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Qualitative and quantitative 
responses to press perturbations in 
ecological networks
Giulia Giordano1 & Claudio Altafini2

Predicting the sign of press perturbation responses in ecological networks is challenging, due to the 
poor knowledge of the strength of the direct interactions among the species, and to the entangled 
coexistence of direct and indirect effects. We show in this paper that, for a class of networks that 
includes mutualistic and monotone networks, the sign of press perturbation responses can be 
qualitatively determined based only on the sign pattern of the community matrix, without any 
knowledge of parameter values. For other classes of networks, we show that a semi-qualitative 
approach yields sufficient conditions for community matrices with a given sign pattern to exhibit 
mutualistic responses to press perturbations; quantitative conditions can be provided as well for 
community matrices that are eventually nonnegative. We also present a computational test that can be 
applied to any class of networks so as to check whether the sign of the responses to press perturbations 
is constant in spite of parameter variations.

One of the main goals in ecology is to understand the dynamics of communities of interacting species. To this 
aim, press perturbation experiments are carried out: a persistent perturbation is applied to a species in the com-
munity, to assess how the density of the various species changes at the new equilibrium1. Responses to press per-
turbations are often difficult to interpret and counterintuitive, due to the fundamental role of indirect effects2–5. 
The community matrix (i.e., the Jacobian matrix of the system of growth equations, evaluated at an equilibrium) 
only describes direct interactions among species in a community near equilibrium. However, a j-species press 
may affect species i through a complex network including direct and indirect interactions (when species i and j 
are dynamically coupled through intermediate species). If the perturbation is small enough and the community 
has a stable equilibrium point, the net effect is given by the negative adjoint of the community matrix6–13, whose 
(i, j) entry predicts the overall influence of a j-species press on species i. The negated inverse of the commu-
nity matrix can be equivalently considered1–3, 14, since it has the same sign pattern under stability assumptions. 
However, the lack of exact knowledge about direct species interactions (namely, the entries of the community 
matrix), due to empirical limitations, and the huge uncertainties that affect ecological models15, 16, often prevent 
from predicting even the sign of the variation: does the population density at the new equilibrium increase or 
decrease with respect to the previous equilibrium, or does it remain the same?

Here we show that for some classes of ecological networks, including mutualistic networks17, and monotone 
networks19–21, the sign of press perturbation responses can be determined in a purely qualitative manner from the 
sign pattern of the community matrix, without any information on the numerical value of its entries. For other 
classes of networks, we propose semi-qualitative or quantitative approaches. A semi-qualitative approach yields 
sufficient conditions for community matrices with certain sign patterns to admit negated inverses with all non-
negative entries, for some parameter values. We further show that, when a community matrix has only a limited 
number of negative entries, the responses to press perturbations can possibly be all mutualistic when the commu-
nity matrix has the property of being eventually nonnegative22, 23: this (quantitative) property of Perron-Frobenius 
type implies that the negative direct interactions only have a transient effect on the dynamics, but leave no trace 
on the press perturbation response at steady state.

Finally, we present a computational test that exploits the multi-affine structure of the problem to check 
whether the sign of a press perturbation response is preserved when parameters are uncertain. Such a test can be 
employed for the analysis of any kind of community (not necessarily mutualistic, but also competitive).
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Results
Before entering into the details of our contribution, we need to review a few basic concepts about ecological net-
works. These are compendia of elementary interactions among species in an ecosystem and can be visualised as a 
graph, whose nodes represent species and whose edges represent interactions. Single and pairwise interactions 
that normally appear in this context are shown in Fig. 1(a), along with their graph representation. Assembling all 
of these elementary interactions among n species leads to a signed digraph S( )  that represents the whole ecolog-
ical network, where S is a n × n matrix whose entry [S]ij is +1 if a positive edge goes from j to i, −1 if a negative 
edge goes from j to i, and 0 otherwise. The dynamics of an n-species community can be described by the nonlin-
ear system

=x t f x t( ) ( ( )), (1)

where the ith component of the vector x(t) = [x1(t) … xn(t)]Τ represents the population density of species i and 
the ith component of f(x(t)) = [f1(x(t)) … fn(x(t))]Τ is the corresponding overall growth rate, which is a function 
of (some or all of) the species densities. We assume that the system admits an asymptotically stable equilibrium 
point x , such that =f x( ) 0. The community matrix associated with the system in (1),

=
∂

∂ =

J f x
x
( ) ,

(2)x x

is the Jacobian matrix of the system, evaluated at the equilibrium x . Its entry Jij expresses the direct effect of spe-
cies j on the growth rate of species i. The sign of the entries of J tells us whether a species has a positive/negative 
direct influence, or no direct influence, on each of the other species, and this is visually represented in the associ-
ated graph by a positive/negative edge, or no edge, between the two corresponding nodes. Therefore, there is an 
equivalence between the overall network graph S( )  and the sign pattern of the community matrix J: denoting by 
sgn(·) the elementwise sign function (sgn(z) = +1 if z > 0, sgn(z) = −1 if z < 0, sgn(z) = 0 if z = 0), we have 

Figure 1.  (a) Signed edge representations of basic single and pairwise interactions in ecological networks: 
positive edges are blue, negative edges are red. (b) From press perturbation to steady-state influences. Even 
when Jij = 0 (no direct effect of species j on species i in the community matrix), indirect steady-state influences 
can appear in response to press perturbations applied to node j, when i and j are connected through indirect 
paths (thick edges). Sometimes the influence has a qualitatively determined sign, and the (i, j) entry of the 
influence matrix K is sign-definite. When the influence sign is indeterminate, since it depends on the parameter 
values used in the model, semi-qualitative and quantitative approaches can be used.
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sgn(J) = S. We assume that each species has a negative self-loop, representing for instance density-dependent 
growth rate. This assumption is necessary for the asymptotic stability of the dynamical system in (1) at x  under 
the monotonicity assumptions introduced below (however, we will be able to remove this assumption later, when 
proposing the vertex algorithm that deals with uncertain community matrices). Since we work under asymptotic 
stability assumptions, it must be det(−J) > 0 (see e.g. ref. 24), hence J is invertible. While J includes direct effects 
only, the net steady-state influence that combines all direct and indirect effects is given by M = adj(−J), the nega-
tive adjoint matrix of the community matrix6–13. Its entry Mij predicts the response of species i to a press pertur-
bation on species j: if the density of species j is experimentally altered and held at a higher level, then, at the new 
equilibrium, the density of species i will be higher if Mij > 0, lower if Mij < 0 and unchanged if Mij = 0, see Fig. 1(b). 
Since adj(−J) = (−J)−1det(−J), and det(−J) > 0 in view of stability, we can equivalently consider the sign pattern 
of −J−1, see refs. 1–3,

= − = −−K J Jsgn( ) sgn[adj( )], (3)1

which yields the qualitative effect of all species presses on all other species. We call K the influence matrix. (Note 
that K can be fully positive, including diagonal entries, even though the diagonal entries of J are assumed to be 
negative). The influence matrix can be determined in principle from field experiments1, but this is difficult in 
practice, especially for large communities3. Another approach computes the community matrix J, and then the 
influence matrix, from (1), with parameters based on available data. Yet, parameter values are often uncertain. 
Can we provide qualitative influence matrices, in spite of the inherent uncertainty in the community matrix?

Influence matrices: from qualitative to quantitative aspects.  Properties that can be investigated 
simply based on the topology and the signature of the graph S( )  (whenever these features can be comfortably 
assumed) are referred to as qualitative, since they are satisfied by any matrix belonging to the qualitative class Q[S] 
of all matrices having the same sign pattern as S (zeros included).

In ecological networks, often we know the interaction graph, but we lack quantitative information. Qualitative 
approaches are then crucial to evaluate the response to press perturbations. Indeed, for a particular class of sys-
tems, which includes all mutualistic and monotone networks, the influence matrix can be determined exclusively 
based on S (the sign pattern of the community matrix), without the need of setting values for the Jij. For other 
classes of systems, semi-qualitative and quantitative approaches can give us useful insights.

Monotone systems yield qualitative networks.  Monotonicity, intended as a proxy for ordered, oscillation-free 
dynamical behaviour19–21, is a property of paramount importance in a qualitative setting. A system of the form 
(1), whose Jacobian has negative diagonal entries in view of our assumption that each species has a negative 
self-loop, is monotone if and only if19:

	 1.	 Its Jacobian ∂
∂
f x

x
( )  is sign constant everywhere (including at the equilibrium x ), i.e., ∀x





∂
∂



 =

f x
x

Ssgn ( ) ;

	 2.	 There exists a gauge transformation Σ (i.e., a matrix with diagonal elements Σii = ±1 and zero off-diagonal 
elements25) such that ΣSΣ is a Metzler matrix (namely, it has nonnegative off-diagonal entries).

Hence, the Jacobian matrix of a monotone system becomes Metzler after a gauge transformation (see ref. 26 
for a similar use of monotonicity and of gauge transformations Σ in the context of social networks). When the 
matrix S is already Metzler (hence Σ = I), we have a special type of monotone system, exemplified by the graph 
in Fig. 2(a). For the more general example of monotone system given by the graph in Fig. 2(b), S can be mapped 

Figure 2.  (a,b) Qualitative networks associated with monotone systems. In (a) the system community matrix J 
is Metzler, and so is S = sgn(J): the graph  S( ) has all positive edges (excluding self-loops). Being S( )  strongly 
connected, K > 0 elementwise. In (b) the graph S( )  has also off-diagonal negative edges, but all directed cycles 
are positive: S is still associated with a monotone system and K is such that ΣKΣ > 0, where Σ is a gauge 
transformation with Σ55,66 = −1, Σii = 1 otherwise (all off-diagonal negative edges are across the cut set shown 
in gray dashed line). (c) Semi-qualitative considerations on signed interaction graphs: given the qualitative class 
Q[S], since the graph  +S( ) is strongly connected (see, e.g., thick blue lines), matrix −J has a positive inverse for 
some choice of the entries Jij (with the given sign pattern).
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to a Metzler matrix by choosing Σ with Σ55 = Σ66 = −1 and Σii = 1 elsewhere. Monotonicity can be immediately 
detected from the system graph: a system is monotone if and only if all of the cycles in the graph (excluding 
self-loops) are positive (i.e., have an even number of negative edges). Both graphs in Fig. 2(a) and (b) have this 
property. Polynomial-time tests on large-scale graphs are described in the literature25.

For monotone systems, the influence matrix is always sign definite and can be computed solely based on the 
qualitative information in S, without any knowledge of the edge weights. In particular, the influence matrix asso-
ciated with a system whose matrix J is stable and Metzler has exclusively +1 or 0 entries, and exclusively +1 
entries if, in addition, J is irreducible (i.e., the graph  S( ) is strongly connected, namely, any node can be reached 
starting from each of the others by following the edges along their direction), as shown in refs. 27, 28 based on  
ref. 29. Hence, the influence matrix for the example in Fig. 2(a) has Kij = +1 for all i, j. For all mutualistic networks 
(ecological networks where all of the interactions are mutually beneficial or commensal), the matrix S is Metzler. 
Hence, stable mutualistic networks always yield nonnegative (and if they are strongly connected, positive) 
responses to press perturbations. Also for generic monotone systems (whose S( )  can have negative edges, but has 
positive cycles only), K is qualitatively sign determined. In fact, since (ΣJΣ)−1 = ΣJ−1Σ, from (3) it is sgn(Σ(−J)
Σ)−1 = Σsgn(−J−1)Σ = ΣKΣ. Therefore, the same gauge transformation that makes J Metzler also affects the 
signature of the influence matrix K. For the example in Fig. 2(b), Kij = +1 for i, j ∈ {1, 2, 3, 4, 7, 8, 9} or i, j ∈ {5, 6} 
and Kij = −1 otherwise. As shown by a counterexample in [28, p. 144], J (or S) being a Metzler matrix is a suffi-
cient, but not a necessary condition for the existence of nonnegative influence matrices: there are systems that 
have a nonnegative influence matrix even though J is not Metzler.

