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ABSTRACT In this paper we apply a novel approach to near-infrared subcutaneous palm vascular pattern
authentication. The proposed method relies on a recursive algorithm based on a positive linear dynamical
system whose evolution depends on the two matrices representing the vein patterns to be compared. The
output of the system reaches a high value when a good matching between the two matrices is observed,
otherwise it converges rapidly to zero, even in presence of noise. With respect to another algorithm we
recently introduced, this approach achieves not only a better authentication performance but also a drastic
reduction in terms of computation time. These improvements are demonstrated by means of extensive
experiments conducted on challenging datasets.

INDEX TERMS Biometric authentication, dynamical system, noise-rejection, vascular pattern, vein match-
ing, information security.

I. INTRODUCTION
With the rapid growth in demand for reliable and highly
secure human authentication and identification systems, the
importance of technological solutions and algorithms in
the biometric field is growing along with security aware-
ness [12]. In fact, traditional/conventional authentication
methods, consisting in token-based systems that make use
of something you have (e.g., ID card), and knowledge-based
systems that make use of something you know (e.g., per-
sonal identification number or password), are unable to meet
the needed reliability and security requirements, while bio-
metric systems make use of physiological (intrinsic) and/or
behavioural (extrinsic) traits of individuals, overcoming the
security issues affecting the conventional methods for per-
sonal authentication [23].

Biometric systems can indeed automatically authenticate
or identify subjects in a reliable and fast way and are there-
fore suitable to be used in a wide range of applications to
face the risks of unauthorised logical or physical access and
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identity theft, as well as new threats such as terrorism or
cybercrime [11].

Suitable biometric features for authentication include
physiological uniqueness of individuals such as finger-
print, palmprint, hand geometry, face, iris, retina, ear, and
behavioural traits such as keystroke dynamics, voice, signa-
ture, and gait. Among the listed physiological characteristics,
vascular pattern features such as palm veins [4], [29]–[31],
finger veins [5], hand veins [14], and hand dorsal veins [19],
are an emerging biometric trait that has recently received
considerable interest from both the research community and
industries [22]. In fact, the subcutaneous vascular pattern of
the human body is unique to every individual, even between
identical twins [14], does not vary during the course of a
person’s life, and lies underneath the human skin ensuring
confidentiality and robustness to counterfeiting, as opposed
to other intrinsic and extrinsic biometric traits that are more
vulnerable to spoofing, thus leading to important security and
privacy concerns [15].

In addition, since vascular patterns are typically acquired
by touch-less devices, they allow for a secure authentication
method ensuring high user acceptability without discomfort.
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This paper proposes a novel approach to palm vein match-
ing based on a positive linear dynamical system characterised
by a high discriminating power and noise-rejection capability.
Section II gives an overview of the literature in vein pattern
biometrics. Then, Section III illustrates the preprocessing and
feature extraction phases aimed at extracting the palm vas-
cular pattern, while Section IV presents our novel algorithm
based on the evolution of a dynamical system, and highlights
its noise-rejecting properties. The experimental results are
reported and discussed in Section V. Finally, conclusions are
drawn in Section VI.

II. RELATED WORK
In recent years, the use of palm veins as a trait for automated
secure personal authentication has been largely investigated
due to their advantages over other biological features.

Veins are part of the network structure of blood vessels
underneath the human skin and are almost invisible in nor-
mal lighting conditions. However, it is possible to identify
the vascular pattern through near-infrared (NIR) illumination
with wavelength commonly in the range from 750 nm up to
2000 nm. The incident light in the near-infrared spectrum
penetrates into the human biological tissues up to 3-4 mm
detecting the vascular pattern underneath the skin [27].

Veins can be distinguished from arteries because arter-
ies carry oxygenated blood that contains oxyhemoglobin,
whilst veins carry deoxygenated blood that contains deoxyhe-
moglobin, which has a different absorbency rate under near-
infrared radiations: deoxyhemoglobin absorbs a higher level
of NIR radiations, which allows us to detect and isolate vein
patterns. As a result of the acquisition in presence of NIR
illumination, vascular patterns in raw images appear much
darker than all other tissues, which facilitates the feature
extraction step for matching.

