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The Smallest Eigenvalue of the Generalized
Laplacian Matrix, with Application to
Network-Decentralized Estimation for

Homogeneous Systems
Giulia Giordano, Franco Blanchini, Elisa Franco, Vahid Mardanlou, and Pier Luca Montessoro

Abstract—The problem of synthesizing network-decentralized observers arises when several agents, corresponding to
the nodes of a network, exchange information about local measurements to asymptotically estimate their own state. The
network topology is unknown to the nodes, which can rely on information about their neighboring nodes only. For
homogeneous systems, composed of identical agents, we show that a network-decentralized observer can be designed by
starting from local observers (typically, optimal filters) and then adapting the gain to ensure overall stability. The smallest
eigenvalue of the so-called generalized Laplacian matrix is crucial: stability is guaranteed if the gain is greater than the
inverse of this eigenvalue, which is strictly positive if the graph is externally connected. To deal with uncertain topologies,
we characterize the worst-case smallest eigenvalue of the generalized Laplacian matrix for externally connected graphs,
and we prove that the worst-case graph is a chain. This general result provides a bound for the observer gain that ensures
robustness of the network-decentralized observer even under arbitrary, possibly switching, configurations, and in the
presence of noise.

Index Terms—Graph Theory, Network problems, generalized Laplacian matrix, network-decentralized observer,
network-decentralized estimation.
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1 INTRODUCTION

Decentralized methods to monitor and control large-
scale systems have become increasingly popular in the
past decade [4]: centralized approaches are inefficient,
especially in the presence of delays and limited com-
munication bandwidth. Distributed problems related
to multi-agent networks have been widely investi-
gated [17], in particular concerning consensus [36],
coordination [31], formation [20] and control [28].

Distributed estimation is an emerging problem.
Distributed observer design has been considered in
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[21] for systems partitioned into disjoint areas; [47]
proposes a consensus-based overlapping estimation
framework; parallel estimation methods are proposed
in [45] and hierarchical observer design strategies in
[30]. LMI-based approaches are often useful to syn-
thesize stable distributed observers [34], ensuring ro-
bustness to delays [6] and minimum-norm estimation
error [49]. In the absence of a global coordinate system,
formation problems benefit from estimating the states
of neighboring agents: a distributed control method
for robust global stabilization is proposed in [20],
which improves the performance in the presence of
delays in multi-hop communications [2]. An iterative
gossip-based algorithm for common reference frame
estimation in a bidimensional space is proposed in
[23], while [56] uses a recursive state prediction based
on local measurements and a collaboration unit pro-
viding gain updates to individual subsystems.

The network-decentralized control of naturally
decoupled subsystems, performed by independent
agents deciding their strategy based on restricted in-
formation [10], [11], [12], [13], [14], [19], is relevant
in many applications [42], [48], such as congestion
control [26], [27], dynamic routing in communication
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networks [28], [29], airplane and satellite formation
[44], [54], vehicle platooning [39], [40] and power dis-
tribution networks [21]. When the subsystems cannot
access the whole network information, due to security
issues [23] or operational limitations [32], resorting to
distributed estimators is inevitable and simplifies the
control design [17].

Here we consider network-decentralized estima-
tion (dual to network-decentralized control [10], [11],
[12]): an observer is network-decentralized if its gain
matrix has the same sparsity structure as the transpose
of the overall output matrix. A similar problem is
investigated in [22], where the sparsity structures of
the observer gain and of the state matrix are matched
within a distributed on-line Kalman filtering scheme.
Our network-decentralized estimation problem con-
sists in designing an observer where each agent must
exchange information with the neighboring agents
only, so as to reconstruct its own state (hence, we
focus on local estimation, as opposed to the distributed
global estimation problem, where each agent aims at
estimating the state of the whole system; see [51] and
the references therein) and it has not even the knowledge
about the existence of the agents with which it can-
not directly communicate. This problem is important
in several contexts, including localization [1], [50] in
multi-robot systems (for which decentralized and co-
operative localization can be achieved by distributed
Kalman filtering with sensor fusion [41] or minimum-
entropy criteria [16]) and static sensor networks: [5]
formulates the relative localization problem and pro-
poses a synchronous algorithm based on Jacobi itera-
tions; a distributed randomized algorithm is proposed
in [38]; an asynchronous and distributed consensus-
based algorithm for optimal localization based on
noisy relative measurements is proposed in [18].

We focus on homogeneous systems, where all
the agents in the network have identical dynamics.
The agents are naturally decoupled and connected
by the control action, and communicate according
to an unknown and time-varying network topology.
Building on [10], [11], we show that a necessary and
sufficient condition for global convergence to zero of
the network-decentralized estimation error is that the
network is externally connected. Necessity is intuitive:
for instance, to achieve localization, at least one of
the communicating agents must know its absolute
position. Sufficiency is proved constructively.

Our approach is based on the preliminary design of
local observers; then, to achieve robust global stability,
we take into account the network connectivity (poorly
connected networks are more fragile than highly con-
nected networks) via the generalized Laplacian ma-
trix, which is positive definite for externally connected
graphs. The second smallest eigenvalue of the standard

Laplacian matrix (i.e., the first positive eigenvalue,
being the standard Laplacian positive semi-definite) is
a measure of the graph connectivity [8], [24], [35], [40];
the smallest eigenvalue of the grounded Laplacian ma-
trix, obtained by suitably removing rows and columns
from the Laplacian, is also relevant in consensus prob-
lems with stubborn agents [37]. For an externally con-
nected graph, we can consider the smallest eigenvalue
of the generalized Laplacian, which is positive: we
show that stability of the estimation scheme is robustly
ensured if the observer gain is greater than a lower
bound that depends on such an eigenvalue. To address
the case in which the network topology is completely
unknown and only the maximum number of nodes is
available, we need to characterize the worst case. We
prove a theorem that provides a fundamental support
to our whole scheme, ensuring robustness against
topology variations: precisely, we show that

(i) for all externally connected networks with N nodes,
the smallest eigenvalue is lower bounded as λ∗min(N) ≥

1
σmax(ΦN ) , where σmax(ΦN ) is the largest eigenvalue of
the symmetric matrix [ΦN ]ij = N + 1−max{i, j};

(ii) the bound is tight and is reached by the worst-case
topology corresponding to a chain (a tree with a single leaf).

The fact that the worst-case topology is a tree is ex-
pected, since trees are the internally connected graphs
with minimal connectivity. This is also suggested in
[53], although no proof is provided; our theorem,
therefore, supports the claim and the results in [53].

