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Flow-inducing networks

Giulia Giordano® and Franco Blanchini®

Abstract—We consider flow-inducing networks, a class of
models that are well-suited to describe important biochemical
systems, including the MAPK pathway and the interactions at
the trans-Golgi network. A flow-inducing network is given by
the interconnection of subsystems (modules), each associated
with a stochastic state matrix whose entries depend on the state
variables of other modules. This results in an overall nonlinear
system; when the interactions are modelled as mass action
kinetics, the overall system is bilinear. We provide preliminary
results concerning the existence of single or multiple equilibria
and their positivity. We also show that instability phenomena are
possible and that entropy is not a suitable Lyapunov function.
The simplest non-trivial module is the duef, a second order
system whose variables represent the concentrations of a species
in its activated and inhibited state: under mass action Kinetics
assumptions, we prove that (i) a negative loop of duets has
a unique equilibrium that is unconditionally stable and (ii) a
positive loop of duets has either a unique stable equilibrium on
the boundary or two equilibria, of which one is unstable on the
boundary and one is strictly positive and stable; both properties
(i) and (ii) hold regardless of the number of duets in the loop.

Index Terms—Biomolecular systems, Network analysis and
control, Systems biology

I. INTRODUCTION AND MOTIVATING EXAMPLES

HE mathematical study of biological models [1], [17],

[30] helps us gain insight into natural phenomena and
identify recurring motifs [1] that explain the complex and
astoundingly resilient behaviour of biological systems, in spite
of severe uncertainties and variability. Biological and biochem-
ical systems are extremely robust [6] due to their particular
structure, regardless of specific parameter values: hence, it is
possible to identify structural (parameter-free) properties, such
as stability [7], [8], oscillations and multistationarity [9], [10],
signed steady-state behaviours [23]. In particular, the theory
of chemical reaction networks [18], [21], [26] (see also the
tutorial [3]), has provided celebrated structural results on the
stability, existence and uniqueness of equilibria, such as the
zero-deficiency and the one-deficiency theorems [19], [20],
which have fostered a lot of work on stability [2], [11], [25],
[31] and multiple (stable) equilibria [4], [5], [13], [14], [16].
Here we consider flow-inducing networks arising from the
interaction among compartmental [28] modules (i.e., subsys-
tems that group positive variables subject to mass conserva-
tion), where the flows among variables in each module are
tuned by the value of variables in other modules. The variables
in each module evolve according to a stochastic state matrix (a
Markov chain), whose entries depend on flow-inducing signals
coming from other modules, without retroactivity effects [15].
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Figure 1: Graph representing the simplified enzymatic reaction in Eq. (1): the
simplest flow-inducing system with a biochemical interpretation.

Figure 2: The MAPK pathway with negative feedback.

A flow-inducing network can be associated with a graph,
where state variables (species concentrations) are represented
by nodes, flows by arcs (blue pointed arrows) connecting
nodes, and flow-inducing signals by meta-arcs (red hammer-
head arrows) connecting a node to an arc, while nodes
associated with variables in the same module are grouped by
dotted green boxes (see, for instance, Figs. 1 and 2).

The flow-inducing framework is suited to describe the be-
haviour of some (bio)chemical systems. In fact, it captures the
essential aspect of catalysis: given two (bio)chemical species
A and B that are reacting with each other, the presence of
species E (the catalyst, or enzyme in biocatalysis) in the
reaction environment can lower the activation energy required
for the reaction and boost the reaction rate, thus inducing a
higher flow between A and B, without being consumed by
the reaction. To a first approximation, this phenomenon can
be represented by the simplified biochemical reaction network

E+Atepip Btag )

corresponding to the graph in Fig. 1, where module 1 includes
the enzyme E and module 2 includes species A and B. The
presence of F induces the flow from A to B in module 2,
while the flow from B to A is spontaneous.