Various methods for human authentication through palm
vascular pattern matching have been proposed in literature.
Among them, the work of Zhou and Kumar [31] presents
a neighbourhood matching Radon transform (NMRT)-based
method aimed at extracting line-like palm vascular features
and a Hessian phase-based method to extract palm vein
features analysing the eigenvalues of Hessian matrix of the
input image. The matching score is computed making use of
the Hamming distance. Khan et al. [13] use multidirectional
representation derived from the nonsubsampled contourlet
transform, which is binarised into a hash table. Finally, a
L0-norm approach is used for matching. In another study, Sun
and Abdulla [26] introduce an algorithm based on curvelet
transform used to obtain curve-like features, whilst Hamming
distance is used for matching. The work of Al-juboori et
al. [1] proposes the use of bank of Gabor filters to extract the
vein features, followed by a dimensionality reduction using
the Fisher discriminated analysis (FDA) method, and finally
the use of the nearest neighbours technique for matching. The
study ofKang andWu [15], instead, utilises an improved local
binary pattern method based onmutual foreground for feature

extraction and an improved χ2 distance for matching, whilst
the approach proposed in [28] by Wang et al., involves the
discriminative local binary pattern (LBP) algorithm for palm
vein feature extraction and adopts an improved improved
χ2 distance for verification. Another approach proposed by
Kang et al. [16], makes use of a local invariant feature extrac-
tion technique based on the square root of the scale invariant
feature transform (RootSIFT). The work of Ma et al. [21]
presents an adaptive bidimensional Gabor filter for feature
extraction, which are compared using the minimum nor-
malised Hamming distance method, whilst Ahmad et al. [2]
make use of the wave atom transform (WAT) method for
feature extraction and the normalised Hamming distance to
compute the matching score. Hong et al. [9] make use of a
hierarchical classifier based on the fusion of the block domi-
nant orientation code (BDOC) and block-based histogram of
oriented gradient (BHOG) features from different spectrum
bands (red, green, blue and NIR).

All these techniques can be grouped in three main cate-
gories based on the nature of the features used for match-
ing [17]:

• holistic approaches based on multilinear subspace learn-
ing: dimensionality reduction techniques are used to
project palm vascular images into subspaces aimed at
capturing the main features of the palm;

• line/curve matching using vessel extraction based on
line-like feature extraction techniques that involve spa-
tial domain filters for line/curve extraction;

• texture based codes, which make use of the orientation
of lines as features.

III. HAND PALM IMAGE PROCESSING
Usually, palm print images in the near-infrared band contain
not only the blood vessels used to authenticate a person,
but also a region of not-interest (e.g., shades, wrist, image
background). Moreover, they have different size and ori-
entation and could also be corrupted by noise. All these
factors may affect the accuracy in processing and verifica-
tion performance [33]. Thus, a preprocessing of all palm
print images is required to enable the feature extraction
phase.

Figure 1 outlines the preprocessing and feature extraction
phases illustrating all the main steps involved in the vascular
pattern extraction from a raw NIR-based hand palm image.
All these steps are detailed in the video included in the
additional material (tests #1 and #2).

A. PREPROCESSING
The preprocessing elaboration is required to extract the cen-
tral region of interest from the input image. As outlined in the
Figure 1, the major steps involved in the preprocessing of raw
images are: 1) noise reduction, 2) local adaptive binarization,
3) hand shape detection, and 4) ROI coordinate construction
and extraction [24].
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FIGURE 1. Block diagram of the adopted NIR-based hand palm image
processing for vascular pattern extraction.

1) NOISE REDUCTION
A noise typically corrupting digital images is the impulse
noise [8], [18]. This kind of noise is independent, randomly
distributed, and uncorrelated with the image, since it can
affect all pixels in the imagewith the same probability. Hence,
a common non-linear spatial filter, i.e.median filter, can be
used to remove unwanted information from noisy palmprint
images preserving details. In our experiments, the kernel size
has been set to 5× 5 pixels.

2) LOCAL ADAPTIVE BINARIZATION
It is used to automatically perform a local adaptive clustering-
based image thresholding in order to reduce the input gray-
level image I (i, j) to a binary image B(i, j). Furthermore, to
remove the wrist part of the hand, which can contribute in
poor segmentation, the last L pixels on the wrist side of the
image are zero-padded as in [15].

3) HAND SHAPE DETECTION
It is achieved by filtering the binary image B(i, j) using
Canny’s operator [3], which ensures good noise immunity
and detects true edges with minimum error [7].

4) ROI COORDINATE CONSTRUCTION AND ROI
EXTRACTION
To reduce the influence of rotation, translation, and scaling
of the palm, a standard reference system is used to align
all the palm images in a standard pose, hence, it is possible
to locate the peak and valley points of the palm tracking
the distance between the centre of mass of the segmented
hand image and the contours of the hand shape. Thus, taking
the reference points between the fingers we can construct
a reference line to align different hand images and use the
middle point between them to detect and extract the 172×172
area of the palmprint’s centre without any effort [32].