In Section 2, we present and prove the theorem on
the smallest eigenvalue of the generalized Laplacian
matrix. In Section 3, we introduce the problem of
network-decentralized estimation, focusing on homo-
geneous systems. Based on the theorem in Section 2,
we provide a lower bound for the observer gain that
guarantees robust stability of the estimation scheme
in the presence of uncertain time-varying topologies
(Section 4); for processes and measurements affected
by disturbances, we provide an upper bound for the
noise level that can be tolerated with a given observer
gain (Section 4.1), which again relies on the theorem in
Section 2. Finally, we provide application examples in
Section 5: the first two examples (node localization and
altitude detection) highlight that our scheme provides
the optimal (least-square) solution in networks of inte-
grators; a network of moving agents is also simulated,
to provide further validation of the effectiveness of our
estimation scheme.

2 THE GENERALIZED LAPLACIAN MATRIX
AND ITS SMALLEST EIGENVALUE

In this section, we provide general results on the small-
est eigenvalue of the generalized Laplacian matrix of
a graph, which in Section 4 will be applied to the



3

Fig. 1. Graph corresponding to matrix G in Example 1.

network-decentralized observer problem for homoge-
neous systems, to give a lower bound for the gain
that ensures stability (Theorem 4) even with unknown
and switching topologies (Theorems 6 and 7), and an
upper bound for the tolerable noise level in the case of
noisy processes and measurements (Theorem 5).

Consider a directed graph formed by N nodes
connected by arcs, which can be either internal arcs,
connecting two nodes, or external arcs, connecting
one of the nodes with the external environment (a
fictitious node 0, not explicitly included in the graph).
The graph is fully characterized by its generalized
incidence matrix G, whose rows are associated with
nodes and whose columns are associated with arcs:

• if arc j connects node k to node h, the jth
column of G has a −1 in the kth position and a
1 in the hth position, and is zero elsewhere;

• if arc j connects node k with the external envi-
ronment, the jth column of G has a 1 in the kth
position, and is zero elsewhere.

Example 1. The generalized incidence matrix

G =

 1 −1 −1 0 0 0 0
0 1 0 −1 1 0 0
0 0 1 1 0 −1 0
0 0 0 0 −1 1 1


identifies a graph with four nodes, where internal

arcs connect the pairs of nodes 1-2, 1-3, 2-3, 2-4 and
3-4, while external arcs connect node 1 and node 4
with the external environment (see Fig. 1).

Then, the generalized Laplacian matrix L is defined as

L = GG>.

Remark 1. A standard incidence matrix G0 for the
“extended” graph obtained by explicitly including
also the fictitious node 0, representing the external
environment, is achieved by adding a row on the
top of G, having a −1 in each column where G has
a single non-zero entry. In the case of Example 1,

G0 =


−1 0 0 0 0 0 −1
1 −1 −1 0 0 0 0
0 1 0 −1 1 0 0
0 0 1 1 0 −1 0
0 0 0 0 −1 1 1


is associated with the singular Laplacian matrix
G0G

>
0 , whose spectrum is {0, 2, 3, 4, 5}, while the

spectrum of GG> is {0.4384, 3, 4, 4.5616}.

The observations in the remark are useful to prove the
next technical lemma.

Lemma 1. The generalized incidence matrix G is
totally unimodular (i.e., the determinant of each
square sub-matrix achieved by selecting k rows
and k columns of G is either 0, −1 or 1).

Proof: The incidence matrix of a directed graph
is always totally unimodular [43], [52]. Since matrix G
can be seen as a sub-matrix of an incidence matrix G0,
it is totally unimodular as well.

We introduce the following definitions.

Definition 1. Two nodes of a graph are adjacent if they
are connected by an arc in either direction. A path is
a sequence of distinct nodes i1, i2, . . . , is, where ik
and ik+1 (for k = 1, . . . , s − 1) are adjacent nodes.
Nodes i1 and is are the extrema of the path.

Definition 2. A graph is internally connected if each
pair of nodes are the extrema of a path. A graph is
externally connected if, for each node, a path exists
connecting it to a node adjacent to node 0 (namely,
to the external environment). A graph is connected
if it is both internally and externally connected.

Remark 2. We consider non-oriented paths; hence, for
instance, the graph in Fig. 1 is connected. Indeed,
although the incidence matrix G characterizes di-
rected graphs, the direction of the arcs is no longer
relevant when the Laplacian L = GG> is consid-
ered: if the sign of any column of G is changed,
L is the same. For this reason, in the previous
definitions, the direction of the arcs is neglected.

We denote by λmin the smallest eigenvalue of
the generalized Laplacian matrix L = GG> and by
λ∗min(N) the smallest generalized Laplacian eigen-
value of all connected graphs with N nodes. To char-
acterize λ∗min(N), we need several preliminary results.

Proposition 1. [7] The generalized Laplacian matrix
L = GG> is non-singular (equivalently, λmin > 0)
if and only if the graph is externally connected.

The next proposition states that λmin > 0 does not
decrease if we augment the graph connectivity.

Proposition 2. Consider two graphs represented by
the generalized incidence matrices G and G′. If the
columns (arcs) of G are a proper subset of those of
G′, then

λmin[GG>] ≤ λmin[G′G′>].

Proof: We can order the columns of G′ so that
G′ = [G ∆], where ∆ includes all column vectors
associated with the arcs in G′ that are not in G. Then

G′G′> = GG> + ∆∆>,
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with GG> positive definite and ∆∆> positive semi-
definite. Let λ′k be the ordered eigenvalues of G′G′>

and λk those of GG>. Then, according to Weil’s in-
equality [25], λ′k ≥ λk ∀k. In particular, this holds for
the smallest eigenvalue.

Denote as internal path a path not including node 0
(the external environment). If a graph is not internally
connected, it can be partitioned into internally con-
nected components, each formed by a subset of nodes,
such that:

• each component is internally connected;
• there is no internal path connecting two nodes

i and j that belong to two distinct components.

Note that two internally connected components can be
both connected to the external environment. Hence,
a graph that is not internally connected is externally
connected iff each of its internally connected compo-
nents is externally connected.

If the graph can be partitioned into C internally
connected components, then, by suitably reordering
the nodes, we can rewrite the generalized Laplacian
in the block-diagonal form

GG> = blockdiag{G1G
>
1 , G2G

>
2 , . . . , GCG

>
C},

where GjG>j is the generalized Laplacian matrix as-
sociated with the jth internally connected component.
Since the spectrum of GG> is the union of the spectra
of GjG>j , j = 1, . . . , C , to characterize the smallest
eigenvalue we can analyze, without restriction, the
case of an internally connected graph (composed of
a single internally connected component).

In graph theory, a tree with N nodes is an inter-
nally connected graph having the smallest number
(N − 1) of internal arcs (i.e., an internally connected
graph without cycles). We define a generalized tree as
follows.
Definition 3. A generalized tree is a tree with a single ad-

ditional external arc, connecting one of the nodes
to node 0. A generalized tree is a chain if it has a
single branch (namely, each node is connected with
at most two other nodes, including node 0).