Remark 1: The reaction E + A *» E + B is obtained by
neglecting the dynamics of the enzyme-substrate complex C' in

the actual reactions A+F = C % B+E. This approximation

may lead to inaccurate predictions [29], but is widely accepted
for the qualitative analysis of large-scale systems. o

Also more complex models that are typically adopted to rep-
resent fundamental biochemical systems, such as the MAPK
pathway and the interactions at the trans-Golgi network, fit



Figure 4: Graph representation of the trans-Golgi model B.

into the flow-inducing framework. This is illustrated by the
following examples, which present models taken directly from
the biochemical literature.

Example 1: The MAPK pathway plays an essential role
in regulating cell growth, differentiation and apoptosis in
several living organisms. When mitogens (growth factors)
bind to the cell surface, Mitogen-Activated Protein Kinases
propagate their signal to the cell nucleus through a pathway
of three proteins activated in series: binding mitogens activate
MAPKKK, which in turn activates MAPKK, which finally
activates MAPK, in charge of triggering gene expression in
the cell nucleus. Both MAPKKK and MAPKK are activated
through double phosphorylation [22], [27]. The cascade equa-
tions with a negative loop from MAPK to MAPKKK are

il = QToXLg — 5I1
To = —axoxsg + B
T3 = —YTox3 + 0y
T4 = YToT3 — 0ry — T4 + (x5 )
Ty = €T2T4 — (T5
T = —Nrs5Te + VX7
&7 = nrsT6 — VT7 — PT5T7 + VT
Tg = UT5T7 — VT3

where x; = [MAPKKK] inactive, zo = [MAPKKK*] active,
r3 = [MAPKK], 4, = [MAPKK-P], z5 = [MAPKK-PP],
r¢ = [MAPK], 7 = [MAPK-P], zg = [MAPK-PP]; the suf-
fix -P denotes phosphorylation, -PP double phosphorylation.
Since il +I'2 =0, i3+i4+i5 = (0 and ig +i7+i8 =0,
system (2) can be seen as the interconnection of three mass
preserving modules, as shown in the graph in Fig. 2. No
flow occurs between any two variables belonging to different
modules. However, some flows within the modules are tuned
by variables belonging to other modules: x5 (in the first
module) induces the flows from x3 to x4 and from z4 to x5
in the second module; =5 (in the second module) induces the
flows from xg to x7 and from x; to xg in the third module;
a negative-feedback is due to xg (in the third module), which
induces the flow from x5 to z; in the first module. o

Example 2: In mammalian cells, PKD-CERT interactions

at the trans-Golgi network (TGN) regulate the process that
transfers secretory proteins to the cell membrane by means
of various types of transport vesicles. PKD, a protein kinase
that regulates the fission of transport vesicles, interacts with
the kinase PI4KIII3 and with CERT, a transfer protein that
transports ceramide from the Endoplasmatic Reticulum (where
it is synthesised) to the TGN. Weber et al. [32] recently
proposed two different models to describe this complex in-
teraction of proteins and lipids, still only partially understood.
If we neglect the inputs (included in [32] to experimentally fit
the models) and assume that exogenous production and self-
degradation compensate each other for each of the variables,
then model A (“short distance shuttle””) becomes

1 = —x1h(ry, T5) — 127 + oz
o = x1h(x4, T5) + 121 — QT2

&3 = kx4 — x391(T2)

&4 = —Kxg + w391 (22) 3
&5 = Mg — 2504(24)
tg = —Axg + T7g2(2)

&7 = x5ga(T4) — T7ga(T2)

while model B (“neck swinging”) becomes

&1 = —z197(27) — 171 + 22

B2 = z197(27) + 11 — QT2

&3 = KkTq — 2391(T2)

Ty = —KT4 + T391(72) @)
T5 = —vxs5 + A\xg

B¢ = vrs — AT6 — Tega(Ta) + T792(T2)

