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Model-free plant tuning

Franco Blanchini®, Gianfranco Fenu®, Giulia Giordano¢, Felice Andrea Pellegrinob

Abstract—Given a static plant described by a differentiable
input-output function, which is completely unknown, but whose
Jacobian takes values in a known polytope in the matrix space,
this paper considers the problem of tuning (i.e., driving to a
desired value) the output, by suitably choosing the input. It is
shown that, if the polytope is robustly non-singular (or has full
rank, in the non-square case), then a suitable tuning scheme
drives the output to the desired point. The proof exploits a
Lyapunov-like function and applies a well known game-theoretic
result, concerning the existence of a saddle point for a min-
max zero-sum game. When the plant output is represented in an
implicit form, it is shown that the same result can be obtained,
resorting to a different Lyapunov-like function. The case in which
proper input or output constraints must be enforced during the
transient is considered as well. Some application examples are
proposed to show the effectiveness of the approach.

I. INTRODUCTION

For several types of systems with a large number of inputs
and outputs (such as electrical networks, power generation
systems, electronic circuits, systems for heat generation and
transmission, flow networks in general), stability is not a
critical issue, while steady-state tuning is very important and,
at the same time, difficult to achieve. In fact, often the plant
model is unknown, hence plant tuning requires a frustrating
trial-and-error approach: when attempting to set an output
to the desired value, the unknown interactions among the
variables can unpredictably drive the other outputs out of tune.

In a large electrical network, e.g., the voltages provided by
the generators can be controlled so as to guarantee that some
target nodes have the appropriate voltage level. The number of
generators corresponds to the number of degrees of freedom:
if it is not smaller than the number of the target nodes, then
the desired voltage levels can be straightforwardly obtained
by setting the generators at the proper voltage. Or, better, they
could be straightforwardly obtained, if the network parameters
were known. However, most often, the network parameters
(such as impedances) depend on the load, which in general is
not exactly known and is subject to unpredictable variations.

This paper considers the problem of tuning a static plant,
described by a system of nonlinear equations: the inputs of
the plant need to be chosen so as to drive the outputs to the
desired level, yet the system equations are unknown and only
qualitative information on the system Jacobian is available.

The main result shows that the robust tuning problem can be
solved by means of a proper tuning law, provided that (i) the
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Jacobian matrix of the input-output function is included in a
compact and convex set of matrices (the case of the inclusion
in a polytope of matrices is especially considered), and (ii)
all the elements of this set are either right invertible, in the
non-square case, or non-singular, in the square case.

The proposed robust, model-free approach to plant tuning
is obtained based on a Lyapunov approach and on the well
known min-max theorem [27]. This game-theoretic result has
already been exploited in the context of robust control via
Lyapunov methods [23], [24] (see also [8], [14], [21], [30]).
However, the problem faced here is different, since a static
plant is considered and the devised control law is actually a
tuning law.

More precisely, consider the unknown function y = g(u)
and assume the only available information is that its Jacobian
G, belongs to a polytope (or, more in general, to any convex
and compact set) of matrices. In order to drive y to zero, a
tuning scheme can be adopted based on an auxiliary control
variable v = 1, the derivative of the original control u. Hence,
u is the time integral of the new decision variable v: this
ensures both continuity of u, which is fundamental in the
proposed tuning setup, and zero steady-state error.

The state of the tuning system is then the control variable
itself. Robust tuning is ensured, since the solution is devised
based on a Lyapunov-like function. The technique relies on
the existence of a saddle point of a suitable min-max problem,
which has to be solved on-line to determine the control action.

The considered problem is related to other methods pre-
viously adopted for parameter tuning [4], [20] in which the
goal is optimizing the performance and/or identifying the
parameters. Here performance is not a concern: the only aim
is to reach the target output.

Also, it is worth mentioning the iterative learning control
technique [2], [15], which is specifically aimed at determining
the input function of a dynamic system so that the output
function matches a desired reference. In principle, the scheme
proposed here could be seen as an iterative (continuous-time)
learning process for a static nonlinear plant.

The problem could also be approached, in principle, by
means of multi-dimensional extremum-seeking techniques
[31], [26], [29]; indeed the goal is achieved when ||g(u)||? = 0,
hence the problem could admit an extremum-seeking formu-
lation. Indeed, there are interesting connections with robust
optimization (see [9] for an extensive survey).

The substantial novelty of the proposed method with respect
to the existing techniques is that, based on a Lyapunov
approach [21], [30], it exploits the robust non-singularity of the
Jacobian of g to ensure convergence. We therefore believe that
the method has potential future development in the previously
mentioned areas of robust optimization and learning.



The contributions of the paper are the following.

¢ An automatic tuning strategy based on an auxiliary con-
trol variable is proposed; this auxiliary control variable
is the derivative of the original control (hence, the state
of the system is the control variable itself).

o Assuming, without restriction, y = 0 as the target, a
Lyapunov-like positive-definite function of the output
variable is considered. If the Jacobian takes values in a
robustly non-singular polytope (or, more generally, in any
convex and compact set) of matrices, the proposed robust
control strategy drives the Lyapunov-like function to 0.

o The control, based on a min-max principle, requires the
solution of a convex optimization problem on-line.

« When bounds on the output variables need to be consid-
ered during the transient, a suitably adapted Lyapunov-
like function can be employed, whose sublevel sets are
tailored to match the shape of the constraint set.