Semi-qualitative cases.  For a signed graph  S( ), monotonicity is lost as soon as a negative cycle of length ≥2 
appears (cf. ref. 30). In ecological networks that are not exclusively mutualistic, this will often be the case. Negative 
cycles of length 2 can originate for instance from predator-prey interactions among two species (see Fig. 1(a)), 
which are present in abundance in food webs. When monotonicity is lost, purely graphical sign characterisations 
of the influence matrix K are missing. However, semi-qualitative conditions can give useful graphical interpreta-
tions of what type of interaction graphs have the potential to yield a positive influence matrix: building on results 
in the literature31, we can give a sufficient condition for a system to possibly admit a positive influence matrix (for 
some values of the community matrix entries) based on the sign pattern of S( ) . Precisely, the qualitative class 
Q[S] (of all matrices with the same topology and the same signature of S = sgn(J)) contains at least a community 
matrix corresponding to a positive influence matrix if the subgraph  +S( ), formed by taking only the positive 
edges of  S( ), forms a network-wide strongly connected component. This condition corresponds to the existence 
of a strongly connected mutualistic “backbone” (a graph  admits a strongly connected mutualistic backbone if 
the graph obtained from  by removing all negative edges is strongly connected). This means that the (unidirec-
tional) commensal edges and the (bidirectional) mutualistic edges must connect each pair of nodes of the net-
work through directed paths, as in the example in Fig. 2(c).

This semi-qualitative condition can be extended from systems with mutualistic backbone to systems that 
admit a mutualistic backbone after being transformed by a gauge matrix Σ. For some choice of the values Jij also 
these systems have an influence matrix K = ΣOΣ, where O is the matrix of all ones. Networks with predator-prey 
interactions most often fall into this category (see examples below). The proposed condition guarantees the exist-
ence of a community matrix with the desired signed influence matrix within a qualitative class. A method to find 
such a community matrix based on the quantitative analysis illustrated below will be shown when we discuss the 
Tatoosh Island example later on. It is worth observing that multiple choices of Σ such that Σ Σ +S( )  is strongly 
connected are often possible, which implies that there could exist multiple ways to obtain monotone influence 
matrices K. See the Tatoosh Island example below for a more detailed description.

Quantitative cases: eventually nonnegative systems.  The condition above is semi-qualitative: it does not hold for 
the whole qualitative class Q[J], but only for some choices of the weights Jij. To sharpen this characterisation, it is 
necessary to resort to quantitative conditions, which depend on the specific entries of the community matrix J. A 
family of matrices J that admit a positive influence matrix (although they are not associated with mutualistic 
systems) is related to eventually nonnegative matrices22, 23. A matrix B is eventually nonnegative if it becomes 
elementwise nonnegative after a certain power: Bp ≥ 0 for all powers p ≥ po. In practice, even if B has some nega-
tive entries outside the diagonal, these disappear when taking powers. Hence, in particular, when considering the 
exponential matrix = ∑ =

∞eBt
k

B t
k0 !

k k
, the weight of the negative entries of B in the infinite sum becomes more and 

more irrelevant as the time horizon t increases. In fact, for any eventually nonnegative matrix B such that 
index0(B) ≤ 1 (the multiplicity of the eigenvalue 0 of B as a root of the minimal polynomial is ≤1), there is always 
a to such that eBt ≥ 0 ∀t ≥ to [ref. 32, Theorem 3.7]. Eventually nonnegative matrices with a proper diagonal shift 
lead to community matrices whose negated inverse is elementwise positive. In fact, if we consider an irreducible 
and eventually nonnegative matrix B having spectral radius ρ(B), then there exists an interval (ρ(B), β) of the real 
line such that, for all α ∈ (ρ(B), β), the matrix J = B − αI is stable and (−J)−1 > 0, hence K > 0 (cf. [ref. 33, Theorem 
4.2]). Notice that if B is eventually nonnegative, then so is J = B − αI: the diagonal term αI plays the same role as 
the diagonal of a Metzler matrix: it guarantees stability of J (which in turn fixes the sign of det(−J), leading to (3)). 
Since α > ρ(B), stability holds regardless of the values on the diagonal of B. When seeking in addition J that have 
(−J)−1 > 0, the presence of an upper bound β on the values of α implies that the dynamics of J cannot be too fast: 
the dominant eigenvalue of J (which is also called the Perron-Frobenius eigenvalue and is equal to ρ(B) − α) is 
real, negative and small, thus the corresponding mode has a long time constant. Being J stable, this means that, in 
order to have a positive influence matrix, alignment along the dominant direction (determined by the eigenvector 
relative to the Perron-Frobenius eigenvalue) after a press perturbation must occur slowly enough. When the 
dominant mode is sufficiently slow, the influence of the negative edges on the dynamics tends to fade away with 



www.nature.com/scientificreports/

5Scientific Reports | 7: 11378  | DOI:10.1038/s41598-017-11221-0

respect to the positive “backbone” +J( ) , hence it does not appear in K. When instead α > β, then the alignment 
along the dominant direction becomes too fast, and the indirect influence exerted by the negative edges of J( )  
cannot be absorbed by the positive backbone +J( ) . This condition can be extended to community matrices that 
are eventually nonegative after a gauge transformation.

A general algorithm to deal with uncertain community matrices.  For a wide class of systems 
(admitting the so-called BDC-decomposition27, 34, 35, which includes all systems with a sign-definite Jacobian 
∂

∂
f x

x
( ) , see SI for details), the qualitative effect of press perturbations on steady-state species densities can be 

assessed regardless of the chosen parameter values27. With an analogous approach, we can check whether the 
influence matrix remains the same in spite of parameter variations in bounded intervals. We consider a generic 
system (1) under asymptotic stability assumptions: in this case, the system can be asymptotically stable at x  even 
though some diagonal entries of J are not negative, and the proposed algorithm can still be applied. When the 
entries of the community matrix J are known to belong to an interval, ∈ 





− +J J J,ij ij ij , we can assess the sign of the 
entries of the influence matrix for all possible values of the parameters within the resulting hyper-rectangle in the 
parameter space by computing it only at the vertices of the hyper-rectangle to which the Jij’s are known to belong. 
A sign determined influence is identified whenever, upon a press perturbation, the ensuing variation of the con-
sidered steady-state value has the same sign as the press (positive influence), the opposite sign (negative influ-
ence), or is zero (perfect adaptation36–38), for any possible choice of the Jij’s within the given intervals, see Fig. 1(b); 
conversely, if the outcome depends on the choice of the Jij’s (within the bounds), the influence is indeterminate. 
The numerical vertex procedure provides the determined sign of the influence, or warns us that it is indetermi-
nate (more details on the algorithm are in the Methods section; see also the SI file, where the method is further 
discussed and applied to some of the examples of ecological networks discussed below). Importantly, the pro-
posed vertex algorithm not only tells us whether an entry of the influence matrix has a constant sign in the whole 
parameter space, but also provides the maximum and the minimum value that the entry can achieve, given the 
known uncertainty bounds (even when the influence turns out to have an undetermined sign). Hence, it can be 
employed to quantify phenomena, also in the presence of uncertain entries.

Examples.  Mutualistic networks.  By construction, mutualistic networks are ecological networks for which 
the corresponding community graph contains positive edges only (excluding self-loops). Mutualistic networks 
are widespread in nature (they portrait, for instance, plant-animal and plant-pollinator interactions) and have 
been shown to exhibit diverse and complex topologies (nested, hierarchical, compartimentalised, bipartite, etc. 
refs. 17, 18). Regardless of the topology and of the complexity, the community matrix of these networks is Metzler. 
Self-limitation on all species is necessary for stability. Then, if stability can be assumed, the influence matrix is 
automatically nonnegative, or positive if the network is strongly connected. In the latter case, indirect mutualism 
is always guaranteed, even among non-directly connected species.

Plankton-bacteria-protozoa community.  The plankton community from refs. 9, 39 shown in Fig. 3(a) is a classi-
cal food-web example of how apparently paradoxical effects can be interpreted in terms of indirect interactions. 
Phytoplankton under nutrient stress stimulates (through the release of extracellular organic carbon) the produc-
tion of bacteria. Since bacteria and phytoplankton compete for the same inorganic nutrients, this behaviour seems 
counterintuitive if we just look at the direct interactions shown in Fig. 3(a). Indirect effects can however clarify 
this behaviour, see refs. 9, 39 for an analysis. With the tools developed in this paper we can show that, since S( )  
contains a strongly connected subgraph composed of positive edges only, the network can even have a fully mutu-
alistic behaviour. In fact, as detailed in the SI, for suitable values of the community matrix entries Jij, the influence 
matrix K is elementwise positive. Such a community matrix has the form J = B − αI with B eventually positive, 
meaning that the positive effects dominate and annihilate the negative ones for times long enough. In this exam-
ple, it is also possible to build a convex region of parameter uncertainties around such nominal J, region in which 
the network is guaranteed to have nonnegative responses to press perturbations, see SI.

Shallow lake community.  The example from ref. 40 (see also ref. 41) is reproduced in Fig. 3(b). The system is not 
monotone (it has several predator-prey cycles), and  +S( ) is not strongly connected. However, a gauge matrix Σ 

Figure 3.  (a) Plankton-bacteria-protozoa community9, 39. The graph +S( )  is strongly connected, hence the 
community potentially exhibits indirect mutualism. (b,c) Indirect competition: the shallow lake community40 is 
strongly connected through a positive cycle that, however, involves negative edges. A suitable gauge 
transformation Σ, applied through the cut sets shown in panel (b), yields the sign-transformed graph of panel 
(c), with sign matrix S′ = ΣSΣ, where now ′ +S(( ) )  is strongly connected.
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such that (ΣSΣ)+ is irreducible can be found, associated with a partition of the nodes into two groups, see 
Fig. 3(c). Phytoplankton, fish and suspended sediments (linked by positive or doubly negative paths) are on one 
side of the partition, while grazers, vegetation and nutrients are on the other side. For some parameter values (as 
shown in the SI), each of the species in one group induces indirect competition on each of the species in the other 
group, in response to press experiments.