Given all connected graphs (i.e., internally connected
graphs with at least one external connection) with N
nodes, the next result follows from Proposition 2.
Proposition 3. Among all connected graphs with N

nodes, the graph corresponding to λ∗min(N) is a
generalized tree.

Proof: Any other connected graph can be
achieved by adding arcs to a generalized tree. In view
of Proposition 2, adding arcs does not decrease the
smallest eigenvalue.

Hence, λ∗min(N) is to be sought among all gen-
eralized trees. Our theorem proving that λ∗min(N) is

achieved when the tree is a chain uses the following
result in [46] (see also [55]).
Proposition 4. [46] Let ΦN be the matrix whose entries

are [ΦN ]ij = N + 1 − max{i, j}. Then, its largest
eigenvalue is

σmax(ΦN ) =

[
2 + 2 cos

(
2πN

2N + 1

)]−1

(1)

and can be approximated as σmax(ΦN ) ≈ 4N2/π2.

Note that σmax(ΦN ) is an increasing function of N .
Theorem 1. Consider all possible generalized trees

with N nodes. Then,

λ∗min(N) =
1

σmax(ΦN )
,

with σmax(ΦN ) as in (1). Moreover, the tree corre-
sponding to λ∗min(N) is a chain.

Proof: Let G be the incidence matrix of any
generalized tree with N nodes. Since a generalized
tree with N nodes has N arcs, G is square. If we
suitably order the nodes of the tree, matrixG> is lower
triangular:

G> =


1 0 0 . . . 0
δ21 1 0 . . . 0
δ31 δ32 1 . . . 0

...
...

...
. . .

...
δN1 δN2 δN3 . . . 1

 ,
with a single non-zero δij , equal to −1, in each row.

Step 1: −G> is a Metzler matrix (i.e., its
off-diagonal entries are non-negative) and has
negative-real-part eigenvalues. Hence [G>]−1 is non-
negative [9]. Moreover, [G>]−1 is lower triangular, and
its diagonal entries are all equal to 1.

Step 2: G> is totally unimodular (cf. Lemma 1)
along with its inverse. Therefore, any entry in the
lower triangular part of [G>]−1 is either 0 or 1.

Step 3: (Key point). Among all possible matrices
[G>]−1, that corresponding to the chain, [Ḡ>]−1, is
the most populated by ones. In fact, ([Ḡ>]−1)ij = 1
for all i ≥ j:

[Ḡ>]−1 = (2)
1 0 0 . . . 0
−1 1 0 . . . 0

0 −1 1
. . .

...
...

...
. . .

. . . 0
0 0 . . . −1 1



−1

=


1 0 0 . . . 0
1 1 0 . . . 0

1 1 1
. . .

...
...

...
. . .

. . . 0
1 1 . . . 1 1

.

Step 4: Let y = G>x. Being G> invertible (due
to the external connection, see Proposition 1), x =
[G>]−1y. Then, λmin solves the optimization problem

λ
1/2
min = inf

x 6=0

‖G>x‖
‖x‖

= inf
y 6=0

‖y‖
‖[G>]−1y‖

=

[
sup
y 6=0

‖[G>]−1y‖
‖y‖

]−1

:
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λ
1/2
min is the inverse of the induced norm of [G>]−1.

Step 5: Since the entries of [G>]−1 are 1 on the
diagonal and either 0 or 1 in the lower triangular part,
the norm is maximized when all of these entries are 1,
corresponding to [Ḡ>]−1 as in (2). Formally,

[G]−1[G>]−1 ≤ [Ḡ]−1[Ḡ>]−1

componentwise, since we are dealing with non-
negative symmetric matrices; hence, the Frobe-
nius eigenvalue of [G]−1[G>]−1 is maximized by
[Ḡ]−1[Ḡ>]−1 [9]. The induced norm of [G>]−1 is
the square root of the Frobenius eigenvalue of
[G]−1[G>]−1, which is maximized by taking G = Ḡ,
the incidence matrix of the chain.

Since ΦN = [Ḡ]−1[Ḡ>]−1, the proof is over.
The non-connected case. Consider an externally

connected graph with N nodes, composed of C in-
ternally connected components (each externally con-
nected). By suitably reordering the nodes, its gen-
eralized Laplacian matrix can be written as L =
blockdiag{L1, . . . ,LC}, where Li is the generalized
Laplacian matrix of the ith internally connected com-
ponent. Hence, denoting by λ

(i)
min the smallest eigen-

value of Li, the smallest eigenvalue of L is λmin =

min{λ(1)
min, . . . , λ

(C)
min}. The next corollary then imme-

diately follows from Proposition 4 and Theorem 1.

Corollary 1. Consider all possible externally connected
graphs with N nodes and C internally connected
components (C ≤ N ). Then,

λ∗min(N) =
1

σmax(ΦK)
,

where K is the number of nodes in the largest
internally connected component (K ≤ N ) and
σmax(ΦK) is defined as in (1). Moreover, the worst-
case subgraph corresponding to the largest inter-
nally connected component is a chain.

Hence, in general, the worst case is a connected
graph whose unique connected component is a chain.

3 NETWORK-DECENTRALIZED ESTIMATION

We consider N agents with dynamics:

ẋi = Aixi +Biui, i = 1, ..., N,

where xi ∈ Rni and ui ∈ Rmi . Agent i is connected
to its neighbors by a (non-empty) set of arcs Oi.
Measurements are associated with (undirected) arcs in
the network of agents; for example the jth arc, con-
necting two agents i and k, is associated with a relative
measurement yj = (Cjixi+Cjkxk), depending on the
states of all of the nodes connected by the arc, where
Cij are generic matrices (specific requirements will be

1

2

3

4

y2

y3

y4

y5

y6

y1

y7ẋ2 = A2x2 + B2u2

ż2 = A2z2 + B2u2 + L22(ŷ2 � y2)+

+ L24(ŷ4 � y4) + L25(ŷ5 � y5)

Fig. 2. The four-agent model in Example 2. Crosses indicate
external connections (anchors).

needed later, see Assumption 1). Each agent runs a
local estimator

żi = Aizi +Biui +
∑
j∈Oi

Lij(ŷj − yj). (3)

The estimated measurement ŷj of each arc is:

ŷj =
∑
k∈Nj

Cjkzk,

where Nj is the set that indexes the nodes connected
by arc j. This is a general setup, valid even in the pres-
ence of hyper-arcs connecting more than two nodes.
Example 2. Consider a system of four agents, asso-

ciated with the nodes of the graph in Fig. 2. The
agents exchange information about their state, with
a communication topology given by the graph;
measurement signals yi are associated with the
arcs. Crosses indicate connections with the external
environment (anchors): since nodes 1 and 4 are
adjacent to node 0, y1 depends exclusively on the
state of agent 1, y7 depends exclusively on the
state of agent 4. Consider agent 1, with dynamics
ẋ1 = A1x1 + B1u1. Since it has knowledge about
y1, y2 and y3, its local observer is:

ż1 = A1z1 +B1u1 + L11(C11z1 − y1)

+ L12(C21z1 + C22z2 − y2)

+ L13(C31z1 + C33z3 − y3).