« When bounds on the input variables need to be considered
(both during the transient and at steady state), the problem
can be solved by means of a suitable re-parametrization.

o In some important cases, the (unknown) input-output
function has an implicit form and the polytopic bounds on
the Jacobian are available for the inverse transformation
only. This problem can be solved as well by exploiting
an integral formula [25] and considering a different
Lyapunov-like positive-definite function.

« A maximum tuning speed can be assigned by constraining
the norm of the auxiliary control signal. Under suitable
choices of such a norm, the convex optimization problem
amounts to Quadratic Programming (Euclidean norm) or
Linear Programming (co-norm).

« Examples are provided to illustrate the technique, both in
the explicit and in the implicit case.

Some of the results proposed here have been preliminarily
presented in the conference paper [10], where only the case
of plants given in an explicit form has been considered.

II. MOTIVATING EXAMPLES

Explicit Case. Consider the flow network represented in
Fig. 1, where there is no buffer capacity at the nodes. Vector
Yy = [y1 Y2 y3 ya] represents the relative output flow at
the four nodes, with respect to the flow reference 7; the
flow corresponding to each link is operated by a variable uy,
u = [u; up uz uy us ug)', and its value is given by an
unknown function ¢y (uy). It is only known that ¢y (ux) are
increasing for all £ = 1,...,6. This situation is typical in
channel (or pipe) networks, in which the flows are regulated by
locks (or valves): the control variable is then the lock opening
fraction, while the corresponding flow is not known exactly;
however, it is absolutely reasonable to assume that the flow
functions ¢y (+) are strictly increasing. Given the flow reference
7, the corresponding model output is

where B is the incidence matrix of the network graph. In the

case of Fig. 1, the incidence matrix is

1 -1 -1 -1 0 O
0 1 0 0 -1 0
B= 0 O 0 1 0 -1
0 O 1 0 1 1

For such a system, in order to drive y to zero, a robust
tuner of the form represented in Fig. 2 is sought. The only
available information is given by upper and lower bounds
on the derivatives of the functions ¢p(-), no matter how
“conservative”: any bound of the form e < ¢} (-) < p, with
small € and large u, is suitable.
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Figure 1: The flow network problem.
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Figure 2: The automatic tuning scheme.

a
,d q1
LA Iall
a
e LI S
*—>0 )¢ ~o—
a
SN g3
LA

Figure 3: The thermal regulation problem.

Implicit Case. In some cases, the unknown input-output
map cannot be characterized in an explicit form. Consider, e.g.,
the thermal regulation problem in Fig. 3. The flow ¢; along
each of the three branches is a strictly increasing function of
both the valve opening fraction a; and the input pressure p at
the branching point:

qk:¢k(p7ak)7 k:15273

The pressure p itself is a function of the overall flow: typically,

P=po— V(g1 + g2+ q3)-

Therefore, ensuing an attempt to increase the flow in pipe
1, p automatically decreases, hence the flows in pipes 2 and
3 decrease as well. So, if the automatic tuning system is
required to regulate the flows ¢; to desired values @, no
explicit relation is available between the flows ¢ and the valve



opening fractions aj. However, an implicit representation can
be derived as follows. Note that aj, can be expressed as

ar = Yr(p,qr), k=1,2,3,

where ¥ (p, qr) is strictly decreasing in the first argument
and increasing in the second. Then, if the expression for the
pressure is replaced, a function

ar = Yr(po — V(g1 + 92 + g3), qx)

is achieved, which is increasing in g for all £ = 1,2,3.
The previous reasoning can be generalized to the case of N
branching pipes, obtaining the functions

N
ap = (po—\lf<2qi> ,Qk>, k=1,...,N.
i=1

Again, the only available information consists in bounds on
the derivatives: € < ¢, (+) < p.

III. PROBLEM FORMULATION AND PRELIMINARIES
A. A Saddle-Point Theorem for Min-Max Games

Here some well established results from game theory are
recalled. Consider a polytope of matrices, i.e., a set

MZ{MZXT:M]COUC, zr:akZL OL]CZO,
k=1 k=1

(D
M, € RP*™, Vk:l,...,r}.

Then, given a vector y € RP and a convex and compact set
Y C R™, the two problems

- . T

= M 2
v g iy v MY ®
vt =min max yTMv 3)

veY MeM

have a game-theoretic interpretation [5], [7]. Two players, the
Maximizer and the Minimizer, respectively choose M € M
and v € V, with the conflicting goals of maximizing and
minimizing (respectively) the expression " Mv. In version (2)
(“the Maximizer plays first”), the decision of the Minimizer is
based on the knowledge of the decision of the Maximizer,
while in version (3) (“the Minimizer plays first”), the de-
cision of the Maximizer takes into account the decision of
the Minimizer (see, e.g., [17, Chapter 9, pp. 271-272]). In
general, playing first is a disadvantage (due to the absence of
knowledge about the opponent’s choice), hence

v~ <vT.

The following well known result holds.
Theorem 1: If M and V are compact and convex sets, then
there exist v* € V and M™* € M such that

v =vt ==y M*o".

“
A proof can be found in [27].

The pair (M*,v*) € M x V, called a saddle point of the
min-max game, might not be unique in general, while the value
v* is unique [5], [7].

Since both M™* and v* depend on y, the following functions
can be defined:

®(y) =v* the minimizer value in (4), 5)

U(y) = M* the maximizer value in (4). (6)

When M* and v* are not unique, the ambiguity can be
resolved by taking the minimum-Euclidean-norm element.