P7 = 2694(T4) — T7g2(72)

where x1 = [PKD], zo = [PKDpDAG], =3 = [PI4KIIIA],
x4 = [PI4KISp]; x5 = [CERTaER] in model A and x5 =
[CERTa] in model B; x¢ = [CERTpER] in model A and z¢ =
[CERTp] in model B; z7 = [CERTaTGN] in model A and
x7 = [CERTaERTGN] in model B. In [32], the functions are
0i(2) = a2/ (2+b:) and h(z,y) = ajya; =5 /(b +yai =55,
with a;, b;, a;, b; > 0. In both models, there are three
compartmental modules: #; + 22 = 0, 23 + 24 = 0 and
5 + ©¢ + ©7 = 0. Flows involve only variables belonging
to the same module. Some flows are tuned by variables in
other modules: for instance, in model A (corresponding to the
graph in Fig. 3) 2, in the first module, induces the flow from
7 t0 xg in the third module, which exhibits an overall circular
flow; in model B (corresponding to the graph in Fig. 4) x5, in
the first module, induces the flow from x7 to x¢ in the third
module, which has a two-step flow structure, with x4 acting
as an intermediate stage between x5 and 7. o

Can we exploit the structure of flow-inducing networks to
assess stability, uniqueness and positivity of equilibria?

In this paper, we introduce the class of flow-inducing
networks (Section II). We give some preliminary results on
the existence of single or multiple equilibria and on their
positivity, and show that entropy, often successfully chosen
as a candidate Lyapunov function for mass-action-kinetics net-
works [3], [19], [25], is not a suitable choice here (Section III).



Under mass action kinetics assumptions, we give promising
results concerning loops of duets, modules with two variables,
which can represent the concentrations of a species in its
activated and inhibited state. We show that a negative loop of
duets has a unique equilibrium that is unconditionally stable,
regardless of the choice of the parameter values (Section IV-A)
and that a positive loop of duets can either have a unique
stable equilibrium, which lies on the boundary (i.e., the state
vector has at least one zero component), or two equilibria,
one unstable on the boundary, and one strictly positive and
stable; it is possible to ensure the existence of a stable positive
equilibrium (thus activating the system) by increasing the
total species concentrations in the modules (Section IV-B).
Remarkably, both results hold for an arbitrary number of duets
involved in the loop. Section IV-C shows that these results
may no longer hold when different kinetics are considered.
Concluding comments are provided in Section V.

II. MODEL DESCRIPTION AND GRAPH REPRESENTATION

Consider the aggregate of N subsystems (modules), each
associated with a componentwise nonnegative state vector
zi(t) € R™, z,(t) > 0 for all t. The overall system, which
we call flow-inducing network, has the state vector

z(t)=[a(t)" 2@)" ... 2n@)"]T €R,
with n = 212;1 ng. Let 2 = [2f ...z 2l .20 T
denote the complement vector to zi, obtained from z by
removing 2. The kth module has dynamics

2k(t) = Ak.(ék)zk(t), 5)

where Ay (Zx) is a Metzler matrix (its off-diagonal entries are
nonnegative) whose columns have zero sum: 17 Ax(%;) = 0,
where 1 denotes the all-ones vector and 0 the all-zeros vector
of the appropriate size. Hence, system (5) is compartmental.
In the following, all constants are assumed to be positive.
Assumption 1: The off-diagonal entries of Ay (Zy) are ei-
ther nonnegative constants or nonnegative smooth functions,
strictly increasing in each argument, which are zero if and
only if at least one of the arguments is zero. o
Remark 2: When the entries of Ay (Z)) are linear increasing
functions, we obtain biochemical reaction networks where
kinetics follow the law of mass action. The main stability
results in Section IV are valid for this case. o
Since A (Z;) are Metzler matrices and d/dt(17 2. (t)) =
1T A(3)21, = 0, the following property holds.
Proposition 1: The solution zy(t) of subsystem (5) with
nonnegative initial conditions zj(0) > 0 remains nonnegative
and satisfies mass conservation constraints:

2k(t) € Bx(pr) = {§ €R™ : TT¢ =pg, £20}, V1, (6)
where pi, = 17 24(0). a
The overall system solution z(t) lies in the Cartesian product

E =E1(p1) x Ea(p2) x -+ x En(pn);

depending on the initial conditions. For chemical reaction
networks, = is known as the stoichiometric compatibility class.

