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Abstract

The paper presents and analyses some nonlinear continuous–time dynamic
models of social systems whose members, groups or individuals, may change
partners and/or opponents at any time, according to a greedy criterion. The
main structural properties of these models, which belong to the class of pos-
itive switching systems, are investigated with particular regard to the exis-
tence of solutions, their positivity, boundedness and asymptotic behaviour.
Simulations show how the cooperative or hostile attitudes of the participants
affect their yield.
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1. Introduction

Considerable effort has recently been devoted to the study and simulation
of systems consisting of interacting decision makers [34] and various kinds of
models have been adopted for this purpose [5]. A common feature of these
models is that each decision maker has its own goal that can depend on
the present, past or expected values of the system states. Usually, decisions
are made at well–defined time instants on the basis of partial or complete
information about the state of the system and its evolution.

In the following, we consider a class of variable–structure continuous–time
differential models that account fairly well for the behaviour of multi–agent
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systems characterised by the possibility of switching instantaneously from
one configuration to another, whenever an actor finds it more convenient to
change its ties, according to a greedy or shortsighted criterion. It is assumed
that the system state represents the strength of every participant and that
participants’ choices can take place at any time, depending on the state of
the competitors, and are put immediately into effect (provided a reciprocity
condition is satisfied in the case of alliances). This class of models adequately
describes the behaviour of many social networks, as well as political, academic
and sport contests, such as cycle and motor races. Therefore, in this paper
they are collectively called dynamical race models, even if they do not refer
to a specific application. In fact, the aim of the present contribution is to
analyse some important structural properties of the mathematical models,
such as the conditions ensuring the formation of coalitions, the positivity and
boundedness of the solutions.

The studies of networks whose overall structure evolves depending on
processes taking place at their nodes have been reviewed in [16, 28]. These
networks are referred to as coevolutionary networks, because local and global
dynamics interact. These networks play a fundamental role in the study of
choices at the basis of social behaviour [11]. Several papers have recently
analysed by means of graphs this kind of interactions either in general [35, 26]
or with reference to specific problems [14, 21]. In particular, it has ben
shown that partner switching from a lower reputation partner to a higher
reputation neighbouring partner [19, 20] or breaking bonds with uncoopera-
tive partners [31] can promote cooperation. In [1] the division of the payoff
among the coalition members is considered and it is shown that, eventually,
the coalition structure reaches an equilibrium in the case of myopic players’
strategies. In [18] the coalition formation is shown to reach an equilibrium,
under some hypotheses, also in the case of farsighted strategies. In [29] at-
tention has been focused on switching strategies in a two–person zero–sum
differential game of finite horizon, and in [27] on the benefits of partner
switching among self–interested agents in a resource–exchange environment.
It has been pointed out that allowing for assortative mating and defector
exclusion in dynamic partner updating [33] can be beneficial to cooperation
even when the cost associated with dynamism is taken into account in terms
of time and/or investment for finding and establishing new partnerships [6].

All of the aforementioned models can be broadly classified as game–theory
models [4, 25] with certain “events” occurring at discrete instants of time and
marking the rounds of the game (see also [24], a survey on game-theoretic
approaches to the study of coalition formation). Only after each round, the
strategy of the participants is updated, even if their interaction between con-
secutive updates is sometimes accounted for in an aggregated way, e.g., in
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terms of numbers of cooperators or defectors [14], or in a probabilistic way,
e.g., in terms of action and reaction probabilities [17]. Also, the coevolu-
tionary dynamics is investigated almost exclusively by means of numerical
simulation (see, e.g., [21] where a model borrowed from [13] is used) and
no theoretical results concerning the model structural properties, such as
stability and positivity, is provided.