B. Problem Statement

Consider the following problem.
Problem 1: Given the static plant

y = g(u), )

where g : R™ — RP, p < m, assume that g(u) = 0 for some
unknown 4 and that the following inclusion holds:

0

G = [—g} eM, (®)

Ou
where G, is the Jacobian of g and M is a known polytope
(or any convex and compact set) of matrices. Find a dynamic
algorithm such that, as ¢t — oo,

yl(t) — G ©)

u(t) — a, (10)

where @ solves the equation

0= g(u). (1)

&

IV. PROBLEM SOLUTION

To solve the tuning problem, remember that condition (8)
is the only available information for control purposes. First of
all, consider Problem 1 under the assumption that there are as
many outputs as inputs, hence p = m.

A. Case p=m

The next definition is fundamental [6].

Definition 1: Robust non-singularity. The polytope M is
robustly non-singular if any matrix in M is non-singular. <
The following standing assumption is considered.

Assumption 1: The family M is robustly non-singular. ¢
Section VI-A will illustrate how this condition can be checked,
under suitable assumptions on the matrix structure. Consider
a control scheme of the form

u(t) = (1), (12)
v(t) = y(?), (13)
y(t) = measured output. (14)

For both technical and practical reasons, the control derivative
is deliberately bounded as follows:

o(t) eV ={v: ]| <&},

where £ > 0 and || - || is any norm.

15)



The main result is the following.

Theorem 2: Under Assumption 1, Problem 1 can be solved
by means of a control scheme of the form (12)-(14), with v
bounded as in (15). O
The constructive proof is reported in the following subsection.

B. Proof of Theorem 2

Pretend, for the moment, that the Jacobian G,, is available
to the controller; hence, instead of the control action (13),
assume to be able to implement a control v(t) = ®(y(t), G.).

Consider the Lyapunov-like positive definite function

L+

Viy) ==
(v) 59 s

whose Lyapunov derivative is

V=yTy=y Gui=y Gy (16)
Then, being G, invertible, take the “pseudo” control
v=—(y)G;'y, (17)

where y(y) > 0 is a suitable continuous scalar function, to
get

V=—y(y)y'y<0, for y#0.

The continuous function +(-) can be chosen so as to ensure

ol = ()G yll <&, (19)

therefore achieving the following preliminary result.

Proposition 1: The “pseudo” control (17) satisfies (15) and
asymptotically drives y(¢) to 0. O
The existence of control (17) which satisfies (15) (or, equiva-
lently, (19)) implies that the following result holds.

Proposition 2: Given y € R?, for all G,, € M there exists
v, ||v|| < &, such that V < —(y)y T . a
This is equivalent to writing

(18)

: T T
max min Guv < — .
gnax, min y YWy
In view of Theorem 1, being the two sets compact and convex,
it is also true that
. T T
min max Guv < — .
o, max Y YWy 'y
Hence, Proposition 2 is equivalent to the following.
Proposition 3: Given y € RP, there exists v, v|| <&, such
that, for all G,, € M, V < —y(y)y . O

The control vector can be taken as in (5), v* = ®(y), to
achieve the “true” discontinuous control law
o(t) = @(y(?)),
as in (13). Then, for all G,
V =y G.oy) =y G (y) <—()y'y.  (20)
This ensures exponential convergence, since
1%
— < =2 21
v S —2), 20

with a continuous y(y) > 0.

Therefore, if ®(y) in (13) is taken as in (5), the control
(12)-(14) guarantees that y(t) — 0, and (9) is proved.

Since v is the integral function of v, it is a continuous
function. Moreover, being y = g(u) invertible, u(t) — «,
where 4 is the solution of g(@) = 0, which proves (10).

Hence, Theorem 2 is proved. |

The following corollary shows that the control v can be
scaled. It will be useful for considerations reported later, in
Section I'V-C and Section VI-C.

Corollary 1: The control v in (15) can be equivalently
scaled as |[v|| < &(y), where &(-) is any positive definite
function of y, and the result in Theorem 2 follows without
any modification. O

Proof: The min-max problem can be restated for each y
as follows

in max yTGuv. (22)

m
lvl<é(y) GueM

Function (y) should still satisfy the condition (19), which
now becomes ||v(y)G; 'y|| < &(y). The inequality (21) still

holds for the new ~(y). |
Remark 1: The dynamics of the output y can be described
by ¥ = Gyv. If invertibility of g is assumed, so that

u = g *(y), y is represented by a driftless system [16],
[18], for which several stabilizability results are available;
these results, however, do not apply to the present case, since
the model is assumed to be completely unknown. Yet, there
are some analogies: also the strategy proposed here resorts
to a discontinuous control, as it must be done for driftless
systems [16], [18]. o

C. Case p<m

If the number of outputs is lesser than the number of inputs,
Assumption 1 needs to be changed as follows.

Definition 2: Robust right invertibility. The polytope M
is robustly right invertible if any matrix in M is right invert-
ible. o

Assumption 2: The family M is robustly right invertible. ¢
Then, (17) can be modified by simply replacing the inverse
with the pseudo inverse:

v =G,y (23)

Along the same reasoning as in the previous subsection, the
same conclusions can be reached. It is worth underlining that,
in this case, there are in general multiple solutions to g(u) = 0
and the final value v will depend on the initialization.

There is only one issue here, concerning the boundedness of
u. Due to the lack of invertibility, the set of solutions u of y =
g(u) = 0 may be unbounded, as in the case of the “unknown”
function y = aju; + agus + b.! To fix the problem, take
v(y) = v = const and & > 7||GL||, for all G, € M. Then
&(y), defined in Corollary 1, can be taken as £(y) = &olly||-

Proposition 4: According to Corollary 1, let v* be the
minimizer strategy in (22), such that

[0l < &(y) = &ollyll-

(24)

IGiven a particular solution [@1 ﬂz]T, the set of all the solutions has the
form [u1 ﬂg]T + 0[—a2 al]T, for an arbitrary 6.