Figure 5: Graph representation of the flow-inducing network (7), with three
duets and a negative feedback loop.

If Ay (Z) is irreducible for any fixed Z, then subsystem (5)
is stable within =, (pg): 2 (t) converges to the equilibrium cor-
responding to the Frobenius eigenvector of Ay (%), associated
with the zero eigenvalue. Yet stability of the overall system,
given by the interaction of the modules, is not guaranteed.

A flow-inducing network can be represented as a graph
G(N, A, M), where

e the nodesin N' = {1,...,n} are associated with the state
variables x1,...,x, and partitioned into clusters N}, of
size ny, representing the modules 2z, k =1,...,N;

e the ares in A C {(i,7) : 4,5 € N}, for some k} represent
flows and connect pairs of nodes in the same cluster,
where ¢ is the departing node and j the arrival node;

o the meta-arcs in M C {(i,(k,h)) : i € N, (k,h) € A}
represent flow-inducing signals and connect nodes to arcs.

Flows associated with arcs (4,7) are linear functions of the
variable associated with the departing node: f(i,7) = k;jx;;
if the linearity coefficient depends on a variable xj, in another
module, with k;; = k;;(xy) satisfying Assumption 1, then a
meta-arc connects the kth node to the flow arc (4, 7).

For example, the graph in Fig. 5 corresponds to the flow-

inducing network with equations

By = a1y — ga(x6) 2 = —1
&y = g3(z2)r3 — Poa = —i3 @)
i = g5(v4)T5 — P36 = —i5
The module vectors are: z; = [z1 3]", 20 = |23 x4]"
and z3 = [v5 wg]'. System (7) is an aggregate of three

duets: second order modules whose variables represent the
concentrations of a species in its activated and inhibited
state. In the first module, for instance, the flow «a;z; from
node 1 to node 2 depends linearly on x1; the flow ga(x¢)x2
from node 2 to node 1 depends linearly on x5, but possibly
nonlinearly on zg; there is no flow between zg and xs.
Assuming linearity with respect to all variables leads to mass
action kinetics: gg(Ig)IQ = [ixgxa, gg(Ig)Ig =
g5(74)T5 = Q3T475.

Q2T2T3,

III. EQUILIBRIA AND STABILITY ANALYSIS

Since zj(t) € Z(pk), the system evolution is constrained in
a compact set, hence there is always an equilibrium point [24].
How many equilibria are there? Do they lie on the boundary
(i.e., do they have at least one zero entry)? To avoid trivial
conclusions, we assume all modules are strongly connected.

Assumption 2: For any pair of nodes i,5 € N, k €
{1,..., N}, there is an oriented flow path from i to j. o



Definition 1: An influencing variable of x; is a variable x;
such that either (j,7) € A or (j, (k,7)) € M for some £k, i.e.,
a variable involved in positive terms in the equation of &;. ¢
Influencing variables can be associated either with flows or
with flow-inducing signals. For instance, in Fig. 5, z2 (flow)
and xg (flow-inducing signal) are influencing z;.

Proposition 2: Consider an aggregate of subsystems (5),
under Assumption 2. If a variable is 0 at the equilibrium, then
at least one of its influencing variables must be 0 as well. [

For instance, system (7) cannot have boundary equilibria, as
shown in Section IV-A. Conversely, the network in Fig. 6 can
have a boundary equilibrium with o = x4 = ¢ = 0, which
can be unique or not, depending on the stoichiometric compat-
ibility class where the system is confined (see Section IV-B).

Remark 3: Based on Proposition 2, a procedure to find
boundary equilibria can be easily implemented by using graph
methods (see for instance [5], [13], [14]).