B. FEATURE EXTRACTION
Since the features are used for matching, feature extraction
plays a key role in biometric identification and authentica-
tion systems. The proposed feature extraction stage makes

use of the following steps: 1) highlighting blood vessels by
enhancing contrast and sharpness, 2) Laplacian of Gaussian,
and 3) morphological operations. Figure 2 depicts the results
of the proposed feature extraction algorithm.

1) BLOOD VESSEL ENHANCEMENT
It highlights blood vessels so that they are easily distinguish-
able from the background. To correct uneven illumination
and to enhance the contrast we combined the Top-Hat and
Bottom-Hat transforms, used to detect bright (dark) objects
from a varying dark (bright) background. The Top-Hat trans-
form is defined as the difference between the input image I
and its morphological opening by a cross shaped structuring
element B ⊆ Z2:

B =

0 1 0
1 1 1
0 1 0

 (1)

TH = I − (I ◦B) = I − ((I 	B)⊕B) (2)

whilst the Bottom-Hat transform is defined as the difference
between the closing of the input image I (i, j) by the structur-
ing element B and the input image itself:

BH = (I •B)− I = ((I ⊕B)	B)− I (3)

where the opening is obtained by the erosion of I (i, j) by B
followed by dilation of the resulting image by B, and the
closing is obtained by the dilation of I (i, j) by B followed
by erosion of the resulting image by B. Then, to remove
the bright objects and enhance the black ones that represent
the blood vessels, we adopt the Top-Hat and Bottom-Hat
transforms as follows:

Io(i, j) = I (i, j)− TH (i, j)− BH (i, j). (4)

After this operation, a normalisation [10] is applied to preset
the values of mean and variance for all palm images:

In(i, j) =

{
µn + ρ if Io(i, j) > σ 2

µn − ρ if Io(i, j) ≤ σ 2 (5)

where

ρ =

√
σ 2
n (Io(i, j)− µ)

2

σ 2 (6)

with µn = 128 and σn = 40, determined experimentally.

2) LAPLACIAN OF GAUSSIAN
The Laplacian is a bidimensional isotropic operator used to
estimate the second spatial derivative of an image and is com-
monly used to extract line-like features, since can preserve
the pattern suppressing the noise at the same time [26]. In
fact, to decrease its sensitivity to noise the operator is applied
to an image already smoothed by a bidimensional Gaussian
operator G(i, j), whose expression is given by

G(i, j) = exp
(
−
i2 + j2

2σ 2

)
. (7)
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FIGURE 2. Results of the proposed vascular pattern extraction method on
PolyU (upper row) and CASIA (lower row) databases: (a) original ROI
images, (b) boolean vascular pattern matrices, and (c) original ROI images
overlapped with the extracted vascular patterns.

Since convolution and differentiation are the only linear oper-
ators involved, it is possible to interchange them:

∇
2 [G(i, j) ∗ In(i, j)] =

[
∇

2G(i, j)
]
∗ In(i, j). (8)

Hence, the Laplacian of Gaussian can be precomputed as:

∇
2G(i, j) =

(
i2 + j2 − 2σ 2

σ 4

)
G(i, j). (9)

3) MORPHOLOGICAL OPERATIONS
They are aimed at cleaning the vascular pattern image from
small objects and noise such as random bright spots on
black background and black holes on bright components. To
accomplish this goal we use a morphological filter composed
of an opening followed by a dilation through a structuring
element B as follows:

F = (I ◦B) •B. (10)

Finally, an iterative thinning transformation is applied to
reduce a foreground object to a minimal connected stroke
preserving the topology [20], since the final vascular pat-
tern image is homotopically equivalent to the input image.
Figure 2 exemplifies the vascular pattern extraction method.

IV. A DYNAMIC ALGORITHM FOR VEIN MATCHING
We discuss here the dynamic algorithm we propose for vein
matching, which is a recursive algorithm based on iterative
operations on the matrices associated with the images. To
have an immediate glimpse on how the algorithm works the
reader is invited to take a look at the video included in the
additional material. The reader is invited to take a look at
the video included in the additional material (tests #3 and #4)
to see the time evolution of the dynamic algorithm in both
genuine and impostor experiments.