Agent 1 measures y2 and y3, receives the estimated
outputs C22z2 from agent 2 and C33z3 from agent
3, and computes its estimated outputs: C21z1,
transmitted to agent 2, and C31z1, transmitted to
agent 3. Also, since node 1 is externally connected,
agent 1 receives the “actual” output y1 from the
anchor and compares y1 with its estimate C11z1.

The general dynamics of the overall system of the
agents, along with their observer, is

ẋ = Ax+Bu,

y = Cx,

ż = Az +Bu− Ly + LCz,

(4)

where matrix A ∈ Rn×n is a block-diagonal matrix,
whose blocks Ai are the individual agent matrices;
matrix C ∈ Rp×n has a block structure that depends
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on the communication topology of the agents. The
dynamics of the estimation error e = x− z is:

ė = Ae+ L(y − Cz) = (A+ LC)e. (5)

Example 3. For Example 2 (Fig. 2), we have

y1
y2
y3
y4
y5
y6
y7


=



C11 0 0 0
C21 C22 0 0
C31 0 C33 0
0 C42 C43 0
0 C52 0 C54

0 0 C63 C64

0 0 0 C74


x1x2x3
x4

 .

The overall estimator matrix is:

L =

L11 L12 L13 0 0 0 0
0 L22 0 L24 L25 0 0
0 0 L33 L34 0 L36 0
0 0 0 0 L45 L46 L47

 ,
which has the same block structure as C>.

Definition 4. The observer defined by matrix L is
a network-decentralized observer if L has the same
block structure as C>.

Definition 5. System (4) is network-decentralized de-
tectable if there exists a network-decentralized ob-
server such that the error dynamics (5) is asymp-
totically stable.

Remark 3. The structure of L corresponds to that of the
incidence matrix G of the interconnection graph.
System (4) is externally connected iff at least one
block-row in matrix C has a single non-zero block.

In Example 2 (Fig. 2), nodes 1 and 4 are connected
with the external environment: the first and the last
row of matrix C have a single non-zero block.

We denote as unstable an eigenvalue with a non-
negative real part. A system is detectable if all of its
unstable eigenvalues are observable. The next result
follows, by duality, based on the results in [10].
Theorem 2. If Ai do not share unstable eigenval-

ues, then system (4) is network-decentralized de-
tectable if and only if it is detectable.

When Ai do not share unstable eigenvalues, a
network-decentralized observer can be designed by
dualizing the procedure in [10]. It is unclear, at present,
whether the equivalence property in Theorem 2 holds,
in general, in the presence of common unstable eigen-
values. However, interesting results can be found in
special cases. In the sequel, we focus on homogeneous
systems (where matrices Ai are equal for all of the
agents, each arc in the network connects at most two
nodes and, if in a block-row of matrix C there are two
non-zero blocks, they are opposite), for which we pro-
vide an equivalence result for network-decentralized
detectability in the following subsection (Theorem 3).

3.1 Network-decentralized detectability of homo-
geneous systems

We consider the following standing assumptions.

Assumption 1. Ai = A1 and Cij = ±C1, for all non-
zero blocks. Moreover there are at most two non-
zero blocks C1 for each block-row of C ; if the non-
zero blocks are two, they are opposite.

In the case of Example 2, we would have C11 = C1,
C21 = −C1, C22 = C1, C31 = −C1, C33 = C1, etc.

Assumption 2. (A1, C1) is detectable.

Assumption 2 is not restrictive, since the problem
cannot be solved if this assumption is not verified.

The information exchange can be represented by a
directed graph with incidence matrix G. In particular,

C = G> ⊗ C1,

where ⊗ denotes the Kronecker product (roughly, C is
the expansion of G> achieved by replacing {−1, 0, 1}
entries with {−C1, 0 · C1, C1} respectively). Note also
that A = I ⊗A1.

Example 4. Consider four agents connected as in Fig. 2.
Each agent i aims at reconstructing its own po-
sition ri(t) ∈ R2 in the plane (unknown to the
agent itself) by exchanging information with its
neighbors. Precisely, agent i can update its own
estimated position, zi(t), by communicating with
all of its neighbors; all the non-zero blocks in C
are either I2 or −I2, where I2 is the 2 × 2 identity
matrix. If we assume that all of the agents are
standing still, the equations are

ṙi(t) = 0, ∀ i,
hence A1 = 02, the 2 × 2 zero matrix. Then the
updating equation for agent 1 is

ż1 = L11(z1 − r1︸︷︷︸
y1

) + L12(z1 − z2 − (r1 − r2)︸ ︷︷ ︸
y2

)

+ L13(z1 − z3 − (r1 − r3)︸ ︷︷ ︸
y3

).

The estimation error e = r − z evolves as

ė(t) = LCe(t),

where Lmust have the same block structure asC>.

Remark 4. The graph needs not to be connected. We
just require that each internally connected compo-
nent is externally connected (its incidence matrix
has at least one column with a single non-zero
entry, corresponding to a single non-zero block
in a block-row of C). Hence, each node of the
graph is connected to the external environment by
a suitable path.
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Lemma 2. System (4) is detectable if and only if there
exists γ ≥ 0 such that the Lyapunov inequality

A>P + PA− 2γC>C < 0 (6)

is satisfied for some P > 0. A stable observer is
L = −γP−1C>.

Proof: It follows by duality from the results in
[15, Section 7.2.1].

The observer L = −γP−1C> is network-
decentralized if P is a block-diagonal matrix: for ho-
mogeneous systems, such a P can always be found
under proper conditions, as is constructively shown
in the proof of the following theorem.
Theorem 3. Under Assumptions 1 and 2, system (4) is

network-decentralized detectable if and only if at
least one of these conditions holds:

a) A1 is asymptotically stable;
b) the system is externally connected.

Proof: Sufficiency
Condition a). If A1 is asymptotically stable, then

equation (6) holds for any γ ≥ 0: by taking any P1 > 0
such that A>1 P1 + P1A1 < 0 and then letting

P = blockdiag{P1, P1, . . . , P1}, (7)

we get A>P + PA < 0 and the system is network-
decentralized detectable, in view of Lemma 2 and of
the block-diagonal structure of P .

Condition b). Consider the case of a connected
graph (if the graph is composed of many internally
connected components, the same reasoning can be ap-
plied to each of them). If A1 is not asymptotically sta-
ble, we can choose γ > 0 sufficiently large to satisfy (6)
for the single subsystem:A>1 P1+P1A1−2γC>1 C1 < 0.
By scaling P1 (we replace P1 with P̃1 = P1/γ and keep
on writing P1 for simplicity), we obtain:

z>i [A>1 P1 + P1A1 − 2C>1 C1]zi < 0, ∀ zi 6= 0.

