak in Italy. We infer the model 
parameters based on the official data (source: Protezione Civile and Ministero 
della Salute) about the evolution of the epidemic in Italy from 20 February 2020 
(day 1) through 5 April 2020 (day 46). The official data we gathered are provided 
in Supplementary Table 1. We turn the data into fractions over the whole Italian 
population (~60 million).

The estimated parameter values are based on the data about the number 
of currently infected individuals with different SOI (asymptomatic or 
pauci-symptomatic, quarantined at home, roughly corresponding to variable 
D(t) in our model; symptomatic and hospitalized, roughly corresponding to 
variable R(t) in our model; symptomatic in life-threatening conditions, admitted 
to ICUs, roughly corresponding to variable T(t) in our model) and the number 

of diagnosed individuals who recovered (roughly corresponding to the quantity R t
0 ρD ϕð Þ þ ξR ϕð Þ þ σT ϕð Þ½ dϕ
I

 that can be computed based on our model). 
Although we also show plots comparing the model prediction to cumulative case 
data, we did not fit the model to the cumulative case counts, but to the number of 
currently infected cases, to avoid the pitfalls described by King and others53.

Data about the number of deaths (corresponding to E(t) in our model) appear 
particularly high with respect to the CFR reported in the literature; this can be 
largely explained by the age structure of the Italian population, which is the second 
oldest in the world (the reported CFR across all countries increases steeply with 
the age of the patient), and by the extensive intergenerational contacts in Italian 
society, which enhanced the spreading of the virus among older and more fragile 
generations54. Perhaps more importantly, it can also be explained by the Italian 
criteria for (provisional) statistics, which lead to overestimation. In fact, unlike 
other countries, the official numbers for COVID-19 deaths provisionally include 
the deaths of all people tested positive for the SARS-CoV-2 virus, even when they 
had multiple pre-existing life-threatening diseases and the exact cause of death 
had not yet been ascertained, so these numbers still need to be confirmed55. Thus, 
an important challenge in tuning the model is that the initial data are affected by 
statistical distortion: in particular, the values of the ratio death/infected are highly 
overestimated. The model fitting process must take this problem into account. 
Therefore, we decided to fit the parameters based on the data about the diagnosed 
infected population and the number of recovered diagnosed patients, but not on 
the data about deaths. It is also worth stressing that, in the long run, the model 
is weakly sensitive to the initial conditions; for this reason, the initial mismatch 
concerning the mortality data has little impact.

We adopt a best-fit approach to find the parameters that locally minimize 
the sum of the squares of the errors. The model involves many state variables, as 
well as a large number of uncertain parameters whose numerical determination 
is a very challenging problem; it is likely that an infinite number of different 
parameter sets could be found, matching the data equally well. On the other 
hand, our parameters are control tuning knobs whose values should realistically 
reproduce the data and the reproduction number R0 in plausible scenarios. Relying 
on a priori epidemiological and clinical information about the relative parameter 
magnitude (as discussed above), and starting from a random initial guess, the 
model parameters have been fitted by reiterated local minimization of the sum of 
the squares of the errors. During the course of the simulation, the parameters have 
been updated based on the successive measures, of increasing strength, adopted by 
policymakers.

In particular, the fraction of the population in each stage at day 1 is set 
as: I = 200/60e6, D = 20/60e6, A = 1/60e6, R = 2/60e6, T = 0, H = 0, E = 0; 
S = 1 – I – D – A – R – T – H – E. The parameters are set as α = 0.570, β = δ = 0.011, 
γ = 0.456, ε = 0.171, θ = 0.371, ζ = η = 0.125, μ = 0.017, ν = 0.027, τ = 0.01, 
λ = ρ = 0.034 and κ = ξ = σ = 0.017. The resulting basic reproduction number is 
R0 = 2.38.

After day 4, as a consequence of basic social-distancing measures due to the 
public being aware of the epidemic outbreak and due to recommendations (such 
as washing hands often, not touching one’s face, avoiding handshakes and keeping 
distance) and early measures (such as closing schools) by the Italian government, 
we set α = 0.422, β = δ = 0.0057 and γ = 0.285, so the new basic reproduction 
number becomes R0 = 1.66.