Given two initial images X̄ and Ȳ of the same size, the
recursive algorithm yields a pair of real matrices, X and Y ,

with the same size as X̄ and Ȳ . The algorithm is initialised as
xij(0) = x̄ij and yij(0) = ȳij where x̄ij and ȳij are the binary
values of pixel i, j in the original images X̄ and Ȳ , converted
to real (floating point) values. For brevity we refer to the real
entries of matrices X (k) and Y (k) as ‘‘pixels’’.
The idea behind the algorithm is to recursively increase the

value of a pixel i, j if in the complementary neighbourhood
(namely, the neighbourhood of the corresponding pixel i, j
in the comparison image) there are pixels with large values.
Conversely, if the pixels in the complementary neighbour-
hood have low values, the value of pixel i, j converges to zero.
The algorithm also includes a term that initially increases the
value of a pixel if the pixels in a proper neighbourhood in the
same image have large values, and then vanishes with time;
it has the effect of initially thickening the relevant patterns.

The two images are processed according to the iterations

xij(k + 1) = λxij(k)+ µ
∑
hl∈N ij

yhl(k)

︸ ︷︷ ︸
cross-matching

+ νk
∑
hl∈Nij

xhl(k)

︸ ︷︷ ︸
initial expansion

(11)

yij(k + 1) = λyij(k)+ µ
∑
hl∈Nij

xhl(k)

︸ ︷︷ ︸
cross-matching

+ νk
∑
hl∈Nij

yhl(k)

︸ ︷︷ ︸
initial expansion

(12)

where k = 0, 1, . . . ,K −1, andNij is a square neighborhood
of the pixel i, j of dimension δ (integer):

Nij = {h, l : |h− i| ≤ δ, |l − j| ≤ δ, h, l ∈ Z}.

At the final step K , to achieve a boolean image, pixels with
value smaller than 1 are set to zero whilst pixels with value
greater than 1 are saturated to 1, so as to generate the final
boolean matrices (images) X ′ and Y ′, with

x ′ij := {xij(K ) ≥ 1} and y′ij := {yij(K ) ≥ 1}. (13)

Given the size δ of the neighbourhood Nij and denoting
by n(N ) = (2δ + 1)2 the corresponding number of pixels,
the positive parameters λ, µ, ν are selected based on an
optimisation procedure.

To limit the search region for the optimisation proce-
dure within a bounded set (see Figure 3), we impose the
constraints:

0 < λ,µ, ν < 1 (14)

λ+ ν < 1 (15)
1
2
µ · n(N ) < 1− λ < µ · n(N ) (16)

Since we consider positive parameters, the requirement
that λ,µ, ν < 1 in (14) is implied by (15) and (16).
The reasoning behind the introduced constraints can be

explained as follows.
• Given (11) and (12) in the absence of cross matching
(µ = 0) and of initial expansion terms (ν = 0), xij(k)
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and yij(k) should asymptotically converge to zero: since
the iterations become xij(k+1) = λxij(k) and yij(k+1) =
λyij(k), this happens provided that λ < 1, as in (14).

• The expansion term initially augments xij (resp. yij) if
the average value of the pixels in the neighbourhood of
xij (resp. yij) is large. It depends on the factor νk , and
we set 0 < ν < 1 as in (14) so that this initial effect
quickly vanishes with time. This is needed because, in
the long run, the persistence of this term would make all
lines thicker and thicker, leading to false positives.

• The inequality in (15) needs to hold to ensure that, if
there is an isolated pixel xij whose value is initially large,
but there are no active pixels in both the neighbourhoods
of the image itself and the complementary image, then
the pixel value decreases from the very beginning of the
iterations, since it evolves as

xij(k + 1) =
(
λ+ νk

)
xij(k). (17)

With ν + λ < 1, such a pixel is therefore quickly
cancelled.

• The first inequality in (16) is explained as follows. The
cross-matching term increases xij (resp. yij) if the aver-
age value of the pixels in the complementary neighbour-
hood is large.
If νk ≈ 0, which is ensured for large k in view of (14),
we have

xij(k + 1) = λxij(k)+ µn(N )

∑
hl∈Nij

yhl(k)

n(N )︸ ︷︷ ︸
average value

(18)

Hence,
1
2
µ · n(N ) + λ < 1 implies that, if the average

value in the complementary neighbourhood is around
or below the half of xij(k), then xij gets smaller: xij
(k + 1) < xij(k). Hence, we take the empirical thresh-
old of xij(k)/2 to discriminate whether the complemen-
tary neighbourhood has to be considered ‘‘populated’’
or ‘‘unpopulated’’. Conversely, the second inequality
in (16), µ · n(N ) + λ > 1, means that if the average
value is about or greater than xij, the complementary
region should be consider as ‘‘populated’’ so xij should
get larger: xij(k + 1) > xij(k). The same holds for yij(k).