Network-decentralized detectability is ensured if we
show that, for γ > 0 large enough, (6) is true with P
as in (7). Since z>[C>C]z ≥ 0 in general, the assertion
is proved if we show the following property [15]: for
any non-zero z ∈ ker(C), we have

z>[A>P + PA]z < 0.

We can partition the state as z =
[
z>1 z>2 ... z>N

]>
.

In view of Assumption 1, for each block-row of C
with two non-zero blocks, say h and k, we must have
C1zh = C1zk. Since the graph is connected, we can put
together the equalities corresponding to each block-
row:

C1z1 = C1z2 = · · · = C1zN .

Moreover, due to the external connection, C1zl = 0 for
some l, since one block-row of C has only the block l

different from zero. Hence, C1zk = 0 for all k. Then,
z ∈ ker(C) iff zi ∈ ker(C1), for all i, and thus

z>[A>P + PA]z =
N∑
i=1

z>i [A>1 P1 + P1A1]zi < 0,

in view of the detectability assumption on (A1, C1).
Therefore, for large γ > 0, we get (6).

Necessity
Assume by contradiction that neither condition a)

nor condition b) holds. Let λ be an unstable eigenvalue
of A1 and z1 be an eigenvector of A1 corresponding to
λ. Then z = [z>1 z>1 . . . z>1 ]> is an eigenvector of A. If
the graph is not externally connected, then

Cz = 0,

since there are two opposite blocks in each block-row.
Then [

λI −A
C

]
z = 0.

According to the Popov criterion, λ is an unobserv-
able eigenvalue. Being λ unstable, the system is not
detectable.

From the proof of Theorem 3, the following corol-
lary ensues.
Corollary 2. Under Assumptions 1 and 2, system (4) is

network-decentralized detectable if and only if it is
detectable.

Theorem 3 does not provide any information on
how large γ > 0 should be chosen. This problem is
considered in the next section.

4 COMPUTATION OF THE GAIN, NOISE REJEC-
TION AND SWITCHING

In this section, we consider the case of an unknown,
and potentially time-varying, topology. Inspired by
the proof of Theorem 3, we adopt a design approach
that requires solving the following two steps.

STEP 1. For the single subsystems (A1, C1), design
a gain L1 = −P−1

1 C>1 , by means of some optimality
criterion (i.e., Kalman gain), where P1 satisfies

A>1 P1 + P1A1 − 2C>1 C1 < 0. (8)

In this way, the system works even for isolated nodes.
STEP 2. Given a known matrix P1 satisfying

(8), to achieve global stability, apply the network-
decentralized filter gain

L = −γP−1C>, (9)

P = blockdiag{P1, P1, . . . , P1}, (10)

for some γ > 0.
How large should γ > 0 be? IfA1 is asymptotically

stable, then any γ > 0 is suitable. In the interesting
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unstable case, a lower bound for γ is provided by
the following theorem, in which the assumption of
external connection is crucial.
Theorem 4. Under Assumptions 1 and 2, let G be

the incidence matrix of the graph. If the graph is
externally connected, then the error system with L
as in (9) is asymptotically stable provided that

γ > γ∗
.
=

1

λmin[GG>]
, (11)

where λmin[GG>] is the smallest eigenvalue of
matrix GG> ∈ RN×N .

Proof: Let us show thatA>P+PA−2γC>C < 0
for γ > γ∗. Denoting by

C̃>C̃ = blockdiag{C>1 C1, C
>
1 C1, . . . , C

>
1 C1},

this means

(A>P + PA− 2C̃>C̃)︸ ︷︷ ︸
<0

+(2C̃>C̃ − 2γC>C) < 0.

The first addend in parentheses is negative def-
inite, in view of its diagonal structure and of
(8). Then, consider (2C̃>C̃ − 2γC>C) and take
z =

[
z>1 z>2 . . . z>N

]>
, yk = C1zk, y =[

y>1 y>2 . . . y>N
]>

. The condition we look for is

z>[2C̃>C̃ − 2γC>C]z = y>2Iy − y>2γΓΓ>y (12)

= y>2[I − γΓΓ>]y < 0,

where Γ has the same structure as matrix G, once each
1 has been replaced by Ip (the identity of dimension
p) and each 0 by 0p (the zero p× p matrix); formally:

Γ = G⊗ Ip.
Hence, ΓΓ> ∈ RpN×pN has the same eigenvalues of
GG> ∈ RN×N , each repeated p times. This means
that (12) is true if (11) holds, and the proof is over.
Remark 5. The requirement (11) explains the necessity

of assuming connection with the external envi-
ronment: without external connections, we would
have λmin[GG>] = 0.

4.1 Noisy dynamics and measurements

To account for both process and measurement noise,
we consider the model:

ẋ = Ax+Bu+ Ev,

y = Cx− w,
ż = Az +Bu− Ly + LCz,

(13)

where A and C satisfy the previous Assumptions 1
and 2, while matrix E ∈ Rn×n is block-diagonal, with
blocks E1. The disturbances v and w are assumed to

be uncorrelated zero-mean stochastic processes with
independent components,

E [v(t)] = 0, E [w(t)] = 0, (14)

E [v(t)v(τ)>] = µ2Inδ(t− τ),

E [w(t)w(τ)>] = µ2Ipδ(t− τ),

where 0 < µ ≤ 1 is a scaling factor. Both v and w are
assumed to be uncorrelated with x. The dynamics of
the estimation error e = x− z are now:

ė = Ae+L(y−Cz)+Ev = (A+LC)e+Ev−Lw. (15)

For each subsystem (A1, C1) we can design an ob-
server gain L1 = −P−1

1 C>1 , so that

ė1 = (A1 + L1C1)e1 + E1v1 − L1w1 (16)

and, assuming µ = 1, the performance for the local
filter is bounded as (see, for instance, [33])

lim
t→∞

traceE [e1(t)e1(t)>] ≤ J1
.
= trace[P−1

1 ],

where P1 > 0 satisfies P−1
1 (A1 + L1C1)> + (A1 +

L1C1)P−1
1 + L1L

>
1 + E1E

>
1 ≤ 0, namely,

A>1 P1 + P1A1 − C>1 C1 + P1E1E
>
1 P1 ≤ 0. (17)

The above are equalities if a local Kalman filter is
considered. For P1 that satisfies (17) as an equality,
the performance is the H2 norm of the error system
(16), with output taken as the state: E [e>1 (t)e1(t)] =
trace[P−1