The focus of this paper, instead, is on the rigorous analysis of the struc-
tural properties of a class of nonlinear continuous–time dynamic models de-
scribing the states of a (generic) number of competitors which may update
alliances or enmities at any instant of time depending on their current states.
However, to show the effects of different criteria for choosing partners and/or
defectors, a number of simulations will also be reported. To the present
purposes, the theory of switching systems proves particularly useful. As
is known, switching systems are currently attracting a great interest from
the control community [22, 9, 32] with particular regard to positive sys-
tems which can explain the evolution of various kinds of populations very
well [12, 7, 15, 8]. Most research efforts deal primarily with stability and
stabilizability. Here, instead, we are mainly concerned with network config-
uration and state evolution patterns.

The contributions of this paper can be summarized as follows.
(i) A fairly general family of nonlinear state models that describe the contest
among racers to improve their rankings is proposed.
(ii) Both the case in which only alliances between pairs of racers are allowed
(cooperative model) and the case in which the racers can obstruct the top–
ranked racer (competitive model) are considered.
(iii) It is proved that in the cooperative model at least one alliance is always
established, provided a reciprocity condition is satisfied.
(iv) It is shown that the system evolution remains positive even in the com-
petitive case.
(v) A mixed model, in which both alliances and obstructions are allowed, is
also examined.

The present paper extends and generalizes in many respects the results
in [10], where the racers’ attitude to partner switching depends linearly on the
competitors’ strength, which limits the applicability of the model to actual
systems.

2. Modelling

Consider a set of n independent racers (individuals or groups) whose aim
is to prevail over the others, and let the state xi of the i–th racer denote its
strength, whose evolution depends on: (i) its own internal dynamics, (ii) the
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interactions with the other racers, and (iii) an exogenous input representing
environmental resources. A racer may either associate with other racers to
increase its own strength or sabotage other racers to decrease their strength
and, consequently, increase the possibility of improving its own rank. In
principle, alliances or obstructions can involve more than two racers and be
either symmetric or asymmetric (in the sense that both racers share the same
disposition towards each other or not); however, for the sake of simplicity, in
the following it is assumed that: (i) each racer may have, at most, one ally,
and (ii) alliances are symmetric, while obstructions are not.

It is assumed that in the absence of interactions among racers the dy-
namics are described by

ẋ(t) = −Λx(t) + b, (1)

where x = [x1, . . . , xn]> ∈ Rn is the state vector representing the strength of
every racer, vector b = [b1, . . . , bn]> ∈ Rn represents an exogenous input, and
Λ = diag{λ1, . . . , λn} is a positive–definite diagonal matrix accounting for a
natural decline of the racers’ strength. In this case, each xi autonomously
reaches a constant steady–state value dependent only on bi and λi. In a more
general context, a time–varying input b(t) could be considered.

In the sequel, three models that account also for interactions are obtained
from the basic model (1). They correspond respectively to the cases in which
the dynamics are affected only by alliances (cooperative model), only by
obstructions (competitive model), and by both (mixed model). For reasons
that will be clear soon, the following standing assumption is made.

Assumption 1.

i 6= j ⇒ bi
λi
6= bj
λj
. (2)

Implication (2) means that, in the absence of interactions, different racers
reach different steady–state values.

2.1. Cooperative model

Consider first the case in which two racers can associate to increase their
strength. Obviously, the alliance takes place only if both racers are willing to
make it; in addition, it is assumed that the strength increment of either ally is
given by a function ϕ : Rn

+×Rn
+ → R+ that depends on the current strengths

of both. The attitude of the racers to make alliances at time t is modelled by
means of a Boolean matrix V (t), whose generic entry Vij(t) is 1 if, at time
t, racer i is willing to make an alliance with racer j, and 0 otherwise. For
simplicity, every racer is allowed to make one alliance only. Hence, every row
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of V (t) contains a single 1. Moreover, an alliance between racer i and racer
j takes place only if Vij(t) = Vji(t) = 1 (reciprocity condition). This means
that a racer willing to establish a collaboration with another racer k may
be rejected if racer k finds it more profitable to collaborate with a different
racer.