Random Erdös-Rényi networks and eventual nonnegativity.  Our next example is based on randomly generated 
graphs. We are interested in finding eventually nonnegative matrices B and values α ∈ (ρ(B), β) such that the 
community matrix J = B − αI is (eventually nonnegative, and) stable and such that (−J)−1 > 0. Once B is given, 
computing α is a simple application of the vertex algorithm (Theorem 4) with uncertainty only on the diagonal 
entries of J: Jii ∈ (ρ(B) − β, 0). Here the matrices B are obtained as adjacency matrices of directed random net-
works of Erdös-Rényi (ER) topology, with edge probability p = 0.05 and edge weights drawn from a normal 
probability distribution  µ pn( , 1/( )), n = 100 (see refs. 42, 43). If μ = 0, Girko circle law ensures that, when n → 
∞, the eigenvalues are inside the unit disk with probability 1; hence, the adjacency matrices B are basically never 
eventually nonnegative. However, when the mean μ passes from 0 to a positive value, we introduce a positive bias 
in the edge weights, and the ratio between the number of positive and negative coefficients increases, see Fig. 4(b). 
The effect of μ > 0 on the eigenvalues location is that n − 1 of the eigenvalues are contained in a disk of radius 

µ+1 2 , while the n-th eigenvalue is to the right of the disk42. This is the Perron-Frobenius eigenvalue ρ(B): it is 
real, positive, simple and equal to the spectral radius of B, see Fig. 4(a). The value of ρ(B) grows linearly with μ, 
see Fig. 4(b). When μ > 1, some matrices B become eventually nonnegative, although the interval (ρ(B), β) is very 
small. Only when μ > 2 the interval becomes appreciable, and the set of matrices J = B − αI, α ∈ (ρ(B), β) signifi-
cant. When μ > 2.5, some of the matrices B become nonnegative (and hence J Metzler). When μ = 3.5, around 
90% of all B are nonnegative. If the width β − ρ(B) of the interval in which J is stable and (−J)−1 > 0 is plotted 
against the fraction of negative edges in B, then a curve evocative of an inverse relationship emerges, see Fig. 4(c). 
The hyperbola delimits the convergence rates that a stable community matrix is allowed to have if it has to pre-
serve the positivity of the influence matrix. The region delimited by the hyperbola, in fact, describes how bigger 
the real part of the dominant eigenvalue of J (i.e., the Perron-Frobenius eigenvalue, sometimes called asymptotic 
resilience44) can be with respect to the spectral radius ρ(B). When β = ρ(B), hence α = ρ(B), matrix J is only mar-
ginally stable, i.e., it lies on the boundary of its stability region. When β > ρ(B), for α ∈ (ρ(B), β), J = B − αI has a 
dominant eigenvalue (the one with highest spectral abscissa) inside the left half of the complex plane: the higher 
is α, the faster is the convergence of J.

A large-scale signed network example: Tatoosh Island.  To describe the intertidal interaction network of Tatoosh 
island, including a food web and other non-trophic interactions that are mutualistic, competitive, commensal and 
amensal, ref. 45 proposes a network that involves 110 species in 3096 interactions (1087 ‘+’ edges, 2009 ‘−’ 
edges). The network is downloadable from the Dryad Digital Repository http://dx.doi.org/10.5061/dryad.39jv1. 
Negative self-regulation coefficients are added on the diagonal of the signed matrix S (the original dataset already 
has 70 negative self-regulation coefficients). The resulting graph  S( ) is strongly connected. Its positive subgraph 

+S( )  has a very large strongly connected component involving 100 of the 110 species. The excluded taxa are at 
the top or at the bottom of the food chain for the considered network: top predators (such as Haliaeetus leucoceph-
alus, Falco peregrinus and Henricia) have no outgoing positive edges, while prey at the bottom (Corallina vancou-
vriensis, Diatoms, Articulated corralines and Phytoplankton) have negative incoming edges only, hence they 
cannot be involved in directed cycles in +S( ) . Consequently, our condition for the existence of a mutualistic 
influence matrix (Theorem 2 below) is not satisfied. However, if we focus on monotone, rather than mutualistic, 
influence matrices, it is easy to see that with the exclusion of a single species (Falco peregrinus, which is connected 
to the rest of the network via a single predator-prey interaction with Corvus caurinus, and hence can never be part 
of a strongly connected subgraph of only positive cycles), on the network of remaining 109 species there are many 
possible ways to choose a gauge transformation Σ so that  Σ Σ +S(( ) ) is strongly connected. So, if we focus on the 
subnetwork of size n = 109, Theorem 2 guarantees that for each such Σ there exists a monotone influence matrix, 
i.e., K such that ΣKΣ is a matrix of all 1. The number of possible choices of Σ is 2109, far out of reach of any exhaus-
tive search. In Fig. 5(a) we explore 104 gauge transformations which result in Σ Σ +S(( ) )  strongly connected. As 
can be seen on the top histogram, they span a broad range of possible +/− partitions in Σ, and correspond to a 
number of negative edges in ΣSΣ which is between 1600 and 2000 (lower histogram). Clearly with such a large 
fraction of negative edges, if we select all edge weights from the same probability distribution we cannot hope to 
obtain a J which is eventually nonnegative. However, if we decrease the importance of the negative edges, for 
instance drawing them from a probability distribution of lower mean, then it is easy to obtain sampled (and sta-
ble) J such that ΣJΣ is eventually nonnegative and hence Σ(−J)−1Σ positive. In Fig. 5(b,c), the positive edges are 
drawn from a uniform distribution of mean μ+ and the negative ones from a uniform distribution of mean μ−. 
When the ratio μ+/μ− ≥ 8, then samples having Σ(−J)−1Σ > 0 start to appear. When μ+/μ− ≥ 15, then around 4% 
of the samples satisfy this property (Fig. 5(b)). An example with μ+/μ− = 10 is shown in Fig. 5(c). By looking at S 
alone, it is impossible to ascertain that such a network admits a choice of edge weights J whose negated inverse is 
monotone. By combining our semi-qualitative analysis with the computational test given by eventual nonnegativ-
ity, the verification is however very easy.

Discussion
A vast fraction of the literature on ecological networks deals with models that consider only a specific type of 
interaction: mutualistic, trophic, parasitic, etc. Yet, real ecological networks involve interactions of different types, 
leading to community graphs in which mutualism, antagonism, commensalism and competition, etc. coexist45–48. 

http://dx.doi.org/10.5061/dryad.39jv1
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Hence, the community dynamics can be significantly more complex47, 48, and the field experiments more diffi-
cult to interpret. Given that applying environmental perturbations is one of the most common ways to gather 
experimental data on ecological systems, being able to classify in a qualitative sense experiments such as press 
perturbations becomes a key factor, for instance, for empirical community graph inference. Qualitative methods 
and signed digraphs have been used in ecology since the Seventies6–8, although mostly for investigating stability 
of an ecosystem. In the context of this paper, stability is always assumed, which considerably simplifies the quali-
tative analysis of press perturbation responses. In fact, when stability is missing, the sign of det(−J) is not a priori 
known, and the sensitivity of some variables to presses may grow unbounded.

When features like indirect interactions are investigated, the qualitative methods used in the literature are mostly 
inspired by loop analysis8, 11, 13, 49, i.e., decompositions of the determinant of J into products of ‘elementary circuits’. 
The products of the signs of these circuits gives the sign of the sensitivity, i.e., of the steady-state influence matrix K. 

Figure 4.  (a) From top to bottom: location of the eigenvalues of B as μ grows, for an ER network of size n = 100. 
When μ > 0, ρ(B) (black dot) detaches from the disk of eigenvalues and moves to the right. The interval (ρ(B), 
β), shown in green, becomes visible when μ > 2. (b) Middle panel: The mean value (over 200 realisations) of 
ρ(B) (violet) and β (blue) as μ varies. For μ > 2 the interval (ρ(B), β) becomes visible. The red shaded area 
corresponds to the fraction of realisations of B which are not eventually nonnegative (full colour is 100% of 
realisations, top panel). The green shaded area is the fraction of realisations of B that are nonnegative (nearly-
full colour on the rightmost part corresponds to 90% of realisations). Bottom: The average fraction of positive 
(cyan) and negative (yellow) edges in B as μ varies. Eventually nonnegative matrices start to appear when the 
negative edges of B are less than 15%. (c) The width of the interval (ρ(B), β) is shown versus the fraction of 
negative edges in the 200 realisations. The points are upper bounded by a hyperbolic curve.
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Figure 5.  Tatoosh Island example. (a) Upper histogram: “node partition size” refers to the fraction of − signs in 
104 gauge transformations Σ yielding a strongly connected Σ Σ +S(( ) ) . The range 5 ÷ 104 is explored. Lower 
histogram: corresponding number of negative edges in ΣSΣ for the 104 choices. (b) When the positive edges are 
drawn from a uniform probability distribution of mean μ+ and the negative edges from one of mean μ−, then 
for μ+/μ− ≥ 8 community matrices J such that ΣJΣ are eventually nonnegative start to appear. The percentage of 
samples J with such a property grows with μ+/μ−. (c) A specific choice of Σ and edge weights with μ+/μ− = 10. 
Histogram: edge weights distributions for J (red for − and blue for +). The 4 scatter plots represent the edge 
signs (again red for − and blue for +) of J (upper left), ΣJΣ (lower left), (−J)−1 (upper right) and Σ(−J)−1Σ 
(lower right). The latter has all positive entries (dots are missing when the edge weight is <10−4 in absolute 
value). Hence (−J)−1 is monotone.
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The drawback of this approach is that computationally it explodes at very modest sizes13, hence it is inapplicable for 
large-scale ecological networks; another drawback of loop analysis is the sign ambiguity of the resulting press per-
turbation responses. One way to cope with such indeterminacy, discussed in ref. 15, is to sample the parameter space 
and compute statistics of the ensuing signs. Other approaches exist in the literature to qualitatively estimate press 
responses. For instance in ref. 50 the influence coefficients Kij are computed by aggregating together all (suitably 
weighted) paths between nodes j and i. More organic overviews of the topic are available in refs. 13, 49, 51.

The methods proposed in this paper for this task are meant to provide a classification of the possible cases:

	 1.	 Those in which a purely qualitative analysis is possible (mutualistic and monotone networks);
	 2.	 Those in which a proof of existence is possible (S such that +S( )  or Σ Σ +S(( ) )  is strongly connected).

In addition, they are meant to propose
	 3.	 A class of matrices (not of qualitative nature, but endowed with the “strong” properties of Perron-Frobeni-

us theorem) which also guarantee positivity of the influence matrix;
	 4.	 An algorithm able to treat any kind of interval matrices, useful whenever uncertainty bounds on the entries 

of J are available or are sought.

Given the long history of the problem of inverse positivity in linear algebra31, 52, 53 we expect this classification 
to be a nearly-complete corpus of conditions under which the problem of determining the signs of the influence 
matrix is solvable.

Several byproducts of our analysis should also be of interest to the Ecological networks community. For instance 
it follows from the properties of inverse positive matrices that if a mutualistic network is strongly connected, then its 
influence matrix is positive and full: all species of the ecosystem have a positive sensitivity to press perturbations on 
any of the species. Our analysis shows also that in turn, when we aim at inferring the community graph from press 
perturbations, strong connectivity of a mutualistic community implies that press experiments alone cannot provide 
important information such as edge density (intended as number of edges that J should have): irreducible, Metzler 
matrices J that lead to K > 0 may have as few as n + 1 or as many as n2 − n (off-diagonal) edges.

When a community network has a mixture of positive and negative edges, then the corresponding S+ may fail 
to be strongly connected, which reflects a smaller “likelihood” of steady-state mutualism to occur. The prototype 
of this topology is the predator-prey interaction in Fig. 1(a), a motif at the core of food webs: overabundance of 
predatory-prey cycles in an ecological network renders less plausible the possibility that press responses yield 
positive indirect effects over the whole network. However, this does not rule out an analysis based on the tools 
presented in this paper. Only, rather than mutualistic press responses one has to expect signed responses. In 
monotone networks the graph is always partitionable into two mutualistic subcommunities connected by nega-
tive edges only, as in Fig. 3(b). Given that such a partition is found also in the influence matrix, it is in principle 
observable through field experiments such as press perturbations.

Just like mutualism can be generalised to monotonicity, also the proposed semi-qualitative and quantitative 
conditions can be extended to ensure that K is positive after a gauge transformation. Gauge transformations do 
not alter the sign of the cycles of K (or J), hence do not change the fraction of predator-prey loops. Applying gauge 
transformations, strongly connected (ΣSΣ)+ normally exist, and hence the signs of the indirect interactions can 
still be uncovered from those of the community matrix, as we did in the shallow-lake community example, cf. 
Fig. 3(b,c) and in the Tatoosh Island example, see Fig. 5.

It is worth emphasizing another use of our semi-qualitative sufficient conditions in this context: screening for 
strongly connected subgraphs Σ Σ +S(( ) )  corresponds to screening for orthants (i.e., signatures Σ) in which the 
influence matrix can have “support”. In principle this information can be of interest also when one is seeking to 
express the probability of finding the influence matrix in the various orthants, for instance through a sampling of 
the parameter space15. As the number of possible sign patterns of the influence matrix explodes with the network 
size, knowing a priori where this probability can be localised seems to us a useful information.

