
Bridging Robustness and Resilience
for Dynamical Systems in Nature ⋆

Daniele Proverbio ∗ Rami Katz ∗ Giulia Giordano ∗

∗ Department of Industrial Engineering, University of Trento, 38123
Trento, Italy (e-mail: daniele.proverbio@unitn.it;
ramkatsee@gmail.com; giulia.giordano@unitn.it).

Abstract: Biological systems have evolved to maintain properties that are crucial for survival.
Robustness and resilience are associated with a system’s ability to preserve its functions despite
uncertainties, fluctuations and perturbations, both intrinsic and extrinsic. However, due to the
multidisciplinary nature of the research topic, numerous competing definitions of these concepts
coexist and often lack a rigorous control-theoretic formulation. Here, we consider a family of
ODE systems consisting of stochastic perturbations of a nominal deterministic system and
we introduce possible formal definitions of resilience of such a family of systems aimed at
probabilistically quantifying its ability to preserve a prescribed attractor. We show that our
proposed definitions generalise the notion of probabilistic robustness, and we demonstrate their
efficacy when applied to widely used models in biology.
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1. INTRODUCTION AND MOTIVATION

Natural systems are characterised by a remarkable com-
plexity and, at the same time, by an astounding robust-
ness, in spite of huge uncertainties, variability, or en-
vironmental fluctuations. Structural analysis (Blanchini
and Giordano, 2021; Blanchini et al., 2012) and robust-
ness analysis (Barmish, 1994) aim at guaranteeing that
a property is preserved by a whole family of uncertain
systems independent of parameter values, or for all param-
eter values within a specified set, respectively. However,
some properties of interest hold neither structurally nor
robustly, but with high probability, and in such cases struc-
tural/robust approaches just provide a negative qualitative
outcome and cannot quantify to which degree the property
holds. Also, systems in nature are subject not only to
parametric uncertainties, but also to stochastic pertur-
bations, which may yield regime shifts (Scheffer et al.,
2012), mostly understood as shifts among basins of attrac-
tion (Ashwin et al., 2012). To address these phenomena,
multiple concepts of resilience for networks and dynamical
systems have been introduced (Liu et al., 2022), but formal
definitions are so far lacking in the literature. Resilience
indicators (Dakos et al., 2015; Kuehn, 2011) have also been
proposed to quantify the ability of a system to withstand
perturbations, while maintaining properties of a given at-
tractor. Their design is still relatively at its infancy and
different methods have been suggested recently (Liu et al.,
2022; Proverbio et al., 2023). However, most indicators
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rely on simplistic surrogate models and lack rigorous and
widely applicable mathematical definitions.
To address these open questions, we introduce formal
definitions of resilience aimed at quantifying the probabil-
ity that the behaviour of a nominal deterministic system
with respect to a prescribed attractor is preserved under
stochastic perturbations. We further propose a formal re-
silience indicator in the form of an attraction time. Our
definitions of resilience generalise the notion of probabilis-
tic robustness, in the spirit of Tempo et al. (2013), by
considering dynamical disturbances on top of parametric
uncertainty, and enable a quantitative assessment of the
persistence of system properties, beyond qualitative an-
swers offered by robustness analysis.
Finally, we showcase the efficacy of our proposed defini-
tions in applications to models of biological systems: a
reaction-diffusion system for plankton dynamics, exhibit-
ing Turing patterns, and a bistable gene regulation model.

1.1 The need for resilience: A biological example

To motivate the need for a notion of resilience that
differs from that of robustness, we resort to a well-known
biological example. Consider the system

ẋ = fG(x) = −x+ a
xh

1 + xh
+ k, x(0) = x0, (1)

where x(t) ∈ R, t ∈ [0,∞), represents the concentration
of a biochemical species. This is a particular case of a
gene regulatory network system, where only activating
interactions are assumed to be present in the network,
and can be obtained by considering Hill-function dynamics
in the full network and applying dimension reduction
techniques such as degree-weighted dimension reduction
(Gao et al., 2016). System (1) can be associated with
the potential function V (x), a scalar function such that
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Fig. 1. Potential function V (x) for system (1), with h = 2 and
k = 0.1 ∈ (0, 1

3
√
3
), for different choices of a. The system

equilibria (stable, full circle; unstable, empty circle) are shown
for the case a = 2.

fG(x) = −∇V (x). The potential is useful to visualise the
behaviour of the solutions, in a Lyapunov-like fashion, by
studying V (x(t;x0)), i.e., the potential along the solution
emanating from x(0) = x0. The potential V (x) for system
(1) is shown in Fig. 1 for different choices of a.

Let us consider different combinations of the parameters
a, h and k in (1). If h = 1, the Hill function reduces
to a Michaelis-Menten function, and then the system is
robustly stable (see Definition 1 in the following). In fact,
regardless of how the values of the parameters a and k
are chosen in the biologically meaningful range, there is a
unique globally asymptotically stable equilibrium:

x1 =
k + a− 1 +

√
(k + a− 1)2 + 4k

2
, ∀a ≥ 0, k ≥ 0 .