The state equations of such a cooperative model can then be written as

ẋi(t) = −λixi(t) +
n∑

j=1

Vij(t)Vji(t)ϕ(xi(t), xj(t)) + bi , i = 1, . . . , n . (3)

Since ϕ(xi, xj) ≥ 0, the sum in (3) is non–negative; therefore, based on a
greedy (but shortsighted) criterion, the optimal attitude of racer i towards
every other racer j 6= i is given by

Vij(t)=

{
1 if ϕ(xi(t), xj(t)) > ϕ(xi(t), xk(t)) for all k 6=j ,

0 otherwise.
(4)

In other words, the i–th racer would like to choose as its partner the racer
that currently maximizes the increase of its strength.

Remark 1. If for a pair of indices, say j1 and j2, and a time–instant t∗ we
have

ϕ(xi(t
∗), xj1(t

∗)) = ϕ(xi(t
∗), xj2(t

∗)) > ϕ(xi(t
∗), xk(t∗)) , (5)

for all k /∈ {j1, j2}, then, due to the strict inequality in (4), the i–th racer will
not be willing to make any alliance at time t∗, even though, given the positivity
of ϕ, any alliance would be profitable. However, due to Assumption 1, the
evolutions of xj1 and xj2 are different. Hence, equation (5) is no longer
satisfied immediately after t∗, and a possible ally will be chosen without delay.

In view of Remark 1, it is assumed that no undecidable situation (stall)
occurs.

2.2. Competitive model

Model (3) applies to a context in which cooperation is always beneficial,
e.g., because unlimited resources prevent the outbreak of conflicts. To de-
scribe a situation in which resources are limited and the strength of a racer
is seen as a menace by the other racers, resort must be made to a differ-
ent model. Here, attention is limited to a competitive model in which the
strongest racer (which may not be unique) is sabotaged by all the other rac-
ers and the rate of change of its strength contains a sum of negative terms
that depend on the current strengths of every other racer.
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To this purpose, let H(t) denote the set indexing the strongest racers at
time t, i.e.,

H(t) = arg max
k
xk(t), (6)

and let S : Rn
+ × Rn

+ → R+ be a function accounting for the extent of the
damage that xj can inflict on xi. The state equations of the aforementioned
competitive model can thus be written as

ẋi(t) = −λixi(t)−
∑
j 6=i

S(xi(t), xj(t)) + bi (7)

for i ∈ H(t), and
ẋi(t) = −λixi(t) + bi (8)

for all i /∈ H(t).

2.3. Mixed model

Consider finally a situation in which alliances and obstructions coexist.
Again, let H(t) denote the set indexing the strongest racer at time t, and
introduce the symbol Fi to indicate the set of indices associated with the
racers that do not obstruct racer i ∈ H(t). Obviously, if at time t the j–
th racer is allied with i, it will not make any obstruction. Recalling the
assumption that each racer can enter at most one pairwise alliance, we have

Fi(t) =

{
{i, j} if Vij(t) = Vji(t) = 1 ,

{i} otherwise.
(9)

The dynamic model of this system can thus be written as

ẋi(t) = −λixi(t)−
∑

j /∈Fi(t)

S(xi(t), xj(t))+
n∑

j=1

Vij(t)Vji(t)ϕ(xi(t), xj(t))+bi

(10)

for i ∈ H(t), while, for all i /∈ H(t),

ẋi(t) = −λixi(t) +
n∑

j=1

Vij(t)Vji(t)ϕ(xi(t), xj(t)) + bi . (11)
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3. Theoretical Results

This section analyses the main properties of the models described in Sec-
tion 2, which are all full–fledged switching systems. The switching nature of
the cooperative model depends on the choice of alliances and, in particular,
on the attitude of agent i towards agent j, i.e., the Boolean variable Vij(t)
defined in (4). Since the state vector evolves in time, Vij may switch at any
instant from the value 1 to the value 0, or vice versa. As a consequence, the
topology of the network of alliances changes too. Analogous considerations
apply to both the competitive and the mixed model, since the set of strongest
racers may change in time.