Unlike monotone matrices, eventually nonnegative matrices do not form a qualitative class, but rather a set 
in parameter space with boundaries difficult to characterise explicitly. In addition, also the time constant of the 
eigenvalues of J plays an important role in inverse positivity of eventually nonnegative matrices: increasing the con-
vergence speed (i.e., moving the eigenvalues deeper in the left half of the complex plane) may lead to a loss of 
mutualism in the influence matrix. The hyperbolic shape of the region in Fig. 4(c) suggests that, even for J eventually 
nonnegative, a moderately high convergence speed can lead to indirect steady-state influences that are all positive in 
the network only when there are few off-diagonal negative direct interactions in J (or many, but all small). When the 
number of negative direct interactions grows, even if J is eventually nonnegative, the response of the system to per-
turbations has to be slow enough to attain indirect mutualism. A slow dynamics, however, requires having a commu-
nity matrix J that lies near the edge of its stability region. In other words, for communities that are near-mutualistic, 
different steady-state fates are possible, depending on the dominant time constant: when the dynamics is fast, it is 
unlikely that a community yields a fully mutualistic steady-state influence matrix; when instead the community 
dynamics evolves slowly enough, near its stability boundary, this may lead to purely mutualistic steady-state indirect 
interactions. Analogous considerations can be formulated if instead of the single dominant mode, some average over 
the real part of all the eigenvalues of J is considered44. It is tempting to interpret this speed-dependent phenomenon 
as a tipping point condition, which gets triggered when a naturally slow process undergoes a rapid acceleration.

A limitation of quantitatively computing the inverse of the negated community matrix is that it is highly sen-
sitive to numerical values of the entries Jij, see refs. 2, 13. By isolating classes of matrices, such as eventually non-
negative matrices, and even more by constructing numerical tests valid for polytopes of community matrices 
(such as the proposed vertex test), we provide ways to bypass the indeterminacy in the computation of the inverse 
community matrix. In particular, the proposed vertex algorithm allows us to check if the response to a press 



www.nature.com/scientificreports/

1 0Scientific Reports | 7: 11378  | DOI:10.1038/s41598-017-11221-0

perturbation has the same sign for all possible community matrices having their entries in given intervals, hence within 
a hyper-rectangle in the parameter space, by computing its sign on the vertices of the hyper-rectangle only. For a 
network of size n, the number of community matrices to be tested is 2n2

 in the worst case, which is however very 
unlikely to occur in ecological networks, where each species typically interacts with just a few other species, regard-
less of the size of the network. This sparsity is beneficial, because the algorithm complexity scales exponentially with 
the number of uncertain nonzero entries in the community matrix. In particular, let c denote the fraction of nonzero 
interactions among the n species, so that we have approximately cn2 nonzero entries in the community matrix. We 
can reasonably assume that, when n grows, c decreases as 1/n (see, e.g. refs. 54–56), since each species interacts with 
a few of the others only, and the number of interactions per species saturates to a constant (and relatively small) value 
p. The number of nonzero entries then grows linearly (and not quadratically) with n and and we can expect to test 
2pn matrices. Sparsity could be additionally exploited by adopting strategies along the lines of the tree-like algorithm 
discussed in ref. 27. In any case, the computational effort is paid back by a very strong knowledge: if a qualitative 
answer is provided for an entry, then the influence will have the same sign for all possible points in the considered 
parameter space. If the sign is not the same for all possible points, still it might be the same for almost all possible 
points, or with high probability: in this case, our results are nicely complemented by the probabilistic approach in  
ref. 14, whose exact formulas quantify the probability of obtaining a qualitatively wrong prediction in the presence 
of uncertainties that follow a probability distribution, providing valuable additional insight.

Methods
The technical methods overviewed below are presented in a more complete form in the SI file, with detailed 
proofs of the results as well as additional information.

Qualitative methods.  Given a matrix ∈ ×A n n,  A( ) denotes the digraph with adjacency matrix A, while 
Q[A] is the qualitative class of all matrices having the same sign pattern as A. In particular, Q[A] always contains 
a signature matrix S = sgn(A) whose entries are in {0, −1, +1}. Clearly, A( ) , S( )  and ∀ ∈B B Q A( ) [ ]  all have 
the same (signed) graph, but possibly different numerical weights.

Monotone dynamical systems.  Denote by x(t) the solution of (1) at time t with initial condition x(0). Consider a 
diagonal matrix Σ = diag(σ) with diagonal entries σ = (σ1, …, σn), σi ∈ {±1} (called gauge matrix). The vector σ 
identifies a partial order for the n axes of n, which can be the “natural” one when all σi = +1, or the opposite when 
all σi = −1. The system in (1) is said monotone with respect to the partial order σ if, for all initial conditions x1(0), 
x2(0) such that Σx1(0) ≤ Σx2(0), it is Σx1(t) ≤ Σx2(t) ∀t ≥ 0, see refs. 19–21. The system in (1) is said strongly mono-
tone with respect to the partial order σ if, for all initial conditions x1(0), x2(0) such that Σx1(0) ≤ Σx2(0), x1(0) ≠ x2(0), 
it is Σx1(t) < Σx2(t) ∀t > 0. Monotonicity of a system can be checked in terms of its Jacobian = ∂

∂
J x( ) f x

x
( )  based on 

the Kamke condition [19, Lemma 2.1]: the system in (1) is monotone w.r.t. the order σ if and only if

σσ ≥ ∀ ∈ ∀ = … ≠J x x i j n i j( ) 0 , , 1, , , (4)i j ij
n

or, in matrix form, ΣJ(x)Σ is Metzler ∀ ∈x n. This condition implies that J(x) must have the same signature 
S = sgn(J(x)) everywhere, hence it can be stated equivalently in terms of S as

σσ ≥ ∀ = … ≠ .S i j n i j0 , 1, , (5)i j ij

The condition in (5) admits a graph-theoretical reformulation. The system in (1) is monotone with respect to 
some order if and only if all directed cycles of length >1 of the signed digraph S( )  (or J( ) ) have positive sign. A 
matrix M is said irreducible if no permutation matrix P exists such that

 =












P MP
M
M M

01

2 3

with M1 and M3 square matrices; equivalently,  M( ) is strongly connected. Clearly, if M is irreducible, any matrix 
A ∈ Q[M] is irreducible, since M( )  and  A( ) have the same topology and the same edge signs. Monotonicity, 
combined with irreducibility of J(x) at all x, implies strong monotonicity of (1).

Semi-qualitative methods.  Let A+ be the nonnegative part of A,

=





≥

<
+A

A A
A

if 0
0 if 0ij

ij ij

ij

and Â the following “lifting” of A to  ×n n2 2  (see e.g. ref. 52):
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A matrix A is fully indecomposable if no permutation matrices P1, P2 exist such that
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where A1 and A3 are square matrices. The matrix A is fully indecomposable if and only if, for some permutation 
matrix P, PA is irreducible and has nonzero diagonal entries (see for instance [53, p.56]). We have the following 
theorem by Fiedler and Grone31.

Theorem 1 Given a fully indecomposable signature matrix S, there exists a matrix B ∈ Q[S] such that B−1 > 0 if and 

only if the matrix 
=





−







+

Ŝ S
S
0

0
 is irreducible.

This equivalence condition can be useful as a tool for preliminary screening, to immediately understand if a 
matrix with a given signature cannot have a positive inverse. Based on results in ref. 31, we can get qualitative suf-
ficient conditions that allow a matrix with a given sign structure to have a negative inverse with positive entries.

Theorem 2 Given an irreducible S, with Sii = −1 ∀i = 1, …, n, if S+ is irreducible, then there exists J ∈ Q[S] such that 
−J−1 > 0.

By means of counterexamples, it can be shown that the condition is sufficient, but not necessary: there are irre-
ducible sign patterns S, with S+ reducible, for which ∃ J ∈ Q[S] such that −J−1 > 0. Still, Theorem 2 provides useful 
intuition on the existence of a positive backbone in networks that can admit a fully positive influence matrix, 
giving us insight into the design principles rooted in the interaction pattern.

Quantitative methods: eventually nonnegative systems.  A matrix ∈ ×M n n is eventually nonneg-
ative if ∃ ∈p0  such that, ∀p ≥ p0, Mp ≥ 0 elementwise; equivalently, its spectral radius

ρ λ=
λ σ∈

M( ) max
M

i
( )i

is a real, positive eigenvalue of M, called the Perron-Frobenius eigenvalue, and the corresponding left and right 
eigenvectors are elementwise nonnegative. Denote by indexλ(M) the multiplicity of the eigenvalue λ of M as a 
root of the minimal polynomial (i.e., the dimension of the largest Jordan block associated with λ). Then we have 
the following result, adapted from [ref. 33, Theorem 4.2].

Theorem 3 Consider J = B − αI, where ∈ ×B n n is irreducible and eventually nonnegative, with index0(B) ≤ 1. 
Then, ∃β > ρ(B) such that ∀α ∈ (ρ(B), β), −J = αI − B has a positive inverse.

More generally, if ∃ α such that J + αI = B is eventually nonnegative and satisfies Theorem 3, then the influ-
ence matrix derived from J is positive: (−J)−1 > 0, hence K > 0 elementwise. Notice that B eventually nonnegative 
implies J eventually nonnegative (but with different time constants). Note that the converse of Theorem 3 is not 
true. Other closely related cases are described in ref. 57.

Compute the influence matrix from an uncertain community matrix.  Given ∈x n, we consider 
the nonlinear system

= + =x t f x t Eu t y t Hx t( ) ( ( )) ( ), ( ) ( ), (6)

where f(·) is continuously differentiable, ∈u  is an input, ∈y  is an output, and we assume that there exists an 
asymptotically stable equilibrium point x . Then, both the state asymptotic value x u( ) and the output asymptotic 
value =y u Hx( )  are functions of u. The steady-state input-output influence27 is the ensuing variation of the steady 
state of the system output y, upon a variation in the input u (a relevant variable or parameter). We assume that the 
considered input perturbation is small enough to ensure that the stability of x u( ) is preserved (being the eigenval-
ues of the Jacobian matrix continuously dependent on the entries, which are in turn continuous functions of u). 
Of course, different variables of interest for the system may respond with a steady-state variation that has the same 
sign as the input variation, the opposite sign, or is zero. The steady-state input-output influence is qualitatively 
signed if it always has the same sign (positive, negative, or zero), regardless of the choice of parameter values27. 
Denoting by J the community matrix, in view of the implicit function theorem, the input-output influence (or 
sensitivity) can be expressed as27

∂
∂

= − =






− − 


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

− −
−



y
u

H J E

J E
H

J
n J E H

J
( )

det
0

det( )
( , , )
det( )

,
(7)

1

where det(−J) > 0, in view of stability. Each entry Kij of the influence matrix can be computed by evaluating the 
sign of n(J, E, H) in (7) when E = Ej and H = Hi have a single non-zero entry (the j-th and the i-th, respectively) 
equal to one.