The stability analysis of an equilibrium for the considered
class of systems is non-trivial. One solid reason for this
claim is that entropy, often adopted as a Lyapunov function
for chemical reaction networks, is not suitable in general
for flow-inducing networks, even under mass action kinetics
assumptions. Entropy is defined as

H(z) = ; [z log <z—) - x} :

where ZT;
cal minimum at z; =

oe (22) e (22)

Proposition 3: The flow-inducing system

are the equilibrium values, and has a lo-
Z;. Its gradient is VH(z) =
... log (;—:)}

To = —UT2 + PT1T4 = —T

T4 = —Vx4 + VXT3 = —T3
has a stable equilibrium z; = 1, for all <. Still, for v = 10,
p=0.1and z; + 22 = 3 + 4 = 2, the Lyapunov derivative
of the system entropy H can be positive. O

Proof: Stability will be proved in Theorem 1 for a more
general case. The entropy function has Lyapunov derivative
. 2—z
H(z) = plog (x—QQ) [x2 — 24(2 — x2)]

2—1[‘4

+ VlOg( ) [24 — 22(2 — 4)] .
For x5 = 0.1 and x4 = 0.3, we get H ~ 2.12 > 0. [ ]
Hence, we need other candidate Lyapunov functions.

IV. LooPSs OF DUETS: MASS ACTION ANALYSIS

This section studies negative and positive loops of an
arbitrary number of duets (modules with two variables, rep-
resenting the concentrations of a species in its activated and
inhibited state), under mass action kinetics assumptions.

Aggregates of duets are fully described by the equations of
T with k even, k = 2,4, ... n. In fact, since zp_1+z) = P
is a constant, &j_1 = —Tk.

We show that, for negative loops, a positive equilibrium
exists and is stable; for positive loops, either a single stable

equilibrium exists on the boundary, or a pair of equilibria exist,
one unstable on the boundary and one positive and stable.

A. The negative loop of duets has a unique positive uncondi-
tionally stable equilibrium

Under mass action kinetics assumptions, the negative loop
of N duets (see Fig. 5 for the graph representation in the case
N = 3) corresponds to the system of equations

Zo = a1(p1 — x2) — f1T2Tx,
®)

Iy = ax(ps —xp)rp—2 — Prak, k=4,6,...,n,

and ©;,_1 = —Ty, with £ = 2,4,... n. Variable x;, activates
Tp+o, for all even 2 < k < n — 2, while z,, inhibits xs.

To show that system (8) has a unique equilibrium that is
positive and stable, we rely on the following lemma.

Lemma 1: A polynomial of the form

p(s)=(s+01)(s+02)...(s+0om) Fo105...00,
with 0 < o}, < oy, for k =1,2,...,m, is Hurwitz (namely, it
does not admit roots with nonnegative real part). O

Proof: By contradiction, let £ + jw be a root with £ > 0:

(jw+E+o1)(jwt+E+0oa) ... (Jwt+E+on) = Fo105...00.

n
2

If we take the square modulus of both sides, we get

W? + €+ 01)?)w? +(E+02)°] .. WP+ (E o)’ = 01 0h” o,
which is impossible, since O';C < 0. [ |
Theorem 1: System (8) admits a unique equilibrium that is
positive and unconditionally Hurwitz stable. O
Proof: The equilibrium conditions are
_ a1p1 . _
Ty = ——— = Tn),
2 aq + ﬁlin ¢2( n)
QAEPETE_2
T = #;qﬁk(fk—Q% k:4a6a"'an'

QkTp_ o
5Tr—2 + P

Function ¢- is decreasing and converges to 0 as z,, — oo. If

we compose the functions, Z,, = ¢y, 0 Pp—2 0 -+ 0 P4(T2) =

¢(Z2), we see that ¢ is an increasing function that converges

to a constant value when o — oo. Hence there is a single

intersection, corresponding to positive values of Ty, Z,.
Consider the equilibrium conditions