Also, after day 12, we set ε = 0.143 as a consequence of the policy limiting 
screening to symptomatic individuals only; thus, totally asymptomatic individuals 
are almost no longer detected, while individuals with very mild symptoms are still 
detected (hence ε is not set exactly to zero). Due to this, R0 = 1.80.

After day 22, the lockdown, at first incomplete, yields α = 0.360, 
β = δ = 0.005 and γ = 0.200; also, ζ = η = 0.034, μ = 0.008, ν = 0.015, λ = 0.08 and 
ρ = κ = ξ = σ = 0.017. Hence, the new basic reproduction number becomes R0 = 1.60.

After day 28, the lockdown is fully operational and gets stricter (working is 
no longer a good reason for going out: gradually, non-indispensable activities are 
stopped): we get α = 0.210 and γ = 0.110, hence R0 = 0.99.

After day 38, a wider testing campaign is launched: this yields ε = 0.200, and 
also ρ = κ = ξ = 0.020, while σ = 0.010 and ζ = η = 0.025. Therefore, R0 = 0.85.

The parameters above were used to simulate the model and generate the 
graphs reported in Fig. 2. The comparison between the official data and the 
curves resulting from the SIDARTHE model are provided in Extended Data Fig. 
3. The current number of infected (including all stages), the number of recovered 
and the cumulative number of diagnosed cases are well reproduced, but a small 
mismatch can be noted in the last days when distinguishing between different 
SOI. This discrepancy can have two interpretations: on the one hand, the model 
considers infected with different severities (for example, T(t) is the number of 
life-threatened patients that would need ICU admission) while the data report the 
actual treatment that the patients received (for example, the number of patients 
actually admitted to ICUs, which is constrained by the number of available beds 
and can be limited if the infected suddenly and quickly worsen, leading to death, 
before admission to the hospital). Hence, our overestimation of ICU patients may 
be due to saturation of the healthcare system, which is neglected in the model, or to 
the sudden worsening of infected who die at home before having the time to reach 
the ICU. Another possible explanation for our overestimation of patients with 
symptoms, and life-threatening symptoms, and our underestimation of patients 

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


Letters NATuRE MEDICInE

that are asymptomatic or pauci-symptomatic, is that the average age of infected 
people is getting lower and lower, and younger patients are less likely to show 
serious or life-threatening symptoms.

In the possible future scenarios reported in Figs. 3 and 4, the parameters are 
changed after day 50 as follows. In Fig. 3a,b, α = 0.252, hence R0 = 0.98 (increased). 
In Fig. 3c,d, α = 0.105, hence R0 = 0.50 (significantly decreased). In Fig. 4a,b, 
ε = 0.400, hence R0 = 0.59 (decreased, although not as much as in the previous 
scenario). In Fig. 4c,d, α = 0.420 but also ε = 0.600, therefore R0 = 0.77 (reduced, 
although not as much as in the previous two scenarios).

Conversely, Extended Data Fig. 1 shows the epidemic evolution that would 
have been predicted by the model for the COVID-19 outbreak in Italy if, after  
day 22, social-distancing countermeasures had been absent (Extended Data  
Fig. 1a,b), mild (Extended Data Fig. 1c,d), strong (Extended Data Fig. 1e,f) and 
very strong (Extended Data Fig. 1g,h). In all cases, the actual CFR is ~7.2%, while 
the perceived CFR is ~9.0%.

Extended Data Fig. 1a,b shows that, in the absence of further countermeasures 
after day 22 (just closing schools and hygiene recommendations), we have 
α = 0.422, γ = 0.285 and β = δ = 0.0057, hence R0 = 1.66 and the model predicts an 
evolution that leads to 73% of the population having contracted the virus (and 
~64% having been diagnosed) and ~5.2% of the population having died because 
of the contagion over a 300-day horizon (Extended Data Fig. 1a). The peak of the 
number of concurrently infected individuals occurs at around 76 days and amounts 
to ~44% of the population; however, the peak of concurrently diagnosed infected 
individuals occurs later, around 82 days, and amounts to 39% of the population. 
Extended Data Fig. 1b shows how the different subpopulations of infected 
individuals evolve over time, and it is interesting to notice that each subpopulation 
reaches its peak at a different time. In particular, the fraction of infected who need 
intensive care reaches its peak, almost 16.5% of the population, after 107 days.