To evaluate the qualitative (parameter-free) input-output influence, ref. 27 proposes a vertex algorithm (appli-
cable to any system that admits a so-called BDC-decomposition27, 34, 35) to assess if increasing the input always 
results in an increase in the output steady-state value, if it always results in a decrease, if the steady-state output is 
unchanged, or if the behaviour is parameter-dependent. Along the same lines, we can apply a vertex algorithm to 
uncertain community matrices where each entry lies within a known interval: ∈ 





− +J J J,ij ij ij  (e.g., 
ε ε∈ 

 − + 


⁎ ⁎J J J,ij ij ij ij ij ). In fact, multiaffinity of n(J, E, H) with respect to the entries of J guarantees the following 
result.
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Theorem 4 Denote by J(v), = …v 1, , 2n2
, the community matrices corresponding to all of the possible choices of the 

entries with ∈ − +{ }J J J,ij ij ij . Then,

•	 n(J, E, H) = 0 for all matrices J with ∈ 





− +J J J,ij ij ij  iff n(J(v), E, H) = 0 for all v,
•	 n(J, E, H) > 0 for all matrices J with ∈ 





− +J J J,ij ij ij  iff n(J(v), E, H) > 0 for all v,
•	 n(J, E, H) < 0 for all matrices J with ∈ 





− +J J J,ij ij ij  iff n(J(v), E, H) < 0 for all v,
•	 n(J, E, H) > 0 for all matrices J with ∈ − +J J J( , )ij ij ij  iff n(J(v), E, H) ≥ 0 for all v and n(J(v), E, H) > 0 for some v,
•	 n(J, E, H) < 0 for all matrices J with ∈ − +J J J( , )ij ij ij  iff n(J(v), E, H) ≤ 0 for all v and n(J(v), E, H) < 0 for some v.

The same algorithm allows us to evaluate also the effect of fixing the abundance of certain species j to a new 
level. Given the unperturbed dynamics =x t f x t( ) ( ( )) of the community, having xj suddenly fixed to a new con-
stant level xj can be seen as adding a constant perturbation, hence =u xj. We can then compute the effect on the 
community based on the formula (7), where now y = xi and H = Hi, with i = 1, …, n, i ≠ j, J is the Jacobian matrix 
of the new system including the densities of all species but species j, and vector E describes how xj affects the 
equations of all the other species. Hence, using the same vertex algorithm proposed for computing the influence 
matrix, we can compute a vector v of dimension n − 1 whose entry vi describes how fixing the abundance xj to the 
new level xj affects the new resulting equilibrium value of species i (i = 1, …, n, i ≠ j).

Moreover, the proposed vertex algorithm can be used to determine the maximum and the minimum value of 
the response to a press perturbation, given the known uncertainty bounds (even when the response turns out to 
have an undetermined sign). Indeed, it is enough to compute the function F(J, E, H) = n(J, E, H)/det(−J), instead 
of just n(J, E, H), for all the vertices of the hyper-rectangle in the parameter space. Then, since the function F(J, E, 
H) is multi-affine in the parameters58, 59, both the maximum and the minimum value are achieved on some vertex.
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1 Introduction

Theoretical ecology aims at providing both a qualitative and a quantitative understanding of the dynamics
of communities and food webs. As a common way to gain insight into this dynamics, ecologists carry
out press perturbation experiments, where they alter the density of a species and observe how the density
of other species in the community changes when the new equilibrium is reached [2]. Responses to press
perturbations are the result of both direct and indirect effects [29, 32, 35, 42], while the community matrix
(which is the Jacobian matrix of the system of growth equations evaluated at an equilibrium [25], analysed
qualitatively in terms of signed entries, graphs and loops since [26, 27]) only describes direct interactions
among species in a community near equilibrium. However, responses to press perturbations are difficult
to interpret and counterintuitive when indirect effects are not properly taken into account.

In fact, when species i and j are dynamically coupled through intermediary species, a j-species press
affects species i through a complex network of direct and indirect interactions. If the perturbation is small
enough and the community has a stable equilibrium point, the net steady-state effect (combining all direct
and indirect effects) is then given by the negative adjoint of the community matrix [8, 9, 10, 11, 12, 26,
27, 28], whose (i, j) entry predicts the overall effect of a j-species press on species i. The negative inverse
of the community matrix can be equivalently considered [2, 23, 35, 42], since, under stability assumptions,
the inverse and the adjoint of a matrix have the same sign pattern.

The entries of the community matrix are highly uncertain, due to the lack of knowledge about direct
species interactions, and the huge uncertainties that affect ecological network models [33, 22] often prevent
from predicting even the sign of the variation. We would like to be able to assess whether, after the press
perturbation, the population density at the new equilibrium increases or decreases or remains the same,
with respect to the previous equilibrium. In particular, the response of species i to a j-species press
perturbation is ‘0’ if the ensuing steady-state variation in the amount of i is zero, or ‘+1’ if the sign of
the variation is concordant and ‘-1’ if it is discordant with the sign of the press, regardless of the system
parameters. Conversely, adopting a qualitative (or structural, parameter-free) approach, the response
is indeterminate (‘?’) if the sign of the steady-state variation depends on the chosen parameters, see
Fig. 1(b) of the Main Paper. In this Supplementary Information file,

• following [18, 19] we discuss how the response to a press perturbation can be mathematically seen
as a steady-state input-output influence, we introduce the steady-state influence matrix of a stable
system, whose (i, j) entry represents the sign of the steady-state variation of the ith system variable
due to a persistent step input applied to the jth system equation (namely, the sign of the shift in
the equilibrium of species i after a j-species press) and we point out that the steady-state influence
matrix is the sign pattern of the adjoint of the negative of the community matrix of the system
(Section 2);
• we point out that, for some relevant classes of ecological networks (including all mutualistic and

monotone networks, regardless of their topological structure), responses to press perturbations can
be evaluated based on a qualitative approach that exclusively relies on the knowledge of the sign
pattern of the community matrix or, equivalently, of the species direct-interaction graph (Section 3);
• for other classes of networks, we propose semi-qualitative (Section 4) or quantitative (Section 5)

approaches that provide useful information on the sign of press perturbation responses;
• we discuss a computational test to assess whether the sign of a press perturbation response is always

the same, even in the presence of parametric uncertainties, by exploiting the multi-affine structure
of the problem (Section 6);
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• we analyse in detail some of the examples discussed in the Main Paper (Section 7).

2 Responses to press perturbations are input-output steady-state
influences

2.1 Ecological networks, press perturbations and influence matrix

An ecological network that includes all biological interactions occurring in an ecosystem can be seen as a
compendium of elementary interactions among species. Hence, it can be effectively visualised as a graph,
where the nodes represent species and the edges represent interactions among species. Single and pairwise
interactions that normally appear in this context are shown in Fig. 1(a) of the Main Paper, along with their
graph representation. The signed graph G(S), which includes all the elementary interactions occurring
among the n species involved, represents the whole ecological network: matrix S ∈ Rn×n has entries [S]ij
equal to +1 if a positive edge goes from j to i, −1 if a negative edge goes from j to i, and 0 otherwise.

The overall nonlinear dynamical system that represents the evolution of an n-species community is

ẋ(t) = f(x(t)), (1)

where the ith component of vector
x(t) = [x1(t) . . . xn(t)]>

represents the population density of species i and the ith component of the vector function

f(x(t)) = [f1(x(t)) . . . fn(x(t))]>

is the corresponding overall growth rate, which depends on (some or all of) the species densities.

Assumption 1 The system admits an asymptotically stable equilibrium point x̄, such that

f(x̄) = 0.

The community matrix

J =
∂f(x)

∂x

∣∣∣∣
x=x̄

(2)

is the Jacobian matrix of system (1) evaluated at the equilibrium x̄. The entry [J ]ij of the community
matrix expresses the direct effect of species j on the growth rate of species i.

If we consider the signs of J , we can say that each species has a positive/negative direct influence,
or no direct influence, on each of the other species. This is visually represented in the associated graph
by a positive/negative edge, or no edge, between the two corresponding nodes. Therefore, there is an
equivalence between the overall network graph G(S) and the sign pattern of the community matrix J :
denoting by sgn(·) the elementwise sign function (sgn(k) = +1 if k > 0, sgn(k) = −1 if k < 0,
sgn(k) = 0 if k = 0), we have sgn(J) = S.

Assumption 2 Each species has a negative self-loop ( e.g., due to a density-dependent growth rate).

The above assumption is needed to guarantee stability of the dynamical system (1) at x̄.
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Remark 1 Since we work under asymptotic stability assumptions, we have that det(−J) > 0 (this is a
necessary condition, see e.g. [17]), and therefore matrix J is invertible.

While J includes direct effects only, the net steady-state influence, combining all direct and indirect
effects, is given by the negative adjoint matrix of the community matrix [8, 9, 10, 11, 12, 26, 27, 28]:

M = adj(−J).

Entry [M ]ij predicts the response of species i to a press perturbation on species j: if the density of species
j is experimentally altered and held at a higher level, then, at the new equilibrium, the density of species
i will be higher if [M ]ij > 0, lower if [M ]ij < 0 and unchanged if [M ]ij = 0. Since

adj(−J) = (−J)−1 det(−J),

and det(−J) > 0 in view of the stability assumption, we can equivalently consider the sign pattern of
−J−1 [2, 35, 42]. The influence matrix is indeed the sign pattern matrix

K = sgn(−J−1) = sgn[adj(−J)], (3)

expressing the qualitative effect of all species presses on all other species.

2.2 Steady-state input-output influences and the influence matrix

Here, for the sake of completeness, we report material from [19] to show how responses to press perturba-
tions can be seen, more in general, as steady-state input-output influences. This provides a useful insight
that helps assess them, even in case of uncertainties (this aspect will be addressed in Section 6).

Given a generic nonlinear system, we can see a certain variable of the system as the system output
and another relevant variable or parameter of the system as the system input. Then, the steady-state
input-output influence is the ensuing variation of the steady state of the system output, upon a variation
in the system input. Of course, different outputs (chosen as different variables of the system) may respond
with a steady-state variation that has the same sign as the input variation, the opposite sign, or is zero.
We say that the steady-state input-output influence is qualitatively signed if it always has the same sign
(positive, negative, or zero), regardless of the choice of parameter values in the system (see [19]).

To assess the steady-state input-output influence in the nonlinear system

ẋ(t) = f(x(t), u(t)), (4)

y(t) = g(x(t)), (5)

where f(·, ·) and g(·) are continuously differentiable, x ∈ Rn, u ∈ R is an input and y ∈ R is an output,
we make the following assumptions.

Assumption 3 There exists an asymptotically stable equilibrium point x̄, corresponding to ū, such that
f(x̄, ū) = 0.

Then, both the state asymptotic value x̄(u) and the output asymptotic value ȳ(u) = g(x̄) are functions
of u.

Assumption 4 The considered input perturbation u is small enough to ensure that the stability of x̄(u)
is preserved.



G. Giordano and C. Altafini, Qualitative and quantitative responses to press perturbations in ecological networks 5

Note that the eigenvalues of the Jacobian matrix (based on which the local linearised stability of the equi-
librium point is assessed) are continuously dependent on the matrix entries, which are in turn continuous
functions of u.

Then, the implicit function theorem provides an analytic expression for the derivative of the steady-state
input-output map that relates y to u in system (4)-(5):

∂ȳ

∂ū
=
∂g

∂x

∣∣∣∣
x̄

(
−∂f
∂x

∣∣∣∣
(x̄,ū)

)−1
∂f

∂u

∣∣∣∣
(x̄,ū)

. (6)

Consider the linear approximation of the nonlinear system in a neighbourhood of the equilibrium x̄.
Then, denoting by z(t) = x(t)− x̄, v(t) = u(t)− ū, w(t) = y(t)− ȳ, the linearised system is

ż(t) = Jz(t) + Ev(t),

w(t) = Hz(t),

where [J ]ij = ∂fi
∂xj

∣∣∣
(x̄,ū)

, [E]i = ∂fi
∂u

∣∣
(x̄,ū)

and [H]j = dg
dxj

∣∣∣
x̄
. J is the community matrix, while E and H

are a column and a row vector representing, respectively, how the input acts on the system state and how
the output depends on the system state in the linearised system.