Remark 2. The right–hand sides of the differential equations of all of the
aforementioned models are discontinuous. Hence, their solution must be in-
tended in the sense of Filippov by resorting to a differential inclusion formu-
lation (see for instance [2]). Consequently, chattering phenomena and sliding
trajectories may occur, as shown by the examples in the following sections.

3.1. System positivity

It is proved now that the entire state trajectories starting from a posi-
tive initial state lie in the positive orthant for all the models considered in
Section 2, which qualifies them as positive systems.

Proposition 1. If xi(0) ≥ 0 and bi ≥ 0, i = 1, . . . , n, then model (3),
model (7)–(8) and model (10)–(11) are positive systems, i.e., xi(t) ≥ 0 for
all t ≥ 0. �

Proof. Consider first the cooperative model (3) and suppose that xi(t1) <
0 for some i and some t1 > 0. Since xi(0) ≥ 0 and the trajectories are
continuous, xi(t1) may be negative only if there exists a time instant t2 ∈
[0, t1) such that xi(t2) = 0 and ẋi(t2) < 0. However, for xi(t2) = 0, equation
(3) gives

ẋi(t2) =
n∑

j=1

Vij(t2)Vji(t2)ϕ(xi(t2), xj(t2)) + bi ≥ bi ≥ 0. (12)

Then the proposition is proved for the cooperative model (3). Also, it is
immediately seen that, if it holds for the competitive model (7)–(8), it holds
for the mixed model (10)–(11) as well. Therefore, it is sufficient to prove it
for the model (7)–(8). By contradiction, assume that (starting from an initial
condition such that xi(0) ≥ 0 for i = 1, . . . , n) there exists t̄ such that, for
some i, xi(t̄) = 0 and xi(t) < 0 in a right neighborhood of t̄. Let Z(t̄) denote
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the set of all indices i for which xi(t̄) = 0 and let |Z(t̄)| denote its cardinality
(greater than 0 by assumption). If |Z(t̄)| < n, then the obstructed contenders
are associated with indices not belonging to Z(t̄), while the dynamic equation
associated with each i ∈ Z(t̄) (see (8)) is ẋi(t̄) = bi; hence, since bi ≥ 0, no
zero crossing is possible. On the other hand, if |Z(t̄)| = n, then x(t̄) = 0.
In this case no contender is obstructed and the dynamics of all contenders is
described by (8). Therefore ẋi(t̄) = bi ≥ 0 for all i ∈ {1, . . . , n}; again, no
zero crossing is possible and the state variables cannot become negative.

�

3.2. Existence of alliances

Proposition 2. Consider equations (3) and (4). If there exist functions
θ : R+×R+ → R, symmetric with respect to both its arguments, ψ : R+ → R
and ξ : R+ → R such that

ϕ(xi, xj) = θ(xi, xj)ψ(xi)ξ(xj), (13)

then for almost all1 t there exist i and j such that Vij(t) = 1. �

Proof Consider first the simple case of three racers and suppose, by contra-
diction, that no alliance takes place in a whole time-interval [t1, t2], so that
Vij(t) = 0, ∀i = 1 . . . n, ∀j = 1 . . . n, and ∀t ∈ [t1, t2]. In this case, excluding
undecidable situations (see Remark 1) which, in view of Assumption 1, can
occur only for isolated time instants and have previously been ruled out, if a
racer i wishes to associate with racer j, the latter will reject the proposal be-
cause an alliance with the third racer k would be more profitable. The same
consideration applies to the other two possible pairs of racers, i.e., j and k
and, respectively, k and i. According to (4), the aforementioned sequence of
intentions correspond to

θ(xi, xj)ψ(xi)ξ(xj) > θ(xi, xk)ψ(xi)ξ(xk) , (14)