Extended Data Fig. 1c,d shows that, with social-distancing countermeasures 
after day 22 having a mild effect, α = 0.285 and γ = 0.171, hence R0 = 1.13, still larger 
than 1. Hence, the peak is delayed (and reduced in amplitude), because the increase 
in the number of new infected is reduced. Over a 500-day horizon, as shown in 
Extended Data Fig. 1c, the model predicts an evolution that leads to a peak in 
the number of concurrently infected individuals around day 170, amounting 
to 11.7% of the population (10.6% of the population have been diagnosed). 
Eventually, 35% of the population have contracted the virus (and ~30% have been 
diagnosed) and ~2.5% of the population have died because of the contagion. The 
fraction of patients in need of intensive care, as shown in Extended Data Fig. 1d, 
reaches its peak on day 198, amounting to 5.3% of the population. The adopted 
social-distancing policy, although mild, has some impact and helps gain more time 
to strengthen and supply the healthcare system, but is still insufficient.

Extended Data Fig. 1e,f shows that, with stronger social-distancing 
countermeasures, able to yield α = 0.200 and γ = 0.086, hence R0 = 0.787, now lower 
than 1, the peak is not delayed, but anticipated, because the increase in the number 
of new infected is reduced so much that it soon becomes a decrease. Over a 300-day 
horizon, as shown in Extended Data Fig. 1e, the model predicts an evolution of the 
situation that leads to a peak in the number of concurrently infected individuals 
around day 50, amounting to 0.092% of the population; the peak in diagnosed 
infected occurs at day 54 and amounts to 0.083% of the population. Eventually, 
0.25% of the population have contracted the virus (and ~0.22% have been 
diagnosed) and ~0.02% of the population have died because of the contagion. The 
fraction of patients in need of intensive care, as shown in Extended Data Fig. 1f, 
reaches its peak on day 85, amounting to 0.04% of the population.

Extended Data Fig. 1g,h shows that, with even stronger social-distancing 
countermeasures, α = γ = 0.057, hence R0 = 0.0329, significantly lower than 1. Over 
a 300-day horizon, as shown in Extended Data Fig. 1g, the model predicts an 
evolution of the situation that leads to a peak in the number of concurrently infected 
individuals around day 25, amounting to 0.057% of the population; the peak in 
diagnosed infected occurs at day 35 and amounts to 0.048% of the population. 
Eventually, 0.086% of the population have contracted the virus (and ~0.074% have 
been diagnosed) and ~0.006% of the population have died because of the contagion. 
The fraction of patients in need of intensive care, as shown in Extended Data Fig. 1h,  
reaches its peak on day 64, amounting to 0.02% of the population.

These scenarios, although surpassed, are fundamental to prove that lockdown 
was an appropriate policy, given that, in the absence of social-distancing 
countermeasures, the epidemic could have had tragic outcomes; also, they 
suggest—for countries early on in the outbreak evolution—that strictly enforcing 
the lockdown as early as possible leads to enormous benefits with respect to a 
delayed intervention.

Model sensitivity analysis. We now investigate the sensitivity of the model 
to parameter variations, focusing in particular on the parameters that can be 
influenced by policymakers: transmission parameters, related to lockdown 
measures (α, β, γ and δ), and testing parameters, related to testing and contact 
tracing policies (ε, θ). To illustrate the effect of changing the parameter values in 
the model, our sensitivity analysis results are reported in Extended Data Figs. 4–10.

Interestingly, the model is particularly sensitive to variations in the value of α 
and of ε. Increasing α significantly increases all the curves (Extended Data Fig. 4).  
Also increasing the other transmission parameters, β, γ and δ, increases all the 

curves—that is, increases the values of all the variables, point by point, over time 
(Extended Data Figs. 5–7), although the sensitivity is smaller. All these parameters 
can be decreased by policymakers, by enforcing lockdown and social-distancing 
measures, and stringent safety procedures in hospitals and for home assistance of 
diagnosed infected.