Then, the input-output influence can be expressed as [19]

∂ȳ

∂ū
= H(−J)−1E =

n(0)

d(0)
, (7)

where
d(0) = det(−J)

is always positive, in view of stability, and

n(0) = det

[
−J − E
H 0

]
. (8)

Remark 2 From a control-theoretic perspective, n(0) and d(0) are the numerator and the denominator
of the system transfer function F (s) = n(s)/d(s) = H(sI − J)−1E, computed at s = 0 (for further
information concerning Laplace transform and transfer functions, see for instance [20]).

The above expression can be used to evaluate input-output influences for a given choice of the sys-
tem parameters. To evaluate the qualitative (parameter-free) input-output influence, [19] proposes an
efficient vertex algorithm. Such an algorithm is applicable to all systems that admit the so-called BDC-
decomposition (see [5, 6, 18, 19]); remarkably, this broad class includes the class of systems with a
sign-definite Jacobian matrix.

As discussed in [19], a qualitative influence is identified whenever, upon a perturbation due to a constant
input, the ensuing variation of the steady-state output value has the same sign as the input (positive
influence), the opposite sign (negative influence), or is zero (perfect adaptation),1 for any feasible choice
of the model parameters; otherwise, the influence is indeterminate. This is visually represented in Fig. 1(b)

1A variable is adaptive if, when a persistent input is applied, after a transient it reverts to its pre-perturbation value.
Adaptation is perfect if the pre-perturbation value is exactly recovered at steady state [13, 38, 41].
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of the Main Paper. Consistently, the algorithm in [19] yields a “+1” if increasing the input structurally
results in an increase in the steady-state value of the considered variable, a “−1” if it structurally results
in a decrease, a “0” if the steady-state of the considered variable is unchanged, and a “?” if the behaviour
is parameter-dependent.

When a persistent additive input is applied to a single state equation and a single state variable is taken
as the system output, the results for all the possible input-output pair combinations can be visualised in
the influence matrix, whose (i, j) entry expresses the sign of the overall steady-state influence on the ith
system variable of an external persistent additive input applied to the dynamic equation of the jth system
variable [19]. Consider a system (4)–(5) of the form

ẋ(t) = f(x(t)) + Eu(t), (9)

y(t) = Hx(t), (10)

with community matrix

J =
∂f(x)

∂x

∣∣∣∣
x=x̄

,

where x̄ is an asymptotically stable equilibrium, and take vectors E = Ej and H = Hi with a single
non-zero entry equal to one

Ej = [0 . . . 0 1︸︷︷︸
position j

0 . . . 0]>, Hi = [0 . . . 0 1︸︷︷︸
position i

0 . . . 0].

Each entry [K]ij of the qualitative influence matrix K ∈ Rn×n (which can be evaluated by the vertex
algorithm in [19] for any system that admits a BDC-decomposition) can be:

• ‘+1’ if the influence is positive for any choice of the parameters;

• ‘0’ if there is perfect adaptation for any choice of the parameters;

• ‘−1’ if the influence is negative for any choice of the parameters;

• ‘?’ if the influence can have a different sign depending on the chosen parameters.

Note that, as we have mentioned earlier, the influence matrix K corresponds to the sign pattern of the
adjoint matrix of the negative of the community matrix J , adj(−J). Since det(−J) is positive in view of
the stability assumption [17], J is invertible,

(−J)−1 =
1

det(−J)
adj(−J),

and the influence matrix has the same sign pattern as −J−1:

sgn(K) = sgn[adj(−J)] = sgn[(−J)−1]. (11)

The so-called structural (i.e., qualitative) influence matrix, which expresses the overall direct and
indirect influences, at steady-state, among the state variables of a dynamical network, regardless of the
chosen parameter values, can then be computed by means of the vertex algorithm proposed in [19] for all
systems admitting the BDC-decomposition described in [5, 6, 18, 19].
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3 Qualitative responses to press perturbations

For particular classes of systems, the signed influence matrix can have special properties that help us
evaluate it without any quantitative knowledge about the system. For instance, as pointed out in [18, 19]
based on [15], the influence matrix associated with a system whose matrix J is Metzler has exclusively
‘+1’ or ‘0’ entries; it has exclusively ‘+1’ entries if, besides being Metzler, matrix J is irreducible. This
result can be generalised to the class of monotone systems, based on classical results [36, 37, 39]. Indeed,
the community matrix of any monotone system becomes Metzler after a so-called “gauge transformation”
[14], i.e., a diagonal similarity transformation with diagonal elements ±1.

3.1 Mutualistic systems

Given matrix A ∈ Rn×n, G(A) denotes the digraph with adjacency matrix A, while Q[A] is the qualitative
class of all matrices having the same sign pattern as A. In particular, Q[A] always contains a signature
matrix S = sgn(A) whose entries are in {0, −1, +1}. Clearly, G(A), G(S) and G(B) ∀B ∈ Q[A] all
have the same (signed) graph, but possibly different numerical weights.

A matrix A is said irreducible if no permutation matrix P exists such that

P>AP =

[
A1 0
A2 A3

]
with A1 and A3 square matrices; equivalently, G(A) is strongly connected. Clearly, if A is irreducible, any
matrix B ∈ Q[A] is irreducible, since G(A) and G(B) have the same topology.

A mutualistic network has a community matrix J which is Metzler, i.e., the species-species interactions
are all mutually beneficial or commensal (see Fig. 1 (a) of the Main Paper) and only self-loops are negative.
For Metzler community matrices we have the following.

Theorem 1 (See [15, 19]) If the community matrix J in (2) associated with system (1) is stable and
Metzler, then Kij ∈ {0,+1} for all i, j ∈ {1, . . . , n}. Moreover, if matrix J is also irreducible, then
Kij = +1 for all i, j ∈ {1, . . . , n}.

A direct consequence of Theorem 1 is the following.

Theorem 2 Given S mutualistic with Sii < 0 for all i ∈ {1, . . . , n}, any stable J ∈ Q[S] has influence
matrix K such that Kij ∈ {0,+1} for all i, j ∈ {1, . . . , n}. If in addition G(S) is strongly connected,
then Kij = +1 for all i, j ∈ {1, . . . , n}.

It is worth stressing that the converse of Theorems 1 and 2 is not true. As discussed in [18, 19], there
are systems whose community matrix is not Metzler, and which nonetheless yield a fully positive influence
matrix. More on this below.

3.2 Monotone systems

Denote by x(t) the solution of (1) at time t with initial condition x(0). Consider a diagonal matrix
Σ = diag(σ) with diagonal entries σ = (σ1, . . . , σn), σi ∈ {±1}, which we call gauge matrix [14]. Vector
σ identifies a partial order for the n axes of Rn, which can be the “natural” one when all σi = +1, or
the opposite when all σi = −1, or any mixed sign combination. The system in (1) is said monotone with
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respect to the partial order σ if, for all initial conditions x1(0), x2(0) such that Σx1(0) 6 Σx2(0), it is
Σx1(t) 6 Σx2(t) ∀ t > 0 [36, 37, 39]. The ordering is strict if, in addition, strict inequality holds for at least
one of the coordinates of x1, x2, but not necessarily for all. The system in (1) is said strongly monotone
with respect to the partial order σ if, for all initial conditions x1(0), x2(0) such that Σx1(0) ≤ Σx2(0),
x1(0) 6= x2(0), it is Σx1(t) < Σx2(t) ∀ t > 0. Monotonicity of a system can be checked in terms of its

Jacobian J(x) = ∂f(x)
∂x

based on the Kamke condition [36, Lemma 2.1]: the system in (1) is monotone
w.r.t. the order σ if and only if

σiσjJij(x) > 0 ∀ x ∈ Rn, ∀ i, j = 1, . . . , n i 6= j, (12)

or, in matrix form, ΣJ(x)Σ is Metzler ∀ x ∈ Rn. This condition implies that J(x) must have the same
signature S = sgn(J(x)) everywhere, hence it can be stated equivalently in terms of S as

σiσjSij > 0 ∀ i, j = 1, . . . , n i 6= j. (13)

The condition in (13) admits a graph-theoretical reformulation. The system in (1) is monotone with
respect to some order if and only if all directed cycles of length > 1 of the signed digraph G(S) (or G(J))
have positive sign.

Monotonicity, combined with irreducibility of J(x) at all x, implies strong monotonicity of (1).
The following generalisation of Theorems 1 and 2 hold, based on well-known results on monotone

systems [36, 37, 39].

Theorem 3 If system (1) is monotone and, given a gauge transformation Σ, matrix ΣJΣ is stable and
Metzler, then K = ΣK̂Σ, where K̂ is a matrix containing only 0 and +1 terms (only +1 terms if the
system is strongly monotone, namely, matrix J is also irreducible).

Theorem 4 Given S such that ΣSΣ is Metzler for some gauge transformation Σ and Sii < 0 for all
i ∈ {1, . . . , n}, any stable J ∈ Q[S] is such that its influence matrix is K = ΣK̂Σ, where K̂ is a matrix
containing only 0 and +1 terms (only +1 terms if the system is strongly monotone, namely, G(S) is also
strongly connected).

4 Semi-qualitative responses to press perturbations

It is known, see for instance [18, 19], that even community matrices that are not Metzler can give rise
to elementwise positive influence matrices, meaning that complete mutualism of the community matrix
is not necessary, but just sufficient for the system to yield a nonnegative (and positive in the irreducible
case) influence matrix.

However, when G(S) is not mutualistic, we cannot resort to a purely qualitative approach to determine
the signature of the influence matrix K. Only semi-qualitative graph-based conditions can be stated to
identify community matrices that may yield a positive influence matrix for some choice of the values of
the parameters.

Here, we give a sufficient condition for a system to possibly admit a positive influence matrix (for
some values of the community matrix entries) that is exclusively based on the sign pattern of G(S):
the qualitative class Q[S] (in which all matrices have the same topology and the same signature of
S = sgn(J)) can contain at least one community matrix with a positive influence matrix provided that
the subgraph G(S+) (formed by taking only the positive edges of G(S)) forms a network-wide strongly
connected component. This can be seen as a strongly connected mutualistic “backbone”.
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4.1 Systems with a strongly connected mutualistic backbone

Given a matrix A, let A+ be the nonnegative part of A,

A+
ij =

{
Aij if Aij ≥ 0

0 if Aij < 0

and Â the following “lifting” of A to R2n×2n (see e.g. [7]):

Â =

[
0 A
−A> 0

]+

.

A matrix A is fully indecomposable if no permutation matrices P1, P2 exist such that

P1AP2 =

[
A1 0
A2 A3

]
where A1 and A3 are square matrices. Matrix A is fully indecomposable if and only if, for some permutation
matrix P , PA is irreducible and has nonzero diagonal entries (see for instance [4, p. 56]). We have the
following theorem by Fiedler and Grone [16].

Theorem 5 [16] Given a fully indecomposable signature matrix S, the following are equivalent:

1. there exists a matrix B ∈ Q[S] such that B−1 > 0;

2. matrix Ŝ =

[
0 S
−S> 0

]+

is irreducible;

3. S cannot be expressed in the form P1

[
S11 S12

S21 S22

]
P2,

where S11 need not be square, P1 and P2 are permutation matrices, S12 > 0 and S21 6 0, with at
least one of these two blocks being nonvoid.

Based on this result, we can derive qualitative sufficient conditions that allow a matrix with a given
sign structure to have a negative inverse with positive entries. In particular, we can prove the following.

Theorem 6 Given an irreducible matrix S, with Sii = −1 ∀ i = 1, . . . , n, if matrix S+ is irreducible, then
there exists a matrix J ∈ Q[S] such that −J−1 > 0.

Proof. Consider matrix −S: since −S is irreducible and −Sii > 0 ∀ i, then −S is fully indecomposable,
as required by Theorem 5. Consider then the corresponding lifting

Ŝneg =

[
0 −S
S> 0

]+

.