Then u(t) is bounded and has a finite limit @ = lim;_, o, u(t).

Proof: Condition (21) becomes V' < —2yV and implies
exponential convergence of y(t) to zero. Due to (24), v(t)
converges to 0 exponentially as well. Then

u(t) = u(0) +/O v(T)dr

is bounded and has a finite limit. ]

Remark 2: The problematic case in which the number of
outputs is greater than the number of inputs has been excluded
from the formulation of Problem 1, because, if p > m, a
solution to g(u) = 0 does not exist in general. Typically, in
this case, it is possible to choose a suitable function A(y) of
y and drive h(y) to zero. o

D. Existence of a stationary point, local convergence and
constraints

Local Convergence. Requiring that the condition G, €
M, where M is robustly invertible, holds globally can be
too demanding in some cases. Yet, such a condition may be
assured locally. For instance, given p > 0, one can consider
the closed set

Uy ={u: gl < p},

including in its interior the point @ for which g(@) = 0. Since
the Lyapunov-like function V(y) = vy y/2 = |g(u)||?/2 is
non-increasing, U, is positively invariant.

The assumptions can be weakened by requiring G,, € M
in this set. Convergence u(t) — @ is then guaranteed for all
initial conditions u(0) € U,,.

Existence of a Stationary Point. The existence of & such
that g(@) = 0 has been assumed. However, if U, is compact,
the existence of % € U, is granted. To get a proof (for m = p)
consider the “pseudo” control (17), to get

i = —(g(u)Gy g(u).

The set U, is compact, positively invariant, and isomorphic to
the closed ball ||y|| < p, hence it includes a stationary point
@ (see for instance [12]) for which —v(g(@))G g(a) = 0,
which implies g(#) = 0 (being G, ! non-singular).

Also, the global assumption G,, € M (with M robustly
invertible) implies that ||g(w)|| is radially unbounded; hence,
the Hadamard-Caccioppoli theorem (see [1]) guarantees the
existence of a stationary point # and its uniqueness.

Output Constraints. The flexibility offered by the choice
of the Lyapunov-like function may be exploited to handle the
presence of output constraint of the form

yt) e Y={yeRP:y~ <y <y"},

where vectors y~ < 0 and y* > 0 componentwise. The
constraints are satisfied if u(0) € U,, where g(U,) C .

This can be quite a small portion of )). However, the smooth
function V5, : R? — R can be adopted [13]:

bt = |35 o () . ()

where
0 if £€<0
52‘1 if £€>0

This function is smooth, positively homogeneous of the second
order (Va,(Ay) = A2Va,(y)) and its 1-level set, N'[Va,, 1] =
{y € RP : Vy,(y) < 1}, converges to Y for large ¢ (as is
apparent in Fig. 4; see [13], [12] for details).

a6 = {

6F
At
2,
o~ 9
_2,
_4,
_6,
_8, [\ S
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Figure 4: The constraint set ) = {—5 < y1 < 10, —8 < y2 < 6} (red)
and the 1-level sets of V4(y), with ¢ = 4 (blue) and ¢ = 20 (green).

Input Constraints. It is also possible to consider in-
put constraints, such as, for instance, positivity constraints
u(t) > 0 (componentwise), assuming that g(z) = 0 for
some positive %. A first “brutal” approach is that of saturating
the derivative v; when u; becomes zero: namely, if u; = 0,
then v; := max{0,v;}. However, it is well known that this
saturation introduces chattering, which would be absolutely
undesirable in a tuning context.

Alternatively, the problem can be re-parameterized as

u; = w(w;), (25)
where w : R — R is a strictly increasing function with
limy,, oo w(w;) = 0 and lim,,, 400 w(w;) = +00. A typ-
ical example is the exponential function. The new parameter
w = [wy ... w,y,]" is then the new control action and

Yy= g(w(w)),

where w(w) has to be intended componentwise, has Jacobian
Gy = GuQ(w), where Q(w) = diag{w’(w1),...,w (wm)}.

Local convergence can be assured, with the only difference
that the min-max problem has to be re-stated by considering,
instead of G, € M, the new constraint

G € (MQw)) = {MQ(w) : M € M).

Note that the new constraint depends on w. Non-singularity
is locally assured, since matrix M € M (non-singular by
assumption) is being multiplied by a positive diagonal matrix.
A similar approach can be pursued when dealing with both
upper and lower bounds on the input, such as 0 < u < 4. In
this case, the re-parametrization can be achieved by a function
of the form
7r

— |arctan(w;) +
arcta. B)

w(w;) =

such that lim,,, oo w(w;) = 0 and lim,,, 4.0 w(w;) = ;.



V. THE IMPLICIT VERSION OF THE PROBLEM

In several cases, information is available exclusively on the
Jacobian of the inverse function. This means that, although the
decision variable is u and the output is y = h~!(u), the only
available information is on the function A(-). Assuming that
p = m, the implicit invertible map is

h(y) = u (26)
and its Jacobian H, is known to be of the form
oh
H, = |— 27
! [ay} N 7

where #H is a polytope (or any convex and compact set) of
matrices. Again, the goal is to drive y to 0.