Conversely, increasing ε significantly decreases all the curves (Extended Data 
Fig. 8). Also increasing the other testing parameter θ decreases all the curves—that 
is, decreases the values of all the variables, point by point, over time (Extended 
Data Fig. 9), but the sensitivity is smaller. These two parameters can be increased 
by policymakers by enforcing population-wide testing and contact tracing, 
focused on discovering, respectively, asymptomatic and symptomatic infections. 
Discovering infected people at an earlier stage appears to help reduce the  
contagion more.

The other parameters are harder to control with prevention and mitigation 
strategies (Extended Data Fig. 10). Increasing ζ and η decreases the final number 
of infected and recovered, but also increases the number of deaths; the number 
of symptomatic and life-threatening infections initially increases, to decrease 
afterwards. Increasing μ and ν decreases the final number of infected and 
recovered, but also increases the number of deaths; the number of life-threatening 
infections initially increases, to decrease afterwards. Increasing λ, as well as the 
other healing parameters ρ, κ, ξ and σ, decreases all the curves, apart from the 
curve of recovered patients, which initially increases (due to a higher recovery rate) 
and then eventually decreases (due to fewer infections overall). Increasing τ leaves 
all the curves almost unaffected, apart from the curve of life-threatened infected, 
which is decreased, also leading to a small decrease in the curve of all infected 
cases, a decrease in the curve of recovered and an increase in the curve of deaths.

Discussion of the model features. The key feature of our proposed model is 
the distinction between detected and undetected infection cases, and between 
cases with different SOI classifications (mild and moderate versus major and 
extreme). Distinguishing between diagnosed and not diagnosed cases allows us 
to highlight the perceived distortion in disease statistics, such as the number of 
infected individuals, the transmission rate and the CFR (the ratio between the 
number of deaths ascribed to the infection and the number of diagnosed cases). 
The discrepancy between the actual CFR (total number of deaths due to the 
infection, divided by the total number of people who have been infected) and the 
perceived CFR (number of deaths ascribed to the infection, divided by the number 
of people who have been diagnosed as infected) can be quantified based on this 
model. Therefore, the model can explain the possible discrepancy between the 
actual infection dynamics and the perception of the phenomenon. Misperception 
(either resulting in underestimating or overestimating) can be particularly relevant 
in the early phases of an epidemic phenomenon due to the lack of thorough 
information: for example, performing an insufficient number of tests may lead 
to underestimating the transmission rate (because many infected subjects are not 
diagnosed as such) and overestimating the CFR (because critical or fatal cases 
hardly go undetected). The model thus provides a rough quantification of the 
error in estimating the actual number of infected people due to the lack of proper 
diagnostic tests, or due to insufficient number of diagnostic tests being performed. 
Also, it can explain and predict the long-term effects of underdiagnosis, including 
the (apparently surprising) increased number of infections and fatalities, with 
sudden outbreaks after long silent periods.

Once the model parameters have been estimated on the basis of the available 
clinical data, the model enables us to reproduce and predict the dynamic evolution 
of the epidemic and to evaluate the possible underestimation or overestimation of 
the epidemic phenomenon based on current statistics, which are heavily subject 
to bias (for example, asymptomatic patients may get tested according to some 
protocols, not tested according to others).

The model helps evaluate and predict the effect of the implementation of 
different guidelines and protocols (for example, more extensive screening for the 
disease or stricter social-distancing measures), which typically results in a change 
in the model parameters.

The model predictions in the long run are not very sensitive to the initial 
conditions, but they are sensitive to the parameter values (and in particular 
extremely sensitive to some of these, as our sensitivity analysis has indicated), 
which are deeply uncertain and can vary due to several factors, such as population 
density, cultural habits, environmental conditions and age distribution of the 
population. The predictions must also consider parameter variations due to the 
measures imposed by the government. This is a fundamental aspect: in the long 
term, not imposing drastic measures leads to catastrophic outcomes, even when 
the initially affected population is a small fraction.