1 ] = J1. Based on Theorem 4, to ensure
stability we need to apply L = −γP−1C>, where
P = blockdiag{P1, . . . , P1}, for some γ > γ∗. Yet,
increasing γ may cause performance degradation. To
compare the overall filter performance with that of
the individual observers, we look for the maximum
noise level µ such that the global filter achieves the
performance J = NJ1, e.g., the sum of the individual
(optimal) performances. Indeed, with L = L(γ), the
global performance is bounded as

lim
t→∞

N∑
k=1

traceE
[
ek(t)ek(t)

>
]
≤

trace[blockdiag{P−1
1 , . . . , P−1

1 }] = N trace{P−1
1 } = NJ1,

with disturbances scaled by µ as in (14), provided that

P−1(A+LC)>+(A+LC)P−1+µ2LL>+µ2EE> ≤ 0.
(18)

We seek the largest µ > 0 compatible with (18), as
a function of γ: its value exclusively depends on the
graph topology and, again, on the smallest eigenvalue
of the generalized Laplacian matrix.
Theorem 5. Under Assumptions 1 and 2, let G be

the incidence matrix of the externally connected
graph and let λmin = λmin[GG>]. System (13),
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with L = −γP−1C>, P = blockdiag{P1, . . . , P1}
and γ > γ∗ = 1

λmin
, ensures the performance NJ1

in the presence of measurement and process noises
of magnitude µ as in (14), provided that

µ < µ∗ =

√
2γλmin − 1

γ2λmin
. (19)

If γ = γ∗ = 1
λmin

, then the worst-case maximum
noise level is

µ∗ =
√
λmin ≤

√
2γλmin − 1

γ2λmin
. (20)

Moreover, for a given µ ≤
√
λmin, the performance

NJ1 is guaranteed for

λmin −
√
λ2
min − λminµ2

λminµ2
< γ <

λmin +
√
λ2
min − λminµ2

λminµ2
.

(21)

Proof: For L = −γP−1C>, P > 0, condition
(18) is equivalent to

PA+A>P + (µ2γ2 − 2γ)C>C + µ2PEE>P ≤ 0.

We also have PA+A>P−C̃>C̃+PEE>P ≤ 0 (C̃>C̃
is defined in the proof of Thm. 4), in view of (17) and
of the block-diagonal structure. Hence, it is enough to
show that

(µ2 − 1)PEE>P + [(µ2γ2 − 2γ)C>C + C̃>C̃] ≤ 0.

The first addend is negative semi-definite, due to our
assumptions on µ. As for the second addend, take z
and y as in the proof of Theorem 4, and Γ = G ⊗ Ip.
We want z>[(µ2γ2 − 2γ)C>C + C̃>C̃]z = y>(µ2γ2−
2γ)ΓΓ>y − y>Iy ≤ 0. This amounts to requiring
(µ2γ2−2γ)ΓΓ>+I ≤ 0, that is, (µ2γ2−2γ)λi+1 ≤ 0
for all λi eigenvalues of GG> (since ΓΓ> has the same
eigenvalues of GG>). Then, for a given γ > γ∗, for all
λi ∈ σ(GG>) it must be

µ2 ≤ 2γλi − 1

γ2λi
= f(γ, λi).

Since γ > 1
λmin

, γλi > 1 for all i. Under this
assumption, f is a decreasing function of γ, while
it is always an increasing function of λi. Hence, the
maximum noise level is µ∗ =

√
2γλmin−1
γ2λmin

. Replacing
γ = 1

λmin
in (19) immediately provides (20). Moreover,

for a given µ, we must have µ2λiγ
2 − 2λiγ + 1 ≤ 0

for all λi ∈ σ(GG>); this is ensured if the inequality
holds for λi = λmin, which is true if γ satisfies (21).
Remark 6. Given a graph where each node has at

most one external connection, consider the stan-
dard incidence matrix H and the diagonal matrix
K ∈ ZN×N , with Kii = 1 if node i is externally
connected and Kii = 0 otherwise. Then, the gener-
alized Laplacian is given by GG> = K+HH>. In

particular, when all of the nodes have one external
connection, K is the identity matrix and λmin =
1. Hence, the worst-case bound (20) consistently
gives µ∗ = 1, ensuring the ideal performance.

4.2 Unknown and switching topologies

To ensure stability even when the network topology is
unknown and switching, a robust bound on γ∗ must
be determined. Henceforth we assume that the inci-
dence matrix, which fully characterizes the network
topology, depends on time: G = Gt.
Assumption 3. The incidence matrix Gt ∈ RN×mt ,

where N is the number of agents (nodes) and mt

is the number of arcs, belongs to a given family
G(N,nA), where nA is the number of anchors (i.e.,
connections with the external environment). The
current topology Gt is unknown to the agents.

Given N and nA, we seek a robust bound on
γ∗ ≥ 0 such that, if γ > γ∗, the network-decentralized
observer remains stable under arbitrary switching
Gt ∈ G(N,nA).

To this aim, requiring that all the matrices in
G(N,nA) have full rank is necessary due to the na-
ture of the problem, as discussed next. Any graph
can be uniquely partitioned into internally connected
components, so that, by means of a proper node and
arc ordering, its incidence matrix G can be written as

G = blockdiag{G1, . . . , Gk}. (22)

Proposition 5. The incidence matrix G has full row
rank if and only if each internally connected
component of the graph is externally connected
(namely, each block-matrix in (22) has at least one
column with a single non-zero entry).

Proof: Matrix G has full row rank if and only
if there is no row vector z = [z1 z2 . . . zk] 6= 0
such that zG = 0 (i.e., zG = 0 implies zi = 0
for all i). If each internally connected component is
externally connected, then, for all i, Gi has full row
rank, hence ziGi = 0 implies zi = 0. Conversely, if
one internally connected component is not externally
connected, then 1̄>Gi = 0 (where 1̄> = [1 1 . . . 1])
because each column of Gi has two non-zero entries
equal, respectively, to 1 and to −1.

If the graph has several internally connected com-
ponents, each of them must be externally connected;
otherwise, it may be subject to a “drift”. Hence, the
rank requirement is intrinsically necessary.

Real switching topologies (e.g., wireless sensor net-
works with unreliable communications due to interfer-
ence, packet losses or delays) may not meet the rank
requirement. Then, convergence can still be ensured
for the components that remain externally connected
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even under switching; for isolated components, con-
vergence is possible up to a constant vector with all
equal node components: v̄ = 1̄> ⊗ v. For instance, in
a localization problem, nodes belonging to an isolated
internally connected component can determine their
relative position only.
Theorem 6. Assume that A1 is not asymptotically sta-

ble. Then the following statements are equivalent.

(i) All the matrices in G(N,nA) have full rank N .
(ii) There exists γ∗ ≥ 0 such that, for γ > γ∗, the

network-decentralized observer is stable under
arbitrary switching Gt ∈ G(N,nA).