θ(xj, xk)ψ(xj)ξ(xk) > θ(xj, xi)ψ(xj)ξ(xi) , (15)

θ(xk, xi)ψ(xk)ξ(xi) > θ(xk, xj)ψ(xk)ξ(xj) . (16)

Without loss of generality, we may assume θ, ψ and ξ to be positive. Hence,
multiplying side by side all of the above inequalities we obtain

θ(xi, xj)θ(xj, xk)θ(xk, xi)ψ(xi)ψ(xj)ψ(xk)ξ(xi)ξ(xk)ξ(xj) >

> θ(xi, xk)θ(xj, xi)θ(xk, xj)ψ(xi)ψ(xj)ψ(xk)ξ(xk)ξ(xi)ξ(xj) , (17)

1Except, possibly, for some isolated time instants (see Remark 1).
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which, given the symmetry of θ, is a contradiction. It follows that at least
one alliance must be formed.
The same argument holds in the case of more than three racers. Indeed, as-
sume, by contradiction, that each racer seeks alliance with (for short, s.a.w.)
another racer who declines, according to

xi1 s.a.w. xi2 s.a.w. xi3 . . . s.a.w. xin s.a.w. xin+1 .

Now, this chain must exhibit a cycle, since the number of nodes is finite.
Without loss of generality, assume that the cycle has length k and the racers
involved are

xi1 s.a.w. xi2 . . . s.a.w. xik s.a.w. xi1

Considering inequalities similar to those written above for the three–node
case, we would again arrive at a contradiction. �

Observe that, if θ is not symmetric, then the thesis of Proposition 2 does
not hold (a counterexample in the linear case is reported in [10]).

3.3. Boundedness of the trajectories

To ensure the boundedness of the trajectories, it is necessary to assume
that the natural decline of every racer (clearly related to the negative values
−λi) is sufficiently large to compensate for the positive contributions afforded
by the possible alliances, which indeed occurs under a mild assumption.

Definition 1. A function f : R+ × R+ → R+ is underlinear of degree α if,
for all x ∈ R+ and all y ∈ R+,

ϕ(x, y) ≤ µx+ νy + c , (18)

for some µ ≥ 0, ν ≥ 0 and c ≥ 0 such that µ+ ν ≤ α.

Proposition 3. Consider system (10)–(11). Let β , mini λi. If ϕ is un-
derlinear of degree β, then the trajectory x(t) is bounded, i.e., there exists a
compact set S such that x(t) ∈ S, ∀t ≥ 0. �

Proof In view of the positivity of the system trajectories, consider the func-
tion V (x) = 1>x, which is copositive [23]. Its time-derivative along the
trajectory of the system is

V̇ = −Λ>x + 1>b +
n∑

i,j=1

VijVjiϕ(xi, xj)−
∑

i∈H(t)

∑
j /∈Fi(t)

S(xi, xj). (19)
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If racers i1 and i2 are allied, their alliance affects both the time–variation of
xi1 and the time–variation of xi2 . Hence, the first summation in (19) must
contain both the term ϕ(xi1 , xi2) and the term ϕ(xi2 , xi1). Moreover, in view
of the underlinearity of ϕ we have

ϕ(xi1 , xi2) + ϕ(xi2 , xi1) ≤ (µ+ ν)(xi1 + xi2) + 2c . (20)

Taking (20) into account, from (19) we get

V̇ ≤ −Λ>x + 1>b +
n∑

i,j=1

VijVjiϕ(xi, xj) ≤

≤ −Λ>x + 1>b + µ1>x + ν1>x + nc ≤ −ρ1>x + 1>b + nc (21)

for some ρ > 0. If γ > 0 is large enough to guarantee that−ργ+1>b+nc < 0,
then the trajectories of the switching system are ultimately globally bounded
in the set S = {x ∈ Rn