At the end of the iterations, given xij(K ) and yij(K ), the
images X ′ and Y ′ are produced, where some pixels are set to 0
and others to 1 according to the boolean decision boundary
in (13).

The final test is performed on the number of pixels with
value 1 (active), which is compared to the initial number.
Denoting by 6(X̄ ) and 6(Ȳ ) the number of active pixels in
the initial images and by 6(X ′) and 6(Y ′) the number of
active pixels in the final images, we consider the matching
index [25]:

α =
1
2

[
6(X ′)

6(X̄ )
+
6(Y ′)

6(Ȳ )

]
. (19)

Similar images will have a large number of surviving pixels
(cf. Figure 8 (a) and (c)), hence a large matching index α,
while different imageswill be left with a very small number of
nonzero pixels (cf. Figure 8 (b) and (d)), with α considerably
small.

Since νk → 0 when k → ∞, asymptotically the recur-
sion becomes identical to that in our algorithm for palm-
print matching [25] (which makes use of palmprint features
acquired in the visible spectrum rather than in the NIR).

The resulting algorithm works as follows.

Algorithm Vein Matching Index Computation
Input: Boolean images A and B.

Parameters: Number of steps K , positive constants
λ,µ, ν < 1, integer neighbourhood amplitude δ > 0.

Outputs: Matching index α.

1) Convert the two input images from boolean into real
matrices X := A and Y := B.

2) Set k = 0.
3) At each iteration, compute the updated values for each

pixel in both images according to (11)–(12)
4) Set k = k + 1 and, IF k < K , GOTO step 3.
5) Generate the boolean matrices [X ′,Y ′] as follows: IF

xij ≥ 1, THEN x ′ij := 1; ELSE x ′ij := 0; IF yij ≥ 1,
THEN y′ij := 1; ELSE y′ij := 0.

6) Compute the matching index α as in (19).

Therefore, we can formally guarantee that asymptotically
the performance is at least as good as with the previous algo-
rithm. Moreover, the new dynamic algorithm has noteworthy
advantages.
• The term νk provides an initial burst that considerably
increases the speed of convergence. Its effect is that of
initially enlarging the lines, which is beneficial and very
rapidly leads to a situation where the discrimination is
possible (see Figure 5).

• The benefits of the joint cross-matching and the initial
expansion term are seen in the first iterations, which
allows to stop the algorithm at an early stage. Indeed, the
best results in terms of discrimination are achieved after
few iterations, so waiting any longer is useless (although
it does not compromise performance in terms of the
matching index, see Figure 5). Stopping the algorithm
after few iterations drops the computational time of an
order of magnitude (cf. Figure 5) and still allows for very
effective authentication.

Given the constraints (15)–(16), the optimal parameter val-
ues are chosen based on an experimental campaign in order
to maximise the performance.

V. EXPERIMENTAL RESULTS
A. DATABASES USED IN SIMULATION
The performance of the proposed palm vascular pattern
authentication system has been tested upon the PolyU
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multispectral palmprint database [34] and the CASIA mul-
tispectral palmprint database [35], which are worldwide
shared for research purposes and whose details are given in
Table 1.

The first database consists of 6 000 palmprint images for
each electromagnetic spectrum, captured from 250 subjects
by a CCD-based device. All images are 8 bit gray-level of size
352 × 288 pixels at 96 dpi resolution. The second database
consists of 1 200 palmprint images for each electromag-
netic spectrum, captured from 100 subjects by a CCD-based
device. All images are 8 bit gray-level of size 768×576 pixels
at 96 dpi resolution.

In both databases, for each subject there are palmprint
images from both left and right hands captured from people
of different ages at different times.

TABLE 1. Specifications of the PolyU and CASIA databases.

B. PARAMETER OPTIMISATION
Since the proposed approach for matching is based on a
linear parameter-dependent system, it is very important to
set its internal parameters in order to maximise the system
performance. Hence, in this phase we have carried out a one-
time parameter tuning procedure which consists of a massive
experiment to estimate the values of the parameters λ, µ, and
ν that maximise the accuracy of the system.

Thus, given the set N of nearby points of a generic point
p(x, y), it is convenient to set the parameters in accordance
with the criteria (14)–(16). To define the set N , it is rea-
sonable to consider a small radius as δ = 2 (which means
that the cardinality of N is equal to n(N ) = 25), since the
thickness of blood vessels typically amounts at most to a
couple of pixels. This choice allows a perfect coverage of
a blood vessel and avoids excessive unwanted overlaps with
other blood vessels in the comparison image.