Remark 3: Given a polytope of matrices, the family of their
inverses is not, in general, a polytope, and it may even be
non-convex. For instance, take 0 < a < 1 and consider the
polytopic family of matrices H and their inverses:

H(a)z[_z ﬂ H‘l(a)=ﬁ[; _ﬂ

The family H_l(oz), 0 < o < 1, is not convex. Hence,
attempting to solve the problem by inverting the Jacobian and
applying the strategy described in the previous section may be
infeasible. o
To solve the problem directly, without inversion, a different
Lyapunov-like function can be adopted and the following
relation [25, p. 156, Exercise 3.9] can be exploited:

[/01 Z—Z(Uy)do} y= Hyy.

Proposition 5: The inclusion (27) of the Jacobian H, in H
implies that matrix H, in (28) belongs to H as well. O
Proof: Define the finite sum (with increment 1/m)

1o (ky
m Oy \m /)’

This is a convex combination of elements g—’; (%) € H, with

h(y) — h(0) = (28)

m

coefficients 1/m. Hence X, € H, because H is convex. By
definition, the integral is the limit:

. ' ohn .
H, = /0 a—y(ay)da:ﬂ}gnoozme'f{,

because H is closed. [ |
Consider the following Lyapunov-like function

V(y) = |h(y) — h0)]1?/2,
which is not available for control implementation, because
h(0) is not known. Its derivative is
Oh .
Ta_y'
Yy

Unfortunately, it is possible to decide u only, and not y.
However, if equation (26) is differentiated,

oh .

oy’ %

V = [h(y) — h(0)] (29)

then, denoting as before 4 = v,
V = [h(y) — h(0)] Tv.

As mentioned earlier, /(0) is unknown. However, from (28) it
follows that
T HT
V=y H,v. (30)
Since Proposition 5 assures that H, € H, a polytopic set, this
is exactly the same situation as in the previous case. Hence,
the previous saddle-point considerations hold likewise: it is
enough to consider any H, € H instead of G,, € M.
Now, if

P(y) = v* (3D

is the saddle-point decision of the minimizer,

min max yTH;—v = max minyTHJv = yT(H;)Tv*,
veV HyeM HyeH veV

(32)
the control scheme is
u(t) v(t), (33)
o(t) = @(y(t)), (34
y(t) = measured output, (35)

where y and u are related by h(y) = u.

Theorem 3: If p = m, h(y) = v and H, € H, robustly
non-singular, then Problem 1, with (8) replaced by (27), can
be solved with a control scheme of the form (33)-(35), with
v bounded as in (15) and ® defined as in (31). O

Proof: Almost identical to that of Theorem 2. [ |

Remark 4: In the implicit version of the problem, the case
p < m is not quite significant. Consider, e.g., p = 1 and
m = 2. It would be hi(y) = u; and ha(y) = ue. The only
reasonable possibility is that h; = ho and u; = us, otherwise
there would be an inconsistency. Hence, the problem can be
reduced to the case p = m by just throwing hy away. o

VI. IMPLEMENTATION OF THE SCHEME

For implementing the scheme, two steps are required.

o Off-line Checking the robust non-singularity (or rank
completeness) of the polytope of matrices.
¢ On-line Computing the tuning law.

A. Checking Robust Non-Singularity (or Rank Completeness)

In the case p = m, before implementing the tuning scheme
it is necessary to make sure that the given polytope of matrices
M is robustly non-singular.

Checking non-singularity is a hard problem in general [6],
especially for high dimensional systems. For reasonable in-
stances, however, this task can be computationally tractable
and noteworthy solutions are available, as shown next.

Proposition 6: [11], [22] Rank one generating matrices.
If



where M, are rank-one matrices, then robust non-singularity
is equivalent to all the vertex determinants having the same
sign:

det | Y dFM;| >0 (or <0),
i(£)
where the sum means, with an abuse of notation, that the
coefficients d; are taken on the extrema of their intervals,
obtaining 2" possible combinations.? O
Proposition 7: Interval matrices Consider an interval ma-
trix M, having entries

- +
M;; < My < M.

Then robust non-singularity is equivalent to all the vertex
determinants having the same sign. O

Conversely, for p # m, in general it is necessary to check
that all the matrices of the family have full rank. One obvious
possibility is checking if there is at least one full size square
non-singular sub-matrix.

For particular systems, non-singularity can be inferred from
the structure. Consider for instance flow systems, such as
that in Fig. 1, where g(u) = B¢(u). The Jacobian matrix is
G, = Bdiag{¢/ (u1), ¢5(uz), ..., ¢, (um)}, with ¢} strictly
positive for all £k = 1,...,m. Since the incidence matrix of
a connected graph with at least one external connection has
full row rank, G,, has full rank, or is non-singular in the case
p=m.

B. Computing the Tuning Law ®

The control law is implemented by computing v as in (13)
and then computing the input u by means of an integrator:
u(t) = fot v(7)dr. The continuity of u, fundamental for the
tuning problem, is ensured even if v = ®(y) is not continuous.
The scheme needs the measure of the output y only.

To compute the control law (13), it is necessary to solve
the min-max problem (2)-(3) and then derive the control by
means of (5)-(6). To derive the control strategy, the problem
is analyzed from the point of view of the maximizer, i.e., it is
investigated W(y) as defined in (6), under the assumption that
v eV =&, the &-ball of the Euclidean norm || - ||».