As shown by Blanchini et al. (2023), this result is valid
for any gene regulatory network that exclusively involves
Michaelis-Menten interactions, regardless of the parameter
values and of the interaction topology. Conversely, if h ≥ 2,
robust stability no longer holds, because the system may
be bistable, and admit two locally asymptotically stable
equilibria. In fact, when h ≥ 2 and k ∈ (0, 1

3
√
3
), the system

may admit three equilibria, of which two (x1 and x3) are
stable and one (x2) is unstable. The system equilibria
depend on a: there exist 0 < ac,1 < ac,2 such that for
a ∈ (ac,1, ac,2) the system is bistable, leading to two
contrasting regimes associated with two different stable
attractors; see Fig. 2.

Therefore, for a ∈ (ac,1, ac,2) and k ∈ (0, 1
3
√
3
) the system

does not have a unique globally attractive equilibrium
when h ≥ 2. However, although the qualitative robustness
analysis always yields a negative answer, the behaviour
of the system when subject to disturbances changes for
different values of h ≥ 2. As shown in Fig. 3, varying
h ∈ (2,∞) alters the profile of the potential function as-
sociated with the system. In particular, it alters the shape
of the basins of attraction around the equilibria, thereby
modifying the resilience property of the locally asymptot-
ically stable equilibria, understood as the system’s ability
to reject disturbances while remaining close to equilibrium
states, which is necessary for prompt responses to external
stimuli and survival of biological systems (Proverbio et al.,
2022). A purely qualitative assessment of the robustness
of system (1) with respect to the existence of a unique
globally asymptotically stable equilibrium does not cap-

x1

x1

x3

x3

x2

x2

Fig. 2. Top: the intersections of the two functions f1(x) = axh/(1+
xh) and f2(x) = x − k correspond to setting fG(x) = 0
and identify the equilibria of system (1); we set h = 2 and
k = 0.1, and vary a. At the critical values a = ac,1 ≈ 1.77 and
a = ac,2 ≈ 2.63, f1 is tangent to f2; the bistable region a ∈
(ac,1, ac,2) is shaded. Bottom: the phase space for system (1),
with stable (full circle) and unstable (empty circle) equilibria
and vector flows (arrows), for a = 2, h = 2 and k = 0.1.
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Fig. 3. Potential function V (x) for system (1), with k = 0.1 ∈
(0, 1

3
√
3
) and a = 2 ∈ (ac,1, ac,2), for different choices of h ≥ 2.

ture all possible attractor configurations for the system,
and a quantitative assessment of the persistence of system
properties in the face of disturbances is thus required. To
complement robustness, the notion of resilience has been
recently introduced in systems biology and network science
(Liu et al., 2022). Yet, to date, the numerous definitions of
resilience introduced in the literature are mostly heuristic
and do not rely on rigorous mathematical formulations.

In this paper, we propose the first formal definitions of
resilience for a class of autonomous ODE systems subject
to stochastic noise, and demonstrate their applicability to
the analysis of systems in the life sciences.

2. ROBUSTNESS VS. RESILIENCE

2.1 The considered class of systems

We consider a family of systems F = {Gλ}λ∈I subject to
the following assumptions:

(1) There exists λ0 ∈ I such that Gλ0
is a deterministic

system corresponding to an autonomous ODE system

ẋ = f(x), x(0) = x0, t ≥ 0. (2)

Here, x ∈ U ⊆ Rn, U is open and f : U → Rn is
smooth. The system Gλ0 will henceforth be called the
nominal (deterministic) system.

(2) For λ ∈ I \ {λ0}, Gλ is obtained from Gλ0 via the
addition of the stochastic stationary noise term ηλ to
the right hand side of the ODE in (2). Hence, the state
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of Gλ at time t > 0 is a random variable, defined on
a suitable probability space with probability Pλ that
is induced by the stochastic noise ηλ.

Throughout the paper, we assume that the solutions to all
the systems in the family F satisfy existence, uniqueness
and extensibility to all times, in the appropriate spaces.

Let A be a closed attractor of Gλ0 and B(A) = {χ ∈
U : limt→∞ dist(x(t;χ, 0), A) = 0} the associated basin of
attraction, where x(t;χ, 0) denotes the trajectory of the
nominal system Gλ0 , with ηλ0 ≡ 0, starting from initial
condition χ. Given λ ∈ I \ {λ0}, a natural question to
ask is whether the attractor-basin pair (A,B(A)) pre-
serves its properties for some/all the systems in F . Before
proceeding, we examine two examples from the biological
literature.

Example 1. (Turing patterns). The ODE system (13) in
(Bashkirtseva et al., 2021), not reported here for brevity,
is the finite-difference semi-discretised stochastic ODE
version of the following Levin–Segel population equations
with diffusion, which are a common model for pattern
formation:

ut = au+ eu2 − buv +Duuxx + λξ(t, x)
vt = cuv − dv2 +Dvvxx + λη(t, x)

(3)

with zero-flux boundary conditions

ux(0, 0) = ux(0, L) = vx(0, 0) = vx(0, L) = 0.