The suitable parameter values, in terms of accuracy and
convergence speed, have been found by means of a massive
experiment, conducted over a subset of the CASIA multispec-
tral palmprint database.

Since it is not possible to thoroughly invesitgate in the
convergence domain to find the optimal parameter values,
the candidate parameters have been chosen using a Monte
Carlo sampling-based approach, generating a large number
of pseudo-random points in the space, selecting the only
points within the convergence domain, and using the candi-
date parameters to test the behaviour of the system. Figure 3

FIGURE 3. Region of convergence of the system bounded by the
constraints reported in (14)–(16) (with n(N ) = 25 and p = 1/2), and valid
Monte Carlo samples (λ,µ, ν).

depicts the convergence domain of the system according to
the hard constraints argued in Section IV. The subset of the
database consists of half the right hand samples of all the
subjects acquired in the spectrum band at 940 nm, whilst the
number of parameter sets (λ,µ, ν) generated by the Monte
Carlo sampling and belonging to the convergence domain is
equal to 176. Hence, the amount of the tests performed is
176 ×

(300
2

)
= 7 893 600. Figure 4 illustrates a comparative

analysis of the performance by plotting the genuine accep-
tance rate against the false acceptance rate for several differ-
ent parameter sets (λ,µ, ν), whilst Table 2 presents detailed
results in terms of equal error rate and genuine acceptance
rate achieved by each parameter set.

FIGURE 4. Comparative graph of several ROC curves generated by
plotting the Genuine Acceptance Rate against False Acceptance Rate
obtained using different parameter configurations.

It is worth of note that to verify the effectiveness and
robustness of our system, the parameters obtained from
the test conducted using images acquired under 940 nm
wavelength illumination have been used for the verification
experiments on both the testing databases using different
wavelength illumination images without parameter re-tuning.
Thus, the best parameter values resulting from the simulation
are: 

λ = 630 · 10−3

µ = 295 · 10−4

ν = 292 · 10−3.

(20)

To limit the computational cost of the matching process,
it is important to set a priori the number of iterations after
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TABLE 2. Comparative analysis of the performance in terms of equal
error rate and genuine acceptance rate using the subset of the CASIA
database considering the near-infrared spectrum band at 940 nm.

which we can consider the response close enough to the
steady state of the dynamic system. Hence, to better illus-
trate the behaviour of the system in terms of accuracy, even
with respect to our previous algorithm for palmprint match-
ing [25], we performed the tests executing the algorithmswith
a large number of iterations, thus allowing the systems to
reach the steady state condition.

We used the results from the tests obtained using the
proposed approach and our previous algorithm to graph their
behaviours in terms of discriminating power. Figure 5 illus-
trates the difference between the mean values of the true
positive and true negative rates against the number of iter-
ations, whilst the vertical dashed line represents the selected
number of iterations at which the proposed system is intended
to operate.

FIGURE 5. Comparison between the proposed approach and our previous
algorithm in terms of discriminating power by plotting the difference
between the mean values of the true positive and true negative rates
against the number of iterations.

The figure clearly shows that, within a few iterations, the
matching score achieved by the proposed system can be con-
sidered close enough to the convergence value of the dynamic
system in the steady state condition. These results consis-
tently suggests that the new approach achieves significantly
improved performance over the one in [25], ensuring also
greater reliability thanks to its higher discriminating power.
Hence, to save computation time, the number of iterations for
the tests has been set to 15.

C. PERFORMANCE ASSESSMENT AND COMPARISON
In order to evaluate the accuracy of the proposed authentica-
tionmethod based on a single-sample approach for single bio-
metric systems, each sample in the database has undergone a
one-to-one matching test against every single stored sample.
Hence, a comparison between a subject with real identity Ir

and a subject with claimed identity Ic is aimed at testing the
hypothesis:

H0 : Ir = Ic versus H1 : Ir 6= Ic (21)

where H0 is the null hypothesis that the user is who s/he
claims to be (genuine or intra-class matching), whilst H1 is
the alternative hypothesis that the user is not who s/he claims
to be (impostor or inter-class matching). In particular, given
a threshold value, t , all matching values lower than t lead to
the rejection of the null hypothesisH0 [6]. Therefore, whether
the hypothesis is accepted or rejected, the test is subject to two
kinds of errors:

1) False Acceptance Rate (FAR) that is the probability
of accepting the null hypothesis H0 when input is not
valid,

2) False Rejection Rate (FRR) that is the probability of
rejecting the null hypothesis H0 when input is valid.