Proposition 8: Assume that v € V = S,. Then the saddle
point decision M* € M in (6), maximizing (4), can be
obtained by solving the optimization problem

M € arg min lly " M|z (36)

O

Proof: Tt follows from the game-theoretic interpretation

of the min-max problem. The existence of a saddle point

(v*, M*) implies that the maximizer M € M can choose its

action assuming that the decision of the minimizer v will be

based on the knowledge of its choice. For any given M chosen

by the maximizer, the minimizer will select v(M) € S¢ in
order to minimize the scalar product y ' Mv:

v(M)=arg min y' Mv=—arg max y' Mv,
(M) =arg, iy, v % lvllaze

2For instance, if r = 2: (dy ,dy ), (df,dy), (dy,dg), (dF,dF).

which is the vector of length £ in the opposite direction of
yTM , namely

MTy
V(M) = —€—=—.
M=y,
Then
T T
T y MM 'y T
y Mo(M) = === —¢[[M 2.
1M Tyl
Hence, in view of the “—” sign, the best strategy for the
maximizer is minimizing the norm || M Ty/s. |

Remark 5: The minimizer in (36) can be non-unique for
some y. For instance, consider the family

M:[1 1}, 1<a<?,

—a 1

and y" = [1 0]. Quite interestingly, however, the quantity
yTM * is unique, given y, as will be seen later. o

Proposition 8 can be extended to the case of any norm.

Given a norm || - ||, define || - ||, the dual norm, as [27]
2]l = max 2.
ll=l<1
For instance, || - ||oo has dual || - ||;, while the dual of || - ||2 is

|| - []2 itself.

Proposition 9: Assume that v € V, where V is the £-ball
of any norm. Then a saddle point decision M* € M in (6),
maximizing (4), can be obtained by solving the optimization
problem

M* € arg min lly " M||... (37)

O
Proof: Again, for any given M chosen by the maximizer,
the minimizer will select
v(M) € arg min y"Mv = —arg max y' Mo.
llvll<¢ llvll<€
Hence, again, the best strategy for the maximizer is minimiz-
ing the norm || M Ty|.. ]
Once the saddle-point strategy M * for the maximizer has been
established, the control strategy is decided as

v* = d(y) € —arg Hm”a<x§ y " M*v.

C. Computational Issues

A polytope of matrices has elements of the form

M = XT: MkOék
k=1

with My, € RP*™ for all k =1,...,r and
OéE.AZ{d : Z ar =1, deO}
k=1

In general, it may be assumed that vector a € A, where A is
a polytope. Some relevant cases might be of interest.

(i) If the control is bounded by the Euclidean norm, then
problem (36) is a standard minimum-Euclidean-norm problem.
(ii) If the control is bounded by the co norm, then problem
(37) is a linear programming problem (in fact, || - ||« is || - ||1)-




In the Euclidean norm case,

Z oy T My,
=1

a*(y) € argmin (38)

2
must be computed and then, denoting by 21 (y) = M, y,

_ *\ ZZ:I agzk(y)

) =) = T sl
This control is not continuous at y = 0, and introduces
chattering on v (though not on w). Yet, a sampled data
implementation may introduce ripples on u. To face this issue,
however, the bound £ > 0 introduced before can be re-
discussed. Indeed, it is possible to consider a set V,, function
of y, given by ||v]|2 < £(y), where £(y) > 0 converges to zero
as y — 0 (as in Corollary 1). In particular, taking

(39)

) =C|D_ oialy)| (40)
k=1 2
for some positive ¢, provides
O(y) = v(a®) =—=CY afMy. (41)

k=1
This choice introduces regularity in the system. Indeed, ® is
continuous at y = 0 (®(0) = 0). As can be seen in simulations,
this control introduces a nice “smooth” behavior. Finally, note
that o} 2;(y) is the smallest Euclidean norm in a polytope,
hence ®(y) = v(a*) is uniquely defined [19].
In the infinity norm case, (37) is considered, which becomes

* : T
!
(v) € argmin || ary " My
k=1 1
This problem can be solved via linear programming
min T

S.t.
Z akyTMk =zt —27,
k=1
2t >0, 27 >0 (componentwise),

where 1" =[11 ...1].

In the case of linear programming, o* might be non-unique.
To solve ambiguities, the minimum-Euclidean-norm « inside
the set of optimal values can be taken. Assuming ||v||oc < &,
the minimizer decision is

v(@”) = —Esign [Z aizg(y)] :

k=1

(42)

where vector sign[-] is the componentwise sign function.
Remark 6: Function v(t) is not continuous in general (al-
though continuity of its integral value u(t) is assured anyway).
The resulting differential equations have discontinuous right
hand side and their solutions can be defined in the frame
of differential inclusions [3]. In the case of the co-norm, the
proposed control (42) produces a bang-bang type of strategy.
This may be of interest in some practical situations, for
instance in the case of fluid valves or locks. Valves are often
actuated at a constant opening speed v € {—¢,0,£}, and this
fits nicely with the suggested control. o

VII. STATIC VERSUS DYNAMIC PLANTS

The proposed technique has been applied to static plants. If
the plant is dynamic, e.g., of the form

#(t) = Al=z(t) + g(u(®))], y(t) = x(t),
with matrix A representing the dynamics, then the problem
of driving = to 0 could be faced in principle by means of a
static state-feedback control u = ®(z), without the considered
integral action u = v and v = ®(z).

However, this control would not solve the considered tuning
problem. Indeed, since g(u) is unknown, a robust control func-
tion ® would not be continuous in general [23], [24], [8], [21],
[30], [14]. The condition z(¢) — 0O can be achieved because
the dynamics of the plant regularizes the signal, producing a
continuous x (roughly, because the transfer function from the
input g to x is strictly proper). Unfortunately, the main tuning
goal (i.e., driving u(t) to @ such that g(u) = 0) would not be
accomplished if ® is discontinuous.