Social-distancing measures are modeled by reducing the infection coefficients 
α, β, γ and δ. The infection peak time is not monotonic with increasing restrictions. 
Partial restrictions on population movements postpone the peak, while strong 
restrictions anticipate the peak. Mild containment measures may have negative 
effects, for example augmenting the fraction of the population with life-threatening 
symptoms with respect to the fraction of population with mild symptoms.

Diagnosis campaigns can reduce the infection peak, because the diagnosed 
population enters quarantine and hence is less likely to affect the susceptible 
population.
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Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
We gathered epidemiological data from the following publicly available data 
sources: Italian Civil Protection (http://www.protezionecivilfor exampleov.it/
media-comunicazione/comunicati-stampa) and the Ministry of Health (http://
www.salutfor exampleov.it/portale/home.html). All the epidemiological 
information we used is documented in the Extended Data and Supplementary 
Tables. Raw data are reported in Supplementary Table 1 and are also included in 
Extended Data Fig. 3.

Code availability
The codes are available at http://users.dimi.uniud.it/~giulia.giordano/docs/papers/
SIDARTHEcode.zip.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Alternative scenarios for epidemic evolution. Epidemic evolution that would have been predicted by the model for the COVID-19  
outbreak in Italy if, after day 22, social-distancing countermeasures had been: absent (panels a and b), mild (panels c and d), strong (panels e and f) 
and very strong (panels g and h). In all cases, the actual Case Fatality Rate is around 7.2%, while the perceived CFR is around 9.0%. Panels (a), (c), (e), 
(g) show the difference between the actual (real cases) and the perceived (diagnosed cases) evolution of the epidemics, while panels (b), (d), (f), (h) 
distinguish between the different categories of infected patients. Note the different scales between the panels, having different orders of magnitude, which 
testify the enormous impact of social-distancing and lockdown.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Sensitivity analysis with respect to loss of immunity. Sensitivity analysis showing the effect of introducing lack of immunity 
(hence, the possibility of reinfection) after day 50: recovered individuals can become susceptible again, so we add a term +χH(t) in equation (1) and a 
term −χH(t) in equation (7), where χ represents the rate at which immunity is lost. We show the evolution of the various model variables when χ = 0, 
χ = 0.1, χ = 0.8. Panel (a) shows the variation in the total number of cases, panel (b) in the number of recovered individuals (green) and deaths (black), 
panel (c) in the total number of currently infected individuals, panels (d)–(h) in the number of infected in different categories. Apart from the number 
of recovered individuals, which is drastically reduced after loss of immunity, all the other curves are essentially unaffected: the increase in the number of 
infected and deaths, hence the increase in the number of cumulative infected, is hardly visible.
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Extended Data Fig. 3 | Model simulation compared to real data. Comparison between the official data (red dots histogram) and the results with the 
calibrated SIDARTHE model (blue line). Panel (a): number of reported infected with no (or mild) symptoms, who are quarantined at home. Panel (b): 
number of reported infected with symptoms, who are hospitalised. Panel (c): number of reported infected with life-threatening symptoms, admitted to 
ICU. Panel (d): number of reported recovered individuals. Panel (e): total number of reported infected in all categories. Panel (f): number of cumulative 
reported cases.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Sensitivity analysis with respect to α. Sensitivity analysis showing the effect of varying the transmission coefficient α, whose 
nominal value is α = 0.21, after day 50. We multiply the nominal value of α by 0.5, 0.8, 1, 1.1, and 1.2, and show the corresponding evolution of the model 
variables. Panel (a) shows the variation in the total number of cases, panel (b) in the number of recovered individuals (green) and deaths (black), panel (c) 
in the total number of currently infected individuals, panels (d)–(h) in the number of infected in different categories. Increasing α significantly increases all 
the curves: the model is extremely sensitive to variations in the value of α.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Sensitivity analysis with respect to β. Sensitivity analysis showing the effect of varying the transmission coefficient β, whose 
nominal value is β = 0.0050, after day 50. We multiply the nominal value of β by 0.5, 0.8, 1, 1.2, 2, and show the corresponding evolution of the model 