The Genuine Acceptance Rate (GAR) is instead the proba-
bility of accepting the null hypothesisH0 when input is valid.
The Receiver Operating Characteristic (ROC) represents the
trade-off between FAR and FRR when the threshold varies,
whilst the intersection point for which rejection and accep-
tance errors are equal is named Equal Error Rate (EER).

In our experiments, we have performed tests by taking
12 samples in the NIR spectrum at 880 nm of the left and
right hands of all the subjects from the PolyU multispectral
palmprint database and 6 samples in the NIR spectrum at 850
nm of the left and right hands of all the subjects from the
CASIA multispectral palmprint database, for a total of 6 000
and 1 200 samples, respectively. Furthermore, in order to
increase the amount of intra-class tests and to comparatively
assess the performance from various approaches, we regarded
both hands as belonging to different subjects [1], [2], [16],
[21], [26], [28]. As a matter of fact this setup constitutes a
total number of experiments equal to: 1)

(6 000
2

)
= 17 997 000,

including 2 × 250 ×
(12
2

)
= 33 000 intra-class experiments

for the PolyU database, and 2)
(1200

2

)
= 719 400, including

2×100×
(6
2

)
= 3 000 intra-class experiments for the CASIA

database.
Figure 6(a) and Figure 6(b) outline the trade-off between

the FRR and the FAR curves when the threshold varies, whilst
the two EERs identified by the intersection point between the
curves are 2.341·10−5 for the PolyU database and 1.081·10−3

for the CASIA database. Figure 6(c) and Figure 6(d) instead,
illustrate the genuine (intra-class) and impostor (inter-class)
distributions for both the databases. The two distributions (or
classes) are clearly separated in both the databases, indicating
the ability of the system to distinguish the genuine user
samples from those of the impostors. Indeed, the separation
also provides a hint on the threshold point that maximises the
variance between the two classes in order to correctly mark a
user sample image as authentic or impostor.

To assess the performance of the proposed dynamic palm
vein matching (DPVM) system with respect to several
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TABLE 3. Summary of the performance in terms of EER derived from several published methods.

FIGURE 6. Performance assessment from PolyU (first coloumn) and
CASIA (second coloumn) databases: (a) False Acceptance Rate and False
Rejection Rate curves, and (b) estimation of theortical genuine and
impostor distributions.

other approaches present in literature, we have presented in
Figure 7 a comparison of the detection error trade-off (DET)
curves, which have been drawn by plotting FRR against
FAR. As the FRR indicates the number of match errors,
the closer the curve is to the bottom of the graph, the bet-
ter the biometric performance of the system. Hence, from
Figure 7 it is clear that the dynamic palm vein matching

FIGURE 7. Comparison of detection error trade-off (DET) curves between
the proposed system and other algorithms using (a) CASIA database and
(b) PolyU database.

algorithm has achieved better performance with regard to all
the other methods, obtaining a GAR at FAR = 10−6 equal
to GAR|FAR=10−6 = 9.99 · 10−1 and GAR|FAR=10−6 =
9.78 · 10−1 for the PolyU and CASIA databases, respec-
tively. Table 3 presents a summary of the performance in
terms of equal error rate (EER) of different approaches in
literature. In particular, our system has achieved a Zero False
Acceptance Rate (ZeroFAR) and a Zero False Rejection Rate
(ZeroFRR), which represent the FRR (resp. FAR) value when
FAR (resp. FRR) is zero, equal to FRR|FAR=0 = 5.57 · 10−5

and FAR|FRR=0 = 3.03 · 10−5 for the PolyU database, and
FRR|FAR=0 = 1.96 · 10−3 and FAR|FRR=0 = 4.27 · 10−2

for the CASIA database. Thus, these results show that our
algorithm outperforms all the other approaches with an
EER reduced at least by 50% with respect to the listed
techniques, demonstrating the effectiveness of the proposed
approach.
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FIGURE 8. Dynamic algorithm behaviour in presence of random impulse
noise with probability p = 20%: a) true positive match with one image
corrupted by noise, b) true negative match with one image corrupted by
noise, c) true positive match with both images corrupted by noise, and d)
true negative match with both images corrupted by identical noise (i.e.,
the same corrupted pixels).