In the case of static plants, the situation is even worse. The
min-max strategy requires a pure integrator. For instance, a
proportional-integral action would not be suitable, because it
would introduce discontinuities in both w and y.

In addition, an integrator is necessary to have a zero steady-
state error (even for an affine plant y = Gu+r with unknown
matrix G € M nonsingular and unknown 7).

On the other hand, introducing the integrator might be
troublesome if the plant approximately modeled as a static one
is actually dynamic (for instance, a singularly perturbed system
[21], [30]): the coupling between the integrator and the plant
dynamics might produce oscillations and even instability. In
this case, to preserve closed-loop stability, the scheme needs
to be “slow enough” compared with the plant dynamics, so
that a suitable time-scale separation between the tuner and
the plant dynamics is ensured. In practice, this is achieved
by taking the scaling function £(y) in Corollary 1 sufficiently
small, which means that the tuning speed is slow enough and
the plant dynamics is not excited. A possible choice is

ol < &(y) = &ollyll, (43)

with & > 0 small enough. We conjecture that taking &y small
compared to the system time constants can ensure stability,
although we do not have a general proof so far (and we believe
it would not be a trivial achievement).

The conjecture is supported by the analysis of the scalar
case. In view of Proposition 3, under non-singularity assump-
tions, the proposed scheme would assure convergence to 0 of
the system ¢ = G(t)v for arbitrary time-varying G(t) € M,
since the derivative (20) is negative. Assume that the scalar

plant has dynamics
Ty =~y +g(u), (44)

with time constant 7 > 0, and g is an unknown sector-bounded
scalar function g : R — R with derivative bounded as

g'(u)=D(1+A), |Al<n<1,

which assures non-singularity. In this simple case, it is not
difficult to see that the min-max control subject to (43) is

v* = &olyl(—sign(y)) = —&oy-



Writing the derivative of (44) and assuming © = v = v* yields
T+ —gwv=T1i+5+ 5D+ A)y=0.

According to the theory of absolute stability for sector-
bounded nonlinearities [25, Chapter 10], this expression is
equivalent to the loop between the linear time invariant system
having transfer function

&oD )
= —_— = F
Y s yste&D” (s)v

and the operator v = —A(t)y with |A| < 7. Stability holds if
the H ., norm of the transfer function is bounded as

. 1
sup |F(jw)| < —,
w>0 n

where j = /—1. Note that 1/ > 1, so [F(j0)|=1< 1/n.
The condition is fulfilled at all frequencies w > 0 (i.e., there
are no resonance peaks) provided that

1
& < D7 45)

because in this case the modulus | F'(jw)] is decreasing. Hence,
condition (45) ensures absolute stability.

The application of this technique requires the knowledge
of an upper bound of the time constant 7. It is so far
unclear how to generalize this result, extending (45) to the
multidimensional case.

VIII. EXAMPLES
A. The Flow Problem
Reconsider the flow problem of Fig. 1, whose equations are

where ¢(u) is a vector of strictly increasing smooth functions
¢(u) = [¢1(u1) ¢2(uz) ..., d6(us)] . The Jacobian is

Bdiag{qs/l (ul)v ¢/2(u2)a SRR ¢%(u6)} =BD

where D is a diagonal matrix with positive diagonal entries,
hence BD has full rank. The bounds on the derivatives are

05<D; <5, i=1,...,6.
The min-max strategy is very simple. For each y, consider

min _|jy"BD
0.5<D;<5

The minimum is clearly achieved at D; = 0.5 for all i:
y"BD* = 0.5y B.
For simulation purposes, functions of the form
¢i(u;) = a;u; + B; arctan(u;)

have been considered, but any strictly increasing function

would work. The coefficients are

i | 1 2 3 14| 5 6
o; |12 8 | 6 | 6 | 5 5
Bi108]05|04|103|02]|04

The target flow is
=[5 55 5]
The initial control value is
w@0)=[211111]T,
which corresponds to the initial relative flow
y(0) =[ —1.0568 —1.7644 —4.0785 11.7854 .
The transient achieved by adopting the strategy (42), with £ =

5, is represented in Fig. 5. The transient obtained by adopting
strategy (41), with ¢ = 5, is reported in Fig. 6 and is smoother.

0 0.05 0.1 015 02 025 03 035 04 045 05

0 0.05 0.1 015 02 025 03 035 04 045 05

Figure 5: The transients of the relative flow y (top) and of the control u
(bottom) obtained by applying strategy (42).
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Figure 6: The transients of the relative flow y (top) and of the control u
(bottom) obtained by applying strategy (41).



B. The Heating System

Reconsider now the system in Fig. 3. As discussed, a
qualitative implicit model of the form

up = Vi (P, Yr)

must be handled, where u, = ai and yx, = qx, k = 1,2,3.
Functions y(-,-) are decreasing in p and increasing in y.