Proof: (i)⇒ (ii) follows from Theorem 4. Indeed,
if all the incidence matrices G ∈ G(N,nA) have full
row rank, all the corresponding Laplacian matrices
GG> have full row rank as well. Then, we can take

γ∗
.
= min
G∈G(N,nA)

1

λmin[GG>]
(23)

(note that there are finitely many G ∈ G(N,nA)) and
see, with the same machinery of the proof of Theo-
rem 4, that P as in (10) provides a common quadratic
Lyapunov function.

(ii) ⇒ (i). Assume by contradiction that some
G̃ ∈ G(N,nA) does not have full row rank. Then, if
Gt = G̃, we do not have asymptotic stability and there
exists at least one internally connected component of
the graph that is not externally connected. Since by
assumption A1 is not asymptotically stable, let us take
a (column) eigenvector z1 associated with an unstable
eigenvalue λ: A1z1 = λz1, with Re(λ) ≥ 0. Assume
that the internally connected component that is not
externally connected is the first one, having N1 nodes.
Let A be partitioned as A = blockdiag{Ā1, Ā2},
where Ā1 includes the N1 blocks associated with
the internally connected component that is not exter-
nally connected. Consider the non-zero vector z> =
[z>1 z>1 . . . z>1 0 0 . . . 0] = [z̄>1 0̄>], selecting the first
subsystem. Then, by proceeding exactly as in Theo-
rem 3, we have[

λI −A
C

]
z =

λI − Ā1 0
0 λI − Ā2

C̄1 C̄2

[z̄1

0̄

]
= 0.

Therefore the system has an unobservable unstable
eigenvalue, and the proof is over.

The previous result has a drawback: we need to
identify all possible topologies in the set G(N,nA).
However, we can provide a robust bound based on
the exclusive knowledge of the number of nodes.
Theorem 7. Let Gt be the incidence matrix of any

connected graph with N nodes. Then, stability is
ensured if

γ > γ∗
.
=

1

λ∗min(N)
= σmax(ΦN ). (24)

Proof: It follows from Theorems 6 and 1.

Corollary 3. Let Gt be the incidence matrix of any con-
nected graph with N ≤ N̄ nodes. Then, stability is
ensured if γ > 1/λ∗min(N̄) = σmax(ΦN̄ ).

Proof: It follows from the fact that σmax(ΦN ) is
an increasing function of N , as can be seen from its
expression (1) in Proposition 4.

Finally, there is an interesting case in which we can
show that any γ > 0 is suitable.

Proposition 6. Assume that the system is driftless,
namely A = 0, and that C1 has full column rank.
Then, if condition (i) of Theorem 6 is satisfied,
the network-decentralized observer with P = I is
stable for any γ > 0.

Proof: Since Gt has full row rank, Ct = G>t ⊗C1

has full column rank due to our assumption on C1.
The observer error equation is ė = −γC>t Cte, with
C>t Ct positive definite for all t. Therefore, all matri-
ces −γC>t Ct share the common quadratic Lyapunov
function V (e) = e>e.
The assumption on C1 in Proposition 6 is not restric-
tive: if C1 did not have full column rank, then (A1, C1)
would not be detectable, against Assumption 2.

5 APPLICATIONS

5.1 Localization of nodes

Consider a set of agents, each willing to establish its
own position ri based on some absolute information
(e.g., data from GPS), if available, and by exchanging
information with neighboring agents, as in Example 4.
For instance, agents in an unknown region may ex-
change information to construct a topographic map.
Two communicating agents measure their distance
and the angle formed by the segment between them
and an absolute reference direction. Clearly, some of
the agents must know their absolute position, hence
they must be connected to external anchors.

We can straightforwardly apply the theory and
take P = I , so that the observer gain is L = −γC>
and the error system ė = −γC>Ce is stable as long as
the graph is connected.

To highlight an interesting feature of the pro-
posed strategy, consider the effect of additive noise:
y = Cx − δ. The error equation associated with
the resulting network-decentralized observer is ė =
−γC>Ce+ γC>δ and, asymptotically, we have

e(∞) = (C>C)−1C>δ,

which is the least-square solution of

min ‖Ce− δ‖ = min ‖Cz − y‖.
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N \ p 10 20 30 40 50 60 70 80 90 100
30 0.754 0.246 0.14 0.10 0.078 0.063 0.053 0.047 0.041 0.036
40 0.446 0.162 0.101 0.072 0.056 0.046 0.039 0.034 0.029 0.027
50 0.310 0.124 0.077 0.055 0.044 0.036 0.030 0.026 0.023 0.021
60 0.238 0.100 0.062 0.046 0.036 0.029 0.025 0.022 0.019 0.017
70 0.193 0.083 0.053 0.039 0.030 0.025 0.021 0.018 0.016 0.014
80 0.163 0.071 0.045 0.033 0.026 0.023 0.019 0.016 0.014 0.013

TABLE 1
Example in Section 5.1: the index J as a function of the number of nodes N and of the connectivity degree p.

To quantify the error filtering property, we have ran-
domly generated networks with a varying connectiv-
ity degree. Since the maximum number of internal
connections (non-oriented arcs) for a network with
N nodes is mmax = N(N−1)

2 , the number of arcs is
chosen equal to m = N(N−1)

2
p

100 , where 0 < p ≤ 100
expresses the connectivity degree. To ensure connec-
tion, at each random experiment we have initially
placed N arcs corresponding to a chain, including
an external connection, while the remaining arcs have
been added by randomly selecting the departure and
arrival node. When, by chance, the two coincide, this
corresponds to an external connection. We have then
added the noise δ so that y = Cx−δ, with components
δk uniformly generated in [−1, 1], and computed the
index J = var(e)

var(δ) at steady state; ns = 1000 samples
have been considered. The results for γ = 1 (which
is suitable, in view of Proposition 6) are reported in
Table 1. As expected, noise rejection increases (hence,
J decreases) with connectivity. Less expectedly, noise
rejection increases with N , the number of nodes.

5.2 Local altitude detection
Consider 16 agents on a surface, communicating ac-
cording to the connection topology shown in Fig. 3.
Each agent exchanges information with its neighbors
to determine its own altitude. Two communicating
agents, having altitudes qi and qj , exchange infor-
mation about their estimated altitudes zi and zj , and
measure the difference yij = qi − qj . Being the agents
still, the dynamic equations are simply q̇i = 0 for
all i and, as in the previous example, our estimation
scheme provides the least-square solution.

The first agent only communicates with an anchor
(external environment) and could thus, in principle,
determine its own (absolute) altitude. However, the
agent is not aware of receiving an absolute altitude from
the anchor and processes the difference between its
own altitude and the external reference, assumed as
0, ignoring that it corresponds exactly to its own alti-
tude. Hence, the local observer of agent 1 will have a
transient as all of the others. Matrix C has 25 columns,
corresponding to all of the arcs in Fig. 3. Fig. 4 shows
the evolution of the decentralized altitude estimation,
with γ = 5 and a time horizon of T = 2 seconds.