+ : 1>x ≤ γ}. �

3.4. Profitability of obstructions
A natural question arising from the previous considerations is whether

obstructions can be profitable. We have seen that the contribution of an
alliance to the dynamics of the allies is always positive; on the other hand,
an obstruction provides a negative contribution to the obstructed racer, but
no direct positive contribution to the obstructing one. Hence, one might
ask whether, being adverse to a racer (in this case, to the strongest racer),
an obstruction could be profitable to another racer. The answer is yes, as
shown by the simulations in Figure 1 that refer to a pool of 5 racers: the
two scenarios are characterised by the same matrix Λ = 2I, vector b =
[0.4387 0.3816 0.7655 0.7952 0.1869]> and initial condition x(0) =
[0.4898 0.4456 0.6463 0.7094 0.7547]>. The difference between the two
lies in the fact that in the scenario of Figure 1 (a) only alliances are allowed,
while in that of Figure 1 (b) both alliances and obstructions are possible.
It is seen that, at least for racer 3, whose trajectory is plotted with a bold
line, obstructing the strongest racer is indeed profitable. In fact, not only
the ranking of the racer improves with respect to its competitors, but also its
own strength increases: after six time units it is below 0.4 in the case with
alliances only and above 0.6 in the case with both alliances and obstructions.
This happens because, while in the cooperative case racer 3 is never involved
in any alliance, in the mixed case the topology of the network of alliances
switches at a certain time instant: due to the obstructions, which decrease
the strength of the top–ranked racer, the racer that was initially allied with
it suddenly finds the alliance with racer 3 more profitable. Thanks to this
partnership, the strength of racer 3 starts increasing and, eventually, racer 3
is fighting for supremacy (while in the cooperative case it comes third).
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Figure 1: Evolution of the states of the five racers considered in Section 3.4 when: (a)
only alliances are allowed; (b) both alliances and obstructions are allowed.

4. Examples of applications

Three possible applications of the nonlinear models described in Section 2
are outlined next.

4.1. Commercial partnerships

Consider the case in which two companies ally with each other to con-
solidate their presence on the market. Usually, in this kind of agreement
the amount of money that the i-th company invests in the alliance is pro-
portional to its own economic strength xi. Similarly, also the amount of
money (strength) that it receives back from the alliance increases with its
own strength. Instead, the total profit afforded by the alliance is propor-
tional to the total investment. This situation can be modelled by choosing
G = γ(xi + xj) with γ > 0 and

ϕ(xi, xj) = xiG = xi γ(xi + xj) . (22)

Note that this model belongs to the class of systems for which Proposition 2
holds. In fact we may choose θ(xi, xj) = xi + xj, ψ(xi) = γxi and ξ(xj) = 1.

4.2. Market competition

Suppose that the market of a specific product is monopolistic until when
a new competitor enters the market, causing a loss of profits to the formerly
monopolistic company. This loss increases both with the strength of the new
competitor (the bigger it is, the larger the percentage of market it gains) and
with the strength of the formerly monopolistic company. It seems reasonable
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to make this loss depend on the product of these two quantities. Hence, the
state x1 of the stronger previously monopolistic company can be modelled as

ẋ1 = −λ1x1 − x1x2 + b1 , (23)

where x2 denotes the state of the newly entered company.

4.3. Buffer systems

Consider a production system and let xi represent the “work to be done”
by racer xi. A strategy for distributing the work among the racers (a well–
known problem in the context of hybrid systems [30]) can be described by
means of the competitive model presented in Subsection 2.2. For the sake of
simplicity, we consider only a two–racer system and let xi denote the content
of the buffer associated with the i-th racer. In many practical situations, the
time–decay of the buffer content is proportional to the content itself 2. Such
a decay can be modelled with a linear term −λixi for some positive constant
λi. The input to the buffer can be accounted for by a further constant term
bi. Finally, it is reasonable to assume that, when the buffer content xi is
larger than xj, the j-th racer will help the i-th racer in doing his job; this
behaviour could be modelled by adding to the rate of change of xi a negative
term of the form