Moreover,
3
p=po— V¥ (Z%) ;
i=1

with U increasing. The Jacobian of this inverse relation is of
the form

a+p «@ «@
H(a, 8,7, 6,mv)=| p p+v p |,
v S )
where Greek letters denote positive quantities: o = 88—121\11’ ,
d d _ 8 2 o)
5:81511’#'_ 7/)2\1,/ 1#2’,}/_ 1/13\1,/ 5_6_1/’3

Assuming a lower and an upper bound on all these vanables
0 < b < by, the Jacobian is robustly non singular. The
minimum norm problem for the maximizer is min ||y " H " ||:

. 2
46
.. [o(y1 + y2 + y3) + B (46)

+ [ulyr + v+ ys) +vyel® + vy + vz +ys) + 6y3)]”

This is a standard linear—quadratic constrained problem. Once
the optimal is found, H* = H (a*, B*,~*, 0%, u*, v ) the two
strategies can be simulated: (39), such that v = f T H*yH , and
the “more gentle” (41), such that v = —(H™y.

The reported simulations are based on the following as-
sumptions and data. The input pressure py is constant and
equal to 2.5 - 10°Pa. The output pressure p; is constant as
well and equal to 1.1 - 10°Pa. The pressure drop in the first
pipe is modeled as

Lo L, (yit+y2+ys ?
Po—p= 2p5fV = 2p5f <f @7)
where p = 10°Kg/m® is the fluid density, L = 5m is the

length of the pipe, D = 0.03m its diameter, f = 2.5 - 1073
is a friction coefficient, V' is the fluid velocity and S is the
cross-sectional area of the pipe. The cross-sectional areas of
the three branches are taken as S; = Sy = S3 = § (thus
r = ViS/3) and the pressure drop in each of the branches
is assumed to be due to the valve only (thus, the drop due to
the fiction in the pipes is neglected). More precisely:
p=p_L1oys 9 0o
P 2uy k_252ukyk
where 0 < ug <1 is the valve opening fraction and o = 0.15

is a valve flow coefficient that models the pressure drop due
to the fully opened valve. From the (48), it follows that

9 P
352 ykp o =k (P, Yk)

(48)

U =

(49)

and from (47)

3
L, (yi+y+ys) .
=pg—2p—f LTI —p T § Al
P =po pr< 5 Do i=1y

By taking b = 5-107! and b, = 5-103, plant tuning amounts
to finding the minimizer H™* of (46) for each measured output
vector y(t) = [y1(t) y2(t) y3(t)]" and applying the control
(12), where v is chosen according to (39) or (41). The valve
opening fraction at time ¢ = 0 is set as u1(0) = 0.8, u2(0) =
0.1 and u3(0) = 0.3. The target flows for the three pipes
were set as 1 = 2.5-107°m3/s, g2 = 4.1 -1072m3 /s and
g3 = 1.5-1072m3/s. Note that, if the target point is shifted to
zero, the actual output variables become yi (t) = qi(t) — Gr.

The flow transients and the input (i.e., the valve opening
fractions) transients achieved by adopting the strategy (39),
with £ = 2-1073, are represented in Fig. 7. The flow transients
and the input (ie., the valve opening fractions) transients
obtained by applying (41) with ¢ = 10 are reported in Fig. 8.
In both cases, a transient of 800s of the ZOH sampled system,
with sampling time of 0.1s, is reported.
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Figure 7: Heating system: the transients of the flows (top) and of the valve
opening fractions (bottom) obtained by applying strategy (39).

IX. CONCLUDING DISCUSSION

Plant tuning is often a frustrating operation because, due to
the lack of reliable models, it requires trial-and-error proce-
dures. It has been shown that, under suitable assumption on the
Jacobian of the unknown plant model, tuning can be performed
by means of an automatic procedure. Both an explicit and an
implicit model representation have been considered; in both
cases, the robust solution is based on a Lyapunov approach
and exploits a well known saddle point result for min-max
games. It has been also shown that constraints on both the
input and the output variables can be easily dealt with, by
means of a re-parametrization of the problem (in the case of
input constraints) or by adopting a different Lyapunov-like
function, tailored so that its 1-level set is arbitrarily close to
the constraint set (in the case of output constraints).
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Figure 8: Heating system: the transients of the flows (top) and of the valve
opening fractions (bottom) obtained by applying strategy (41).

The case in which the Jacobian of the static function is
included in a known polytope has been mainly considered.
However, cases of unstructured (norm-bounded) uncertainties
can be dealt with as well, by considering classes of convex
bounding sets more general than polytopes.

It is worth underlining that the proposed method can be
adopted, in general, for the solution of systems of nonlinear
equations, g(u) = 0, with guaranteed convergence. The
simulations proposed in the example section certify this fact,
since the value of w assuring the desired output was unknown
before running the simulation and has been found by means of
the proposed procedure. Clearly, global convergence is assured
because a bound is known for the Jacobian, which is not in
general true when solving nonlinear equations.

The digital implementation of the scheme deserves further
investigation. Other interesting problems, not considered so
far, include the case in which the set M is either dependent on
u, M(u), or y, M(y), or can change due to different working
conditions or failures.

Since the problem can be formulated in terms of linear
and quadratic programming problems, having an efficient nu-
merical solution, the problem dimensionality does not seem a
crucial issue. Hence, the proposed approach can tackle systems
of a very large scale, where automatic tuning can be a big
deal. We believe that the results of this paper can be applied
to several tuning problems, concerning for instance nonlinear
flow networks, power networks, and industrial plants. In fact,
numerical simulations have evidenced that the method can
be applied to larger plants (in terms of number of inputs
and outputs) than those presented here to illustrate the tech-

nique.3 Numerical tests have also revealed that, sometimes,
numerical issues may arise due to ill-conditioning: although
non-singularity is ensured, the Jacobian bounding polytope
includes matrices that are close to singularity. Such a phe-
nomenon seems more likely to occur when the number of
inputs is equal to the number of outputs. This issue is left as
a future research direction.
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