D. NOISE IMMUNITY
To demonstrate the robustness of the dynamic algorithm
against noise, further experiments have been carried out to
compare normal images and images highly corrupted by
random impulse noise. The model of this noise is always
independent, randomly distributed, and uncorrelated with the
images and can be described as follows:

In(x, y) =

{
28 − 1 with probability p,
I (x, y) with probability 1− p .

(22)

Furthermore, the system robustness has also been tested
performing impostor matching experiments by adding the
same random impulse noise to the user sample images. These
experiments lead to low matching scores because there are
not enough connections between the active points of both
the images to be compared (i.e., half of the points in the
complementary neighbourhood are not active), though the
pixels affected by noise are the same. As a result, the amount
of survived points after the algorithm evolution is very
limited. Figure 8 illustrates the dynamic algorithm behaviour

in presence of random impulse noise with probability p equal
to 20%. In particular the first column shows the user sample
images to compare, the second column shows the user sample
images of the claimed identity, and the last column shows
the remaining points after the algorithm evolution. Four most
significant examples have been reported, testing the follow-
ing conditions: a) true positive match with the user sample
image corrupted by noise, b) true negative match with the
user sample image corrupted by noise, c) true positive match
with both the images to be compared corrupted by noise, and
d) true negative match with both the images to be compared
corrupted by identical noise (i.e., the same corrupted pixels).
These tests demonstrate that the system is able to recognise
a subject with ease even if the samples are highly affected
by noise. The video included in the additional material shows
(tests #5 to #7) the system behaviour in noisy conditions.

E. COMPUTATIONAL EFFICIENCY
The experiments have been performed making use of a vir-
tual machine configured with two dedicated processors and
4096 MB RAM hosted on an Intel Core i5-7200U CPU
(2.5 GHz) with 8192 MB RAM running a 64-bit Microsoft
Windows 10 operating system. The code has been imple-
mented using Matlab R2016b; to estimate the total computa-
tion time, each part of the code has been performed 500 times,
then it has been considered the mean time. As a result, the
average computation times required for preprocessing, fea-
ture extraction, and matching of the proposed algorithm are
81 ms, 28 ms, 126 ms respectively. Hence, the mean response
time for verification is about 0.235 s, making this approach
suitable to be used in a real-time biometric authentication or
identification system. The proposed template consists of a
square Boolean matrix of dimensions 128×128 pixels, hence
the total size for each template is 2048 bytes. In terms of
algorithm particularities and user friendliness (the number of
enrollment samples required), the system is computationally
simple because it only requires one image as an enrollment
template. This makes the algorithm well suited even for sys-
tems with limited resources.

VI. CONCLUSION
In this paper, a new approach for near-infrared subcutaneous
palm vascular pattern authentication has been investigated.
Inspired by our previous study [25], which adopts a dynamic
algorithm tailored to palmprint features acquired in the visi-
ble electromagnetic spectrum rather than in the near-infrared,
we have proposed a novel dynamical system approach achiev-
ing significantly improved performance over the earlier pro-
posed system ensuring also greater reliability thanks to its
higher discriminating power which allows to recognise a
subject with ease, even if the templates are highly corrupted
by noise. To evaluate the performance of the system a mas-
sive campaign of experiments has been conducted and the
results clearly show that the proposed approach can compete
with the state-of-the-art methods, achieving an EER equal
to 1.081 · 10−3 for the CASIA database and 2.341 · 10−5 for
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the PolyU database. The experiments presented in Section V
illustrate that the value of GAR still can be considered 100%
for levels of FAR up to 10−4 on the CASIA database and
up to 10−6 on the PolyU database. In particular, setting
the threshold such that the system works at ZeroFAR, the
probability to reject a legitimate subject is 5.57 · 10−5 for
the PolyU database and 1.96 · 10−3 for the CASIA database,
whilst there is no likelihood of accepting impostors. We also
want to highlight that the system has undergone a parameter
tuning step which is required only once and there is no need
to perform this phase again, even using different databases
with different wavelength illumination images, which proves
the effectiveness and robustness of the proposed system. In
terms of algorithm particularities and user friendliness, the
system is computationally simple and extremely fast (allow-
ing for real-time applications) and user friendly, since it only
requires one near-infrared image as an enrollment template.
The computational time indeed requires only 0.235 s for
the entire process, whilst the size of a single template is
equal to 2048 bytes, thus allowing the use of the proposed
method in systems with limited resources. Furthermore, the
values of FAR, FRR and consequently of GAR obtained from
the experimental results allow the system to meet the strict
requirements of very high security applications.
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