− σij
1 + xj

(24)

with

σij =

{
σ̄i , if xi > xj ,

0 , otherwise,

for some positive σ̄i. The maximum of (24) occurs when xj = 0, i.e., when
the j-th racer has nothing to do. Function (24) decreases when xj increases,
and is zero when xj > xi since in this case the j-th racer is the one who
needs help. This scenario can be represented as in Figure 2: Σ1 denotes the
region where σ12 = σ̄1 > 0 and σ21 = 0, while Σ2 denotes the region where
σ12 = σ̄2 > 0 and σ12 = 0. The model resulting from the above considerations
is then

ẋ1 = −λ1x1 −
σ12

1 + x2
+ b1 , (25)

ẋ2 = −λ2x2 −
σ21

1 + x1
+ b2 . (26)

2For example, in the process of hiring workers during the harvesting of a particular crop,
the number of hired workers, and hence the work done, is proportional to the amount of
crop to be harvested.
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Figure 2: The case of two racers processing the content of two buffers.

Note that for x2 = 0 equation (25) reduces to ẋ1 = −λ1x1− σ12 + b1. There-
fore, to prevent x1 from becoming negative, σ̄1 must be less than b1. For the
same reason, σ̄2 must be less than b2.

5. Simulations

This section shows the simulation results of three nonlinear switching
models that describe the interactions among five racers in the presence of
(i) alliances only (cooperative model), (ii) obstructions only (competitive
model), and (iii) both alliances and obstructions (mixed model). In all models
Λ = 2I.

In the cooperative and mixed cases, the alliances are modelled by means
of one of the following functions:

1. ϕ(xi, xj) =
xi

xi + xj
: “selfish partnership”, in which each of the allies

increases its strength according to the fraction it has invested in the
partnership;

2. ϕ(xi, xj) =
xj

xi + xj
: “altruistic partnership”, in which each of the allies

increases its strength according to the fraction invested by its ally;

3. ϕ(xi, xj) = xi(xi + xj): “commercial partnership” as in Section 4.1.

Note that Proposition 2 holds in all cases so that at least one alliance always
forms. Since functions 1 and 2 are underlinear of degree 2 (and λi = 2, ∀i),
the system trajectories are expected to be bounded in the first two cases.
Instead, the third choice leads to a finite escape time, as shown next.

The obstructions in the competitive and mixed cases are modelled by
means of the function:

S(xi, xj) =
xj

xi + xj
,
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which is increasing with the strength of the obstructing racer and decreasing
with the strength of the obstructed one.

Figures 3, 4 and 5 show the system evolution for different initial conditions
and vectors b (defined in the corresponding captions) in the case of alliances
of type 1, 2 and 3 above, with or without obstructions. Figure 6 shows the
system evolution when only obstructions are present. As already observed,
the trajectories are always bounded, except for the case of alliances of type
3 in which the system exhibits a finite escape time.

The switching nature of the systems is revealed by the discontinuities in
the derivative of the trajectories, which occur whenever alliances or enmities
change. As observed in Remark 2, in some cases two or more racers’ states
evolve along a sliding surface characterised by a high switching frequency,
since a group of racers is continually fighting for supremacy. This behaviour
can arise not only in the presence of obstructions, as is the case for linear
systems [10]. Indeed, Figures 4 (b) and 5 (b) show that chattering can appear
also when only alliances are permitted, provided they are of type 1 (selfish
partnerships). This fact has a simple explanation. When the strength of the
ally increases, functions 2 and 3 increase, while function 1 decreases. Hence,
if the strength of the ally exceeds a certain threshold, breaking the bond
and finding a different ally may be more profitable; however, after the end
of the alliance, the previous ally gets weaker and soon the alliance becomes
profitable again. Note, however, that, even in the case of alliances of type
1, sustained chattering phenomena do not necessarily arise, as shown by
Figure 3 (b).