Fig. 3. The altitude setup problem.
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Fig. 4. The true altitude (first frame) and the altitude detection
evolution at times 0, 0.01, 0.07, 0.48, 2 seconds (the snapshots
are not equidistant to evidence the initial part of the transient).

The first frame shows the actual altitude of the agents,
randomly generated between 0 and 1, while frames 2
to 6 represent the estimate evolution: the snapshots
are taken at non-equidistant times, to evidence the
transient behavior. The initial value of the observer
state is chosen with all altitudes equal to 1/2.

5.3 A network of moving agents
Consider the planar motion of agents representing
vehicles, or crafts, confined in a square: whenever an
agent reaches the boundary of the square, it bounces
back. The bounces are elastic (energy-preserving);
hence, whenever a bounce occurs, the component of
the agent speed that is orthogonal to the hit surface
instantaneously changes its sign. This represents a
discontinuity, equivalent to introducing disturbance
impulses ui = δi(t − tk) in the system. Due to these
persistent disturbances, the observer error cannot ex-
actly converge to zero. We assume uniform linear
motion (zero acceleration and constant speed), apart
from bounces instants, and we do not consider other
forces (such as friction).
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The agents are associated with the nodes of a
network representing the communication topology,
and want to reconstruct their absolute positions and
speeds under the following rules: (i) if two agents
i and j can communicate, they measure the relative
position ri − rj and communicate to each other their
own estimated positions r̂i and r̂j ; (ii) if an agent
can communicate with an anchor rA, it measures the
relative position ri − rA and receives the anchor posi-
tion r̂A = rA; (iii) the network topology is unknown
and may vary: communication is possible only if two
nodes are within a maximum distance ρmax.

Therefore, the incidence matrix Gσ belongs to a
family and the overall output matrix Cσ is such that
Cσ = [G>σ ⊗ C1]. The estimator (3) becomes

żi = A1zi + B1ui +
∑

j∈Oi

L1[(r̂i − r̂j)− (ri − rj)]

= A1zi + L1r̂i + B1ui︸ ︷︷ ︸
internal dynamics

+
∑

j∈Oi

L1

(rj − ri)︸ ︷︷ ︸
measured

− r̂j︸︷︷︸
received


 .

Since anchors are assumed to provide exact infor-
mation (r̂A = rA), a node i that communicates with an
anchor receives precisely its position: (rA− ri)− r̂A =
ri. However, the node is not aware of this fact and
uses the received information exactly as if it were
communicating with any other node.

The model for each moving agent is:

A1 =

[
02 I2
02 02

]
, B1 =

[
02

I2

]
, C1 =

[
I2 02

]
.

For each single subsystem, we consider the Kalman
gain L1 = −Q1C

>
1 , where Q1 = P−1

1 is the solution
of the Riccati equation

A1Q1 +Q1A
>
1 −Q1C

>
1 C1Q1 +M = 0

for a suitable M > 0. Our approach to network-
decentralized estimation provides the overall filter:

ż(t) = (A− γQC>C)z +Bu+ γQC>y.

In our simulations for a set of 8 agents, with
ρmax = 1.2, we have solved for each subsystem the
Riccati equation with M = I4, obtaining

Q1 =

1.41 0 1 0
0 1.41 0 1
1 0 1.41 0
0 1 0 1.41

 .
We have considered three cases, with 1, 2 and 3

anchors; the agents connected to the anchors are as-
sociated with the first components of the state vector.

The time evolution of the spacial coordinates of
the 8 agents in the case of 2 anchors, with γ = 10,
is reported in Fig. 5, left; the time evolution of the cor-
responding estimation error, in norm, is in Fig. 5, right.
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Fig. 6. The time evolution of the error norms (top) and of
1/λmin(t) (bottom) in the case of 1 (left column), 2 (middle
column) and 3 (right column) anchors.

The cases of 1, 2 and 3 anchors, with γ = 15, are com-
pared in Fig. 6 by plotting the time evolution of the
estimation error norm (top row) and of 1/λmin(t) (bot-
tom row), where λmin(t) is the smallest eigenvalue of
the generalized Laplacian matrix corresponding to the
interconnection configuration at time t. As expected,
the smallest eigenvalue has greater values when more
anchors are present. Note that the choice γ = 15 does
not guarantee that γ > 1/λmin at any time: stability
(hence, a negligible estimation error) is ensured no
matter how the interconnection topology changes during
the system evolution if γ > σmax(Φ8) ≈ 29.37.

6 CONCLUSIONS

To design robust network-decentralized observers,
such that local agents reconstruct their state by ex-
changing information with their neighbors only, the
smallest eigenvalue λmin of the generalized Laplacian
matrix of the interconnection graph plays a fundamen-
tal role. We have characterized the worst case value of
λmin and provided a non-conservative lower bound
for the observer gain that ensures robust stability even
with unknown or switching topologies. We have also
shown that, when the system and the measurements
are affected by noise, the maximum noise level that
can be tolerated depends again on λmin.

REFERENCES

[1] A. Abramo, F. Blanchini, L. Geretti and C. Savorgnan,
“A mixed convex/non-convex distributed localization ap-
proach for the deployment of indoor positioning services,”
IEEE Trans. Mob. Comput., vol. 7, no. 11, pp. 1325-1337, 2008.
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Birkhäuser, and he received the 2001

ASME Oil & Gas Application Committee Best Paper Award and
the 2002 IFAC survey paper prize for “Set Invariance in Control –
a survey” (Automatica, 1999).

Elisa Franco is an Assistant Professor
in Mechanical Engineering at UC River-
side. She received a Ph.D. in control and
dynamical systems from Caltech, and a
Ph.D. in automation and a M.S. in power
systems engineering from the University
of Trieste, Italy. Her research interests are
in the areas of DNA nanotechnology, bio-
logical feedback networks and distributed
control. She received the NSF CAREER
award in 2015, a Hellman fellowship and

a UC Regents fellowship in 2013.

Vahid Mardanlou received his B.Sc. and
M.Sc. degrees in electrical engineering
(majored in control) both from K. N. Toosi
University of Technology (Tehran, Iran) in
2008 and 2011. He is a Ph.D. student
at the department of Electrical and Com-
puter Engineering, UC Riverside. His re-
search interests include modeling of bio-
logical systems, distributed control, com-
plex systems and optimization.



15

Pier Luca Montessoro was born in
Torino (Italy) in 1961. He received the
Dr. Eng. degree in Electronic Engineering
from the Polytechnic of Turin in 1986. He
is full professor in Computer Science at
University of Udine and a member of the
IEEE. He was with the Italian National
Council for Scientific Research and scien-
tific consultant for the Digital Equipment
Corporation (later Compaq). His research
interests, after several years spent on

CAD systems for digital circuits design and multimedia systems
for teleteaching and e-learning, are currently focused on com-
puter networks and on pervasive computing.