variables. Panel (a) shows the variation in the total number of cases, panel (b) in the number of recovered individuals (green) and deaths (black), panel (c) 
in the total number of currently infected individuals, panels (d)–(h) in the number of infected in different categories. Increasing β increases all the curves, 
although the sensitivity is smaller than with respect to α.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Sensitivity analysis with respect to γ. Sensitivity analysis showing the effect of varying the transmission coefficient γ, whose 
nominal value is γ = 0.11, after day 50. We multiply the nominal value of γ by 0.5, 0.8, 1, 1.2, 2, and show the corresponding evolution of the model variables. 
Panel (a) shows the variation in the total number of cases, panel (b) in the number of recovered individuals (green) and deaths (black), panel (c) in 
the total number of currently infected individuals, panels (d)–(h) in the number of infected in different categories. Increasing γ increases all the curves, 
although the sensitivity is smaller than with respect to α and β.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Sensitivity analysis with respect to δ. Sensitivity analysis showing the effect of varying the transmission coefficient δ, whose 
nominal value is δ = 0.0050, after day 50. We multiply the nominal value of δ by 0.5, 0.8, 1, 1.2, 2, and show the corresponding evolution of the model 
variables. Panel (a) shows the variation in the total number of cases, panel (b) in the number of recovered individuals (green) and deaths (black), panel (c) 
in the total number of currently infected individuals, panels (d)–(h) in the number of infected in different categories. Increasing δ increases all the curves, 
although the sensitivity is smaller than with respect to α.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Sensitivity analysis with respect to ε. Sensitivity analysis showing the effect of varying the testing coefficient ε, whose nominal 
value is ε = 0.2000, after day 50. We multiply the nominal value of ε by 0.75, 0.8, 1, 1.2, 2, and show the corresponding evolution of the model variables. 
Panel (a) shows the variation in the total number of cases, panel (b) in the number of recovered individuals (green) and deaths (black), panel (c) in the 
total number of currently infected individuals, panels (d)–(h) in the number of infected in different categories. Increasing ε significantly decreases all the 
curves: the model is extremely sensitive to variations in the value of ε.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Sensitivity analysis with respect to θ. Sensitivity analysis showing the effect of varying the testing coefficient θ, whose nominal 
value is θ = 0.3705, after day 50. We multiply the nominal value of θ by 0.5, 0.8, 1, 1.2, 2, and show the corresponding evolution of the model variables. 
Panel (a) shows the variation in the total number of cases, panel (b) in the number of recovered individuals (green) and deaths (black), panel (c) in the 
total number of currently infected individuals, panels (d)–(h) in the number of infected in different categories. Increasing θ decreases all the curves, but 
the sensitivity is smaller than with respect to ε.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Sensitivity analysis with respect to the other parameters. Sensitivity analysis showing the effect of varying, after day 50: the 
worsening coefficients ζ and η leading to clinically relevant symptoms, whose nominal values are ζ = η = 0.0250 (row a); the worsening coefficients μ and 
ν leading to life-threatening symptoms, whose nominal values are μ = 0.0080 and ν = 0.0150 (row b); the healing coefficient λ, whose nominal value is 
λ = 0.0800 (row c); the healing coefficients ρ, κ, ξ and σ, whose nominal values are ρ = κ = ξ = 0.0200 and σ = 0.0100 (row d); the mortality coefficient 
τ, whose nominal value is τ = 0.0100 (row e). In all cases, the nominal value of all the considered parameters is multiplied by 0.5, 0.8, 1, 1.2, 2, and the 
corresponding evolution of the model variables is shown. Increasing ζ and η decreases the final number of infected and recovered, but also increases the 
number of deaths; the number of symptomatic and life-threatening infections initially increases, to decrease afterwards. Increasing μ and ν decreases 
the final number of infected and recovered, but also increases the number of deaths; the number of life-threatening infections initially increases, to 
decrease afterwards. Increasing λ, as well as the other healing parameters, decreases all the curves, apart from the curve of recovered patients, which 
initially increases (due to a higher recovery rate) and then eventually decreases (due to less infections overall). Increasing τ leaves all the curves almost 
unaffected, apart from the curve of life-threatened infected that is decreased, leading to a small decrease in the curve of all infected cases, the curve of 
recovered that is decreased and the curve of deaths that is increased.
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