Usually, the racers’ strength is higher in the case of alliances only, lower
in the case of both alliances and obstructions, and even lower in the case of
obstructions only. However, this is not a general rule, as already observed
in Section 3.4. Figures 4 (c) and (d) show that, if only alliances are allowed
as in case (d), racer 1 (blue) has the third position in the ranking and its
strength is around 0.4 after 6 time units; when also obstructions are allowed,
as in case (c), racer 1 improves both its ranking (it is eventually fighting for
supremacy with racer 5) and its strength which goes above 0.6.

6. Conclusions

A family of nonlinear switching models describing the behaviour of a
set of greedy racers striving for supremacy has been presented. Both the
case in which only alliances are allowed and the case in which obstructing
actions towards the strongest competitor are exerted, have been considered.
A mixed model, in which both alliances and obstructions are allowed, has
been examined as well.
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It has been proved that: (i) all systems are positive, (ii) at least one
alliance is always established under mild assumptions, and (iii) the solutions
are ultimately bounded for some reasonable choice of the functions modelling
the alliance criterion. It has also been shown that obstructions may be
profitable to obstructing racers.

Simulations have pointed out unexpected effects of the competition rules
on the race outcome. For instance, not only the rank of an obstructing racer
may improve due to obstructions, but also its strength.

Several extensions of this work can be conceived, with particular regard
to the allowed maximal number of allies and rivals and to the kind of (lin-
ear and nonlinear) interactions. The possibility of negotiating an alliance in
the absence of a reciprocal advantage could be considered as well, since a
racer might be willing to sacrifice a part of its profit to obtain a strategic
partnership. In addition, different criteria for deciding which are the most
convenient rivals could be taken into account: for instance, each racer could
obstruct the competitor which is coming immediately before in the ranking.
Also, the decision about possible allies could be based on a less myopic crite-
rion: for instance, a racer’s goal could be that of maximising its steady–state,
or long–term, strength instead of its current strength variation.
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(a) Obstructions and alliances 1.
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(b) Only alliances 1.
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(c) Obstructions and alliances 2.
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(d) Only alliances 2.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

State evolution

Time

P
o

w
e

r

(e) Obstructions and alliances 3.
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(f) Only alliances 3.

Figure 3: Evolution of the states of the five racers considered in Sec-
tion 5: 1-blue, 2-cyan, 3-green, 4-yellow, 5-red. The system is started
from x(0) = [0.3500 0.1966 0.2511 0.6160 0.4733]> with b =
[0.8407 0.2543 0.8143 0.2435 0.9293]>.
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(b) Only alliances 1.
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(c) Obstructions and alliances 2.
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Figure 4: Evolution of the states of the five racers considered in Sec-
tion 5: 1-blue, 2-cyan, 3-green, 4-yellow, 5-red. The system is started
from x(0) = [0.6665 0.1781 0.1280 0.9991 0.1711]> with b =
[0.3015 0.7011 0.6663 0.5391 0.6981]>.
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(a) Obstructions and alliances 1.
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(b) Only alliances 1.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

State evolution

Time

P
o

w
e

r

(c) Obstructions and alliances 2.
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Figure 5: Evolution of the states of the five racers considered in Sec-
tion 5: 1-blue, 2-cyan, 3-green, 4-yellow, 5-red. The system is started
from x(0) = [0.7060 0.0318 0.2769 0.0462 0.0971]> with b =
[0.8235 0.6948 0.3171 0.9502 0.0344]>.
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(a) x(0) and b as in Figure 3
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(b) x(0) and b as in Figure 4
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(c) x(0) and b as in Figure 5

Figure 6: Evolution of the states of the five racers considered in Section 5, in the case of
obstructions only: 1-blue, 2-cyan, 3-green, 4-yellow, 5-red.
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