By construction, its upper right block has all nonzero diagonal entries, hence in the bipartite graph G(Ŝneg)
there exists a direct edge from each node n+ i to node i, with i ∈ {1, . . . , n}. If S+ is irreducible, then
(S>)+ is irreducible as well and there exists a path in G(Ŝneg) between each pair of nodes j and n + i,
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with i, j ∈ {1, . . . , n}. Hence, for any pair i, j ∈ {1, . . . , n}, there exists a path n+ j → j → n+ i→ i,
which means that the graph G(Ŝneg) is strongly connected, thus Ŝneg is irreducible.

Therefore, in view of Theorem 5, for some B ∈ Q[−S] it must be B−1 > 0. If we choose J = −B,
then J ∈ Q[S] and −J−1 = B−1 > 0.

The converse of Theorem 6 is not true, as the following example shows.

Example 1 Consider the irreducible signature matrix

S =


−1 −1 −1 1
−1 −1 1 −1
−1 1 −1 −1
1 0 −1 −1

 .
The corresponding S+ is clearly reducible, but matrix

Ŝ =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0


is irreducible. Hence, Theorem 6 cannot be applied, while Theorem 5 still holds.

4.2 Systems with a strongly monotone backbone

Theorem 6 can be extended to systems that have a strongly monotone backbone, i.e., such that G
(
(ΣSΣ)+

)
is strongly connected, where Σ is a gauge transformation matrix.

Theorem 7 Given an irreducible matrix S, with Sii = −1 ∀ i = 1, . . . , n, if there exists a gauge trans-
formation Σ such that the matrix (ΣSΣ)+ is irreducible, then there exists a matrix J ∈ Q[S] such that
−(ΣJΣ)−1 = Σ(−J−1)Σ > 0.

5 Quantitative responses to press perturbations

In this section, we describe a class of matrices J that admit a positive influence matrix K = sign(−J−1),
although they are not associated with mutualistic systems. These matrices are related to eventually
nonnegative matrices [30, 31]: a matrix is eventually nonnegative if it becomes elementwise nonnegative
after a certain power (more rigorous definition below). Then, eventually nonnegative matrices with a proper
diagonal shift lead to community matrices having a positive influence matrix. In fact, if we consider an
irreducible and eventually nonnegative matrix B, then there exists an interval (ρ(B), β) of the real line
(where ρ(B) is the spectral radius of B) such that for all α ∈ (ρ(B), β), matrix J = B − αI is stable
and such that (−J)−1 > 0, implying that K > 0. This can be verified directly using the vertex algorithm
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described in Theorem 11, with uncertainty only on the diagonal parameters: Jii ∈ [ρ(B)− β, 0]. Notice
that B eventually nonnegative implies that also J is eventually nonnegative, but with eigenvalues of
different real part (more inside the left half of the complex plane, since α > 0). In fact, in J = B − αI,
the diagonal term αI plays the same role as the diagonal of a Metzler matrix: it guarantees Hurwitz
stability of J , which in turn ensures that det(−J) > 0. Since α > ρ(B), stability holds regardless of the
values on the diagonal of B.

5.1 Eventually nonnegative matrices

A matrix M ∈ Rn×n is eventually nonnegative if ∃ p0 ∈ N such that, ∀ p ≥ p0, Mp ≥ 0 elementwise;
equivalently, its spectral radius

ρ(M) = max
λi∈σ(M)

|λi|

is a real, positive eigenvalue of M , called the Perron-Frobenius eigenvalue, and the corresponding left and
right eigenvectors are elementwise nonnegative. Denote by indexλ(M) the multiplicity of the eigenvalue
λ of M as a root of the minimal polynomial (i.e., the dimension of the largest Jordan block associated
with λ). Then we have the following result, adapted from [24, Theorem 4.2].

Theorem 8 Consider J = B − αI, where B ∈ Rn×n is irreducible and eventually nonnegative, with
index0(B) 6 1. Then, ∃ β > ρ(B) such that ∀ α ∈ (ρ(B), β), −J = αI −B has a positive inverse.

More generally, if ∃ α such that J + αI = B is eventually nonnegative and satisfies Theorem 8, then the
influence matrix derived from J is positive: (−J)−1 > 0, hence K > 0 elementwise.

Remark 3 The condition index0(B) 6 1 is generically verified if B is irreducible, at least when the
coefficients of B are drawn randomly. All eigenvalues, including the 0 eigenvalue, are generically simple
in this case.

Note that the converse of Theorem 8 is not true.

5.2 Other cases: eventually positive and eventually exponentially positive

Other, similar, cases are described in [34]. For instance, if we consider the closely related class of eventually
positive matrices, then it is possible to obtain qualitative conditions in the spirit of those discussed in the
previous sections, namely conditions on the sign pattern that forbid a certain qualitative class of matrices
to have a representative that is eventually positive. A matrix M ∈ Rn×n is eventually positive if ∃ p0 ∈ N
such that, ∀ p ≥ p0, Mp > 0 elementwise; equivalently, its Perron-Frobenious eigenvalue ρ(M) is real,
positive, and the corresponding left and right eigenvectors are elementwise positive. A first necessary
condition for a qualitative class Q[S] to contain an eventually positive matrix is that S is irreducible [3].
The following theorem is also from [3].

Theorem 9 ([3], Thm. 5.2) Consider an irreducible signature matrix S. If S has the block sign pattern[
S11 S12

S21 S22

]
where S11 and S22 are square matrices and S12 = S+

12, −S21 = (−S21)+, then @B ∈ Q[S] such that B is
eventually positive.
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A matrix M is eventually exponentially positive if ∃ t0 ∈ R such that, ∀ t ≥ t0, eMt > 0 elementwise;
equivalently, the matrix enjoys the Perron-Frobenious property in terms of spectral abscissa: its dominant
eigenvalue λ∗ = arg maxλi∈σ(M)<(λi) (namely, that having the maximum real part) is real and the
corresponding left and right eigenvectors are elementwise positive.

The following result, adapted from [30, Theorem 2.2], [1, Lemma 2], links eventual positivity with
eventual exponential positivity. It allows to better understand the role of α in J = B − αI.

Theorem 10 A matrix A ∈ Rn×n is eventually exponentially positive if and only if A+ αI is eventually
positive for some α ≥ 0.

Remark 4 We can provide a graph-theoretical interpretation of Theorems 8 and 10. If M is the adjacency
matrix of a directed graph (so that |Mij| = 1 if an edge connects nodes i and j, Mij = 0 otherwise),
then its power Mk is such that Mk

ij is equal to the number of paths of length k that connect nodes i and
j. Then, let B be an eventually nonnegative or eventually positive matrix and the adjacency matrix of a
weighted directed graph (we can set Bii = 0, since self-loops are not relevant). The (i, j) entry of matrix
Bk,

Bk
ij =

∑
h1,h2,...,hk−1

Bi,h1Bh1,h2 . . . Bhk−1,j,

is the sum of all possible edge products (where each edge is weighted by the corresponding entry of B)
corresponding to all possible paths of length k in the graph. Hence, the sum of all possible paths of length
k becomes positive for large k. When B is eventually positive, in the expression of the exponential matrix
of J = B − αI, it is

e(B−αI)t = eBte−αIt =
∞∑
k=0

Bktk

k!
e−αIt,

where e−αIt is a diagonal matrix with positive diagonal entries and, in the infinite sum, the terms corre-
sponding to powers Bk with k > ko provide a positive contribution, because the sum of all possible paths
of length k > ko is positive in the graph.

6 When the community matrix is uncertain: qualitative influence
matrix computation

Following the approach in Section 2 and in [19], given x ∈ Rn, we consider the nonlinear system

ẋ(t) = f(x(t)) + Eu(t), y(t) = Hx(t), (14)

where f(·) is continuously differentiable, u ∈ R is an input, y ∈ R is an output, and we assume that
there exists an asymptotically stable equilibrium point x̄. Then, both the state asymptotic value x̄(u)
and the output asymptotic value ȳ(u) = Hx̄ are functions of u. The steady-state input-output influence
[19] is the ensuing variation of the steady state of the system output y, upon a variation in the input u
(a relevant variable or parameter). We assume that the considered input perturbation is small enough to
ensure that the stability of x̄(u) is preserved (being the eigenvalues of the Jacobian matrix continuously
dependent on the entries, which are in turn continuous functions of u). Of course, different variables of
interest for the system may respond with a steady-state variation that has the same sign as the input
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variation, the opposite sign, or is zero. The steady-state input-output influence is qualitatively signed if it
always has the same sign (positive, negative, or zero), regardless of the choice of parameter values [19].
Denoting by J the community matrix, in view of the implicit function theorem, the input-output influence
(or sensitivity) can be expressed as [19]

∂ȳ

∂ū
= H(−J)−1E =

det

[
−J − E
H 0

]
det(−J)

.
=
n(J,E,H)

det(−J)
, (15)

where det(−J) > 0, in view of stability. Each entry Kij of the influence matrix can be computed by
evaluating the sign of n(J,E,H) in (15) when E = Ej and H = Hi have a single non-zero entry (the
jthe and the ith, respectively) equal to one.

To evaluate the qualitative (parameter-free) input-output influence, [19] proposes a vertex algorithm
(applicable to any system that admits a BDC-decomposition [5, 6, 19]) to assess if increasing the input
always results in an increase in the output steady-state value, if it always results in a decrease, if the
steady-state output is unchanged, regardless of the choice of parameter values, or if the behaviour
is parameter-dependent. Along the same lines, we can apply a vertex algorithm to uncertain community
matrices where each entry belongs to a known (possibly bounded) interval: Jij ∈ [J−ij , J

+
ij ] (e.g.,

Jij ∈ [J∗ij − εij, J∗ij + εij]). For instance, we might have that the (i, j) entry has a nominal value J∗ij that
is affected by an uncertainty of amplitude εij, hence Jij ∈ [J∗ij − εij, J∗ij + εij].

In fact, also in the case of uncertain parameters belonging to given intervals, multiaffinity of n(J,E,H)
with respect to the entries of J guarantees the following result.

Theorem 11 Denote by J (v), v = 1, . . . , 2n
2
, the community matrices corresponding to all of the possible

choices of the entries with Jij ∈ {J−ij , J+
ij }. Then,

1. n(J,E,H) = 0 for all matrices J with Jij ∈ [J−ij , J
+
ij ] iff n(J (v), E,H) = 0 for all v,

2. n(J,E,H) > 0 for all matrices J with Jij ∈ [J−ij , J
+
ij ] iff n(J (v), E,H) > 0 for all v,

3. n(J,E,H) < 0 for all matrices J with Jij ∈ [J−ij , J
+
ij ] iff n(J (v), E,H) < 0 for all v,

4. n(J,E,H) > 0 for all matrices J with Jij ∈ (J−ij , J
+
ij ) iff n(J (v), E,H) ≥ 0 for all v and

n(J (v), E,H) > 0 for some v,
5. n(J,E,H) < 0 for all matrices J with Jij ∈ (J−ij , J

+
ij ) iff n(J (v), E,H) ≤ 0 for all v and

n(J (v), E,H) < 0 for some v.