Tk

O‘g(p%_xk):ﬁgx , k=4,6,...,n,

and denote Dy, = Uk Th—2 -+ 5;. Then, the Jacobian is

—(a1+ Bizn) O 0 i D)
ﬁQ% —Dy 0 0
0 BiZs —Dg .. 0

0 0 ﬂ% L:iz _D"

and the corresponding characteristic polynomial

p(s) = (s+o1+pfin)(s+ w2+ f2).. . (s+anzn 2+ fz)
+ Biznfafs...fn
is Hurwitz in view of Lemma 1. [ |



B. Positive equilibria (if any) of positive loops of duets are
unconditionally stable

Under mass action kinetics assumptions, the positive loop
of N duets (see Fig. 6 for the graph representation in the case
N = 3) corresponds to the system of equations

l‘k:a%(p% —,Tk)xk_g—ﬂ%xk, k:2747"'7n’7 (9)
where 7o = x,,. The system has a boundary equilibrium with

(10)

I

Ty = 4:"':in:0-
Does it admit other equilibria?

Theorem 2: In addition to the equilibrium (10), system (9)
admits a unique positive equilibrium if and only if

n
1% > (1)
=1 B

If the positive equilibrium exists, it is Hurwitz stable. O

Proof: The equilibrium conditions can be written as
PrOETE—2

 Br +axT_o
2 2

Tk :¢k(fk—2), =24 5050
All the functions ¢j, are increasing and concave (they have
decreasing derivative). By composing these functions, we get

Ty = ¢TL o ¢n—2 Q) ekt 2O ¢2(-fn) = (ZS(fn)
The derivative of ¢ is the product ¢’ = ¢/, &/ .. ¢}, which

n—2 -
is positive, decreasing and such that lim, . ¢'(x,) = 0.
Then ¢(z,,) is increasing and concave. Moreover, ¢(0) = 0
(corresponding to the boundary equilibrium). Computing the
derivative of ¢ as the product of the derivatives of the functions
i, we get ¢'(0) = [, 5. There are two possibilities.
a) If ¢’(0) > 1, then the concave function ¢(z,,) = ¢(zn,)—zx
is positive in a right neighborhood of the origin and becomes
negative after a certain value (in fact, lim, o ¥'(z,) = —1),
hence it admits a single positive root.

b) If ¢/(0) < 1, then v(x,) is always negative for positive
Ty, hence the system cannot admit a positive equilibrium.

For a strictly positive equilibrium, the conditions are

T,
Oé%(p% — Ik) = 5% xk_Q.
Then, the Jacobian can be written as
-Dy 0 0 P12
Pait —Dy 0 0
0 532—2 —Dyg ... 0
0 0 con Pm I:L -D,,

with Dy = an®,_o + 6%, and its characteristic polynomial

p(s) = (s+oa1xn+P1)(s+azz2+P2)...(s+ QnTn—z+ ﬁ%)
- Bifa2... Bz

is Hurwitz in view of Lemma 1. ]

Theorem 3: When ?:1 S < 1, system (9) admits a
unique equilibrium (10), on the boundary, which is stable. [

Figure 6: Graph representation of a flow-inducing network with three duets
and a positive feedback loop.

Proof: Since inequality (11) is strictly violated, the
system cannot admit the positive equilibrium in view of
Theorem 2. The boundary equilibrium has the Jacobian

[—51 0 0 apr -I
oops  —f2 0 e 0
0 Qa3Ps3 —ﬁg ce 0 ,
00 agpy —Py

corresponding to the characteristic polynomial

p(s) = (s+P1)(s+P2)...(s+fz) —cupragps ... anpzn.

By assumption H?zl a;pi < H?zl Bi. Hence, Lemma 1
ensures that the polynomial is Hurwitz.