Proof. Necessity is immediate in view of continuity. Sufficiency can be proved relying on the multiaffinity
of n(J,E,H) with respect to the entries of J . In fact, a multiaffine function defined on a hypercube
reaches its minimum (and maximum) value on a vertex of the hypercube. We prove sufficiency for the
second claim (the others can be proved similarly), by contradiction. Being the function multiaffine, it
must be n(J,E,H) ≥ 0 in the whole hypercube. Assume there is an internal point of the hypercube such
that n(J,E,H) = 0. Then, consider variations along the direction of J−11 ≤ J11 ≤ J+

11. The restricted
function is linear and nonnegative. Hence, if it is zero at one point, it must be zero at both the extrema:
n(J

(1)
− , E,H) = n(J

(1)
+ , E,H) = 0, where J

(1)
− is the matrix where J11 = J−11 and J

(1)
+ is the matrix where

J11 = J+
11. If we fix first J11 = J+

11 and then J11 = J−11, in both cases we can repeat the same argument
along the direction of each of the following entries, to conclude that it must be n(J,E,H) = 0 for all the
vertices of the matrix. However, this is in contradiction with the assumption that n(J (v), E,H) > 0 for
some v. Hence, it must be n(J,E,H) > 0 for all internal points of the hypercube.
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Remark 5 The number of community matrices to be tested is 2q, where q is the number of uncertain
nonzero entries. Therefore, q = n2 in the worst case. However, in ecological networks, community
matrices are typically sparse, hence we can expect to have q � n2.

The computational effort is paid back by a very strong knowledge. If we get a qualitative answer for
an entry, then the response to that press perturbation will have the same sign for all possible community
matrices having their entries in the given intervals.

7 Examples of ecological networks

7.1 Plankton-bacteria-protozoa community

Consider the ecological network described in [40, 9], whose interaction graph G(S) is shown in Fig. 3(a)
of the Main Paper. The nominal value of the community matrix according to [40], is

J =


−1 0.6 0 0 0
−0.6 −1 0.6 0.1 0

0.6 −0.6 −1 −0.5 0.2
0 0 0.5 −1 −0.2
0 0 0 0.2 −1

 , (16)

which yields the sign pattern matrix

S =


−1 1 0 0 0
−1 −1 1 1 0

1 −1 −1 −1 1
0 0 1 −1 −1
0 0 0 1 −1

 . (17)

The influence matrix corresponding to the nominal community matrix has sign pattern

K =


1 1 1 −1 1
−1 1 1 −1 1

1 −1 1 −1 1
1 −1 1 1 −1
1 −1 1 1 1

 . (18)

What happens in the case of uncertainties in the community matrix (16)? The vertex algorithm described
in the previous section (see Theorem 11) allows us to certify that the sign pattern in (18) is preserved, no
matter how the community matrix entries vary within bounded intervals, as follows:

−1± 0.15 0.6± 0.1 0 0 0
−0.6± 0.1 −1± 0.15 0.6± 0.1 0.1± 0.1 0
0.6± 0.1 −0.6± 0.01 −1± 0.01 −0.5± 0.01 0.2± 0.1

0 0 0.5± 0.1 −1± 0.1 −0.2± 0.01
0 0 0 0.2± 0.01 −1± 0.1

 , (19)
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where the notation Jij = J̄ij ± δij means that the entry can take values in the whole interval Jij ∈
[J̄ij − δij, J̄ij + δij].

As shown above, the nominal choice of the parameters (16) and the polytope of uncertainty given
in (19) lead to the influence matrix (18), which is not fully positive. However, since the graph G(S+)
(obtained by taking only the positive edges of G(S)) is strongly connected, the community must yield a
fully positive influence matrix for some other choice of the parameters having the sign pattern (17), in
view of Theorem 6.

An example is given by the choice

J̃pos =


d̄1 d̄2 0 0 0
d̄3 d̄4 d̄5 d̄6 0
d̄7 d̄8 d̄9 d̄10 d̄11

0 0 d̄12 d̄13 d̄14

0 0 0 d̄15 d̄16

 =


−1 0.6 0 0 0
−0.6 −1 1 0.1 0

0.6 −0.2 −1 −0.1 0.4
0 0 0.5 −1 −0.2
0 0 0 0.3 −1

 , (20)

which is such that −J̃−1
pos > 0 elementwise.

Figure 1 shows the outcome of a numerical sampling of the parameter space. In each of the plots, the
influence matrix is computed when two of the di’s vary in the range di ∈ [d̄i − 0.1, d̄i + 0.1], where d̄i is
the nominal choice of the parameters in (20), marked in the plots by the cyan diamond. Blue points in
the parameter space correspond to parameter choices that lead to a fully positive influence matrix, while
red points correspond to parameter choices that do not lead to a fully positive influence matrix.

It is worth pointing out that matrix J̃pos in (20) is eventually exponentially positive.
According to Theorem 10, since J̃pos is eventually exponentially positive, there must exist a choice of

α ≥ 0 such that J̃pos = B − αI, with B eventually positive. Indeed, for α = 1.37, B = J̃pos + αI is
eventually positive, irreducible and index0(B) 6 1, with ρ(B) = 0.898. Hence, in view of Theorem 8,
there exists β > ρ(B) such that ∀ α ∈ (ρ(B), β), αI −B has a positive inverse. In this case β = 1.421.
Clearly α = 1.37 belongs to the interval (ρ(B), β) = (0.898, 1.421).

Another choice of the community matrix entries that gives a fully positive influence matrix is

Jpos =


d̄1 d̄2 0 0 0
d̄3 d̄4 d̄5 d̄6 0
d̄7 d̄8 d̄9 d̄10 d̄11

0 0 d̄12 d̄13 d̄14

0 0 0 d̄15 d̄16

 =


−0.6 0.6 0 0 0
−0.6 −0.6 0.6 1 0

1 −0.8 −0.6 −0.6 1
0 0 0.6 −0.6 −1
0 0 0 0.6 −0.6

 . (21)

Also in this case, −J−1
pos > 0 elementwise. It is possible to show “robustness” of this parameter choice

based on the vertex algorithm (Theorem 11). In fact, running the algorithm certifies that the influence
matrix remains fully positive, no matter how the entries di vary within the following intervals:

−0.6± 0.03 0.6± 0.02 0 0 0
−0.6± 0.04 −0.6± 0.04 0.6± 0.04 1± 0.04 0

1± 0.02 −0.8± 0.01 −0.6± 0.01 −0.6± 0.05 1± 0.02
0 0 0.6± 0.01 −0.6± 0.05 −1± 0.01
0 0 0 0.6± 0.05 −0.6± 0.05

 .
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These intervals are fairly small because we want to guarantee positivity simultaneously for all variations.
Normally, only some of the parameters are uncertain. For instance, Figures 2 and 3 show the outcome of
a numerical sampling of the parameter space when only 2 parameters are varied at a time. In each of the
plots, the influence matrix is computed when two of the di’s vary in the range di ∈ [d̄i − 0.1, d̄i + 0.1]
(Figure 2) or di ∈ [d̄i− 0.2, d̄i + 0.2] (Figure 3), where d̄i is the nominal choice of the parameters in (21),
marked in the plots by the cyan diamond. Blue points in the parameter space correspond to parameter
choices that lead to a fully positive influence matrix, while red points correspond to parameter choices
that do not lead to a fully positive influence matrix and green points correspond to parameter choices
that make the community matrix singular (hence, its inverse cannot be computed). It can be seen that
all points included in the hyper-rectangle of parameters that has been successfully tested with the vertex
algorithm yield, as expected, a fully positive community matrix.

Interestingly, also matrix Jpos in (21) is eventually exponentially positive. Hence, according to The-
orem 10, there exists α ≥ 0 such that Jpos = B − αI, with B eventually positive. Indeed, for α = 2,
B = Jpos + αI is eventually positive, irreducible and index0(B) 6 1. Hence, in view of Theorem 8, there
exists β > ρ(B) such that ∀ α ∈ (ρ(B), β), αI − B has a positive inverse: in this case, α = 2 belongs
to the interval (ρ(B), β) = (1.91, 2.05).

7.2 Shallow lake community

The ecological network of the shallow lake community described in [21] corresponds to the interaction
graph G(S) shown in Fig. 3(b) of the Main Paper, which is in turn associated with the sign pattern S of
the community matrix J :

S =


−1 −1 1 1 0 0

1 −1 0 −1 0 0
−1 0 −1 0 0 1

0 0 −1 −1 −1 1
0 1 0 −1 −1 0
0 0 −1 −1 0 −1

 . (22)

Changing sign to the first, fourth and sixth variable, namely applying the gauge transformation

Σ = diag(−1 1 1 − 1 1 − 1),

leads to the new sign pattern

S ′ = ΣSΣ =


−1 1 −1 1 0 0
−1 −1 0 1 0 0

1 0 −1 0 0 −1
0 0 1 −1 1 1
0 1 0 1 −1 0
0 0 1 −1 0 −1

 , (23)

which corresponds to the graph in Fig. 3(c) of the Main Paper.
This new graph satisfies the assumptions of Theorem 6. Indeed, if we remove from G(S ′) all negative

edges, the resulting graph G(S ′+) is strongly connected. Hence, there must be a fully positive influence
matrix corresponding to some choice of the parameters having the sign pattern (23).
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Indeed, the choice

J ′pos =


−0.6 0.6 −0.6 0.6 0 0
−0.6 −0.6 0 0.6 0 0

0.6 0 −0.6 0 0 −0.6
0 0 0.6 −1 0.6 1
0 0.7 0 0.6 −1 0
0 0 1 −0.6 0 −0.8

 (24)

yields −(J ′pos)
−1 > 0 elementwise.

Which is then the sign pattern of the influence matrix for the original graph? As discussed in the Main
Paper, it can simply be achieved from the matrix O of all-ones by applying the same gauge transformation
Σ:

K = ΣOΣ =


1 −1 −1 1 −1 1
−1 1 1 −1 1 −1
−1 1 1 −1 1 −1

1 −1 −1 1 −1 1
−1 1 1 −1 1 −1

1 −1 −1 1 −1 1

 .

Note that also J ′pos in (24) is eventually exponentially positive. Therefore, according to Theorem 10,
there exists α ≥ 0 such that J ′pos = B−αI, with B eventually positive. Indeed, for α = 1.5, B = J ′pos+αI
is eventually positive, irreducible and index0(B) 6 1. Thus, Theorem 8 ensures that there exists β > ρ(B)
such that ∀ α ∈ (ρ(B), β), αI − B has a positive inverse: in this case, α = 1.5 clearly belongs to the
interval (ρ(B), β) = (1.47, 1.52).
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Figure 1: Phytoplankton example with nominal choice of the parameters given in (20). Sampling in the
parameter space: the parameters di are allowed to vary in the interval between d̄i−0.1 and d̄i+0.1, where
d̄i is the nominal value. Blue points correspond to parameter choices that lead to a fully positive influence
matrix, while red points correspond to parameter choices that do not lead to a fully positive influence
matrix and green point correspond to parameter choices that make the community matrix singular (hence,
its inverse cannot be computed). The cyan diamond in the center of each plot indicates the nominal
choice of the parameters in (20).
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Figure 2: Phytoplankton example with nominal choice of the parameters given in (21). Sampling in the
parameter space: the parameters di are allowed to vary in the interval between d̄i−0.1 and d̄i+0.1, where
d̄i is the nominal value. Blue points correspond to parameter choices that lead to a fully positive influence
matrix, while red points correspond to parameter choices that do not lead to a fully positive influence
matrix and green point correspond to parameter choices that make the community matrix singular (hence,
its inverse cannot be computed). The cyan diamond in the center of each plot indicates the nominal
choice of the parameters in (21).
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Figure 3: Phytoplankton example with nominal choice of the parameters given in (21). Sampling in the
parameter space: the parameters di are allowed to vary in the interval between d̄i−0.2 and d̄i+0.2, where
d̄i is the nominal value. Blue points correspond to parameter choices that lead to a fully positive influence
matrix, while red points correspond to parameter choices that do not lead to a fully positive influence
matrix and green point correspond to parameter choices that make the community matrix singular (hence,
its inverse cannot be computed). The cyan diamond in the center of each plot indicates the nominal
choice of the parameters in (21).
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