Since the equilibrium is on the boundary, the linearisation
argument is not enough in principle. However, the Jacobian is
a Metzler matrix: its dominant Frobenius eigenvalue is real and
negative, and all others have a smaller real part. The function

V(zo,xa,...,2n) = v12Z2 + vaxg + .. VR Ty,

where v; > 0 is the ith component of the left Frobenius eigen-
vector, is a co-positive Lyapunov function for the linearised
system. Hence V' is a local co-positive Lyapunov function for
the nonlinear system as well. This guarantees Hurwitz stability
of the equilibrium. [ |

Remark 4: When inequality (11) holds, adopting the same
arguments as in the proof of Theorem 3, it can be shown
that the boundary equilibrium is unstable, because the constant
term in p(s) is negative and the Frobenius eigenvalue is posi-
tive. The condition (11) is biologically relevant: an additional
external input designed to increase or decrease the quantities
p; can switch on or off (activate or inactivate) the system by
introducing or removing the positive stable equilibrium. ¢

C. Non-mass-action kinetics

The results in the previous subsections are no longer valid
when the entries of matrices Ay (Zj) are not linear. Michaelis-
Menten functions, [Ax(Zx)]i; = B"‘Jf ;khh and Hill functions
with cooperativity index m, [Ax(Zx)]i; = (B(j)i"(iik(;z% are
widespread in biochemical models and satisfy Assumption 1,
hence can be included in our framework. However, as an
example, the next result shows that our stability result for a
negative loop of duets fails when Ay (Z) has nonlinear entries.

Example 3: For some choices of the functions gi, the
constants «; and the initial conditions, the unique equilibrium
of system (7) can be unstable. Indeed, if p; = 2, o; = 1 for
i =1,2,3 and functions g (z) are chosen so that g5 (1) = 1,




then the unique equilibrium is Z; = 1 for all 7 € {1,...,6}.
Since 1 = p1 — 2, 3 = pa — x4 and x5 = p3 — x5, WE
consider the Jacobian of the system with x5, 4, ¢ only,
computed at the equilibrium:

— o1 + 92(T6)] 0 —95(Z6)T2
J = 195(Z2)(p2 — Z4) —[a2+ g3(Z2)] 0
0 95(Z4)(p3 — Ts)  —[az + g5(74)]
If the gx’s are Hill functions of the form
2™
gk(l‘) = m, m € N,

then g5(1) = 1, g, (1) = m/2 and the resulting characteristic
polynomial p(s) = (s + 2)® + m3/8 has roots with positive
real part for integer m > 9. o

V. CONCLUSIONS AND FUTURE WORK

We have proposed flow-inducing networks, a class of sys-
tems that is relevant in modelling (bio)chemical reaction
networks where a species can boost a reaction among other
species without being affected by the reaction.

Flow-inducing networks have peculiar properties, worth
investigating. At least one equilibrium always exists, but it
is not necessarily stable, even when it is unique. If there
cannot be boundary equilibria (whose existence can be ruled
out by exploring the system graph), then at least a positive
equilibrium must exist. Entropy cannot be employed as a
Lyapunov function, even under mass action kinetics. Under
mass action kinetics assumptions, stronger results have been
derived for loops of duets (second-order modules): regardless
of the number of duets involved in the loop, (i) any negative
loop of duets has a unique positive unconditionally stable
equilibrium, while (ii) a positive loop of duets has either a
single boundary equilibrium or two equilibria, one on the
boundary and one positive and unconditionally stable.

There are several interesting open problems. For instance:

« Flow-inducing networks with mass action kinetics appear
to be quite robust: we have not been able so far to find
a case where a unique positive equilibrium is not stable.
Is stability of a positive equilibrium always guaranteed
with mass action kinetics? This problem is related to the
stability of a general class of bilinear systems appearing
also in a stochastic consensus problem [12].

« Are there other topologies (e.g., loops of third-order mod-
ules) for which general stability results can be provided?

o Can these systems admit multiple positive equilibria?

o Consider the generalisation Z;, = Ay(Zk, zr)zk, where
the entries of A, can be monotonic functions (either
increasing or decreasing) of the local state variables as
well. We conjecture that the proposed stability results
about positive and negative loops can be extended to this
case, under suitable assumptions.
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