System (3) is composed of two coupled one-dimensional
nonlinear PDEs, where the state variables u(t, x) and
v(t, x) represent the density of phytoplankton and herbi-
vore, x ∈ [0, L], Du and Dv are the diffusion coefficients,
the parameters a, b, c, d and e are positive, λ is the noise
intensity, while ξ(t, x) and η(t, x) are uncorrelated white
Gaussian noise terms. Given initial conditions for the
deterministic model (3) with λ = 0, its solutions exhibit
pattern formation (meaning, convergence to periodic wave-
like profiles of the graphs of u(t, ·) and v(t, ·) as t → ∞),
provided that the following inequalities hold:

Du

Dv
<

(√
b

d
−
√

b

d
− e

c

)2

, bc > ed. (4)

For λ > 0, the stochastic solutions of the system venture
away from the deterministic pattern-attractor and fall
around it with an appropriate probability distribution.

Here, a family F is obtained as follows. Assuming that
the parameters satisfy (4), let I = [0, λ∗) be an interval
of noise intensities that are of interest, and λ0 = 0. The
systems Gλ, λ ∈ I, correspond to the ODEs obtained
from discretising (3) on a sufficiently dense spatial grid.
The attractor A is chosen as the pattern generated by G0,
with corresponding basin of attraction B(A).

Example 2. (Gene regulatory network). For the biological
example of Section 1.1, the family of systems F = {Gλ},
where λ ∈ I = [0, λ∗), λ∗ > 0, is such that Gλ, λ ∈ I, is
given by the stochastic ODE

ẋ = fG(x) + λη(t) = −x+ a
xh

1 + xh
+ k + λη(t) , (5)

where h ≥ 2, a ∈ (ac,1, ac,2) and η(t) is an uncorrelated
white noise with intensity λ ∈ I. We set λ0 = 0, while
the attractor A is chosen as a singleton containing one of
the two locally stable equilibrium points of G0, with B(A)
being the corresponding basin of attraction.

2.2 Definitions of robustness and resilience

A robust property, and a structural property, for the family
of systems F = {Gλ}λ∈I , as given in Section 2.1, can be
defined as follows (Blanchini and Giordano, 2021).

Definition 1. (Robust and structural properties). Given a
family of systems F = {Gλ}λ∈I and a property P, the
property P is robustly satisfied (robust) if Gλ enjoys the
property P for every λ ∈ I. If, in addition, the family F is
specified qualitatively by a structure (e.g., a flow graph),
without resorting to numerical bounds, the property P is
said to be structurally satisfied (structural).

Since we are interested in an attractor-basin pair (A,B(A))
induced by the nominal deterministic system Gλ0 , the
property P is given by

P : (A,B(A)) is an attractor-basin pair almost surely. (6)

In particular, P is robust for F if, for any initial condition
x0 ∈ B(A) and for all λ ∈ I \ {λ0}, we have

Pλ

({
lim
t→∞

dist(x(t;x0, ηλ), A) = 0
})

= 1, (7)

where x(t;x0, ηλ) is the solution of system Gλ which
emanates from x0.

As discussed in Section 1, dynamical systems originating
in the life-sciences and network theory are often extraordi-
narily robust with respect to huge uncertainties and envi-
ronmental fluctuations that induce parameter variations,
but do not exhibit an analogous robustness with respect
to noise. Their noise rejection property can be captured
by the alternative concept of resilience, of which we now
aim at proposing rigorous and formal definitions.

Definition 2. (Practical resilience). Consider a family of
systems F = {Gλ}λ∈I and let (A,B(A)) be an attractor-
basin pair corresponding to Gλ0

. Let the time horizon
τ ∈ (0,∞], the distance δ ∈ [0,∞) and the confidence level
γ ∈ (0, 1] be fixed. Consider the set Aε = {χ : dist (χ,A) ≤
ε}, with 0 ≤ ε ≤ δ. The system Gλ is (τ, γ, δ, ε)-practically
resilient if, for all x0 ∈ Aε ∩B(A),

Pλ

(
sup

t∈[0,τ)

dist (x(t;x0, ηλ), A) ≤ δ

)
≥ γ.

The family F is (τ, γ, δ, ε)-practically resilient if, for all
x0 ∈ Aε ∩B(A),

inf
λ∈I\{λ0}

Pλ

(
sup

t∈[0,τ)

dist (x(t;x0, ηλ), A) ≤ δ

)
≥ γ.

Intuitively, the system Gλ, λ ∈ I \ {λ0}, is (τ, γ, δ, ε)-
practically resilient if, subject to the stochastic noise ηλ,
the trajectory x(t;x0, ηλ), emanating from an arbitrary
point x0 that lies within an ε-distance from the attractor
A, and within its basin of attraction B(A), remains within
a δ-distance from A with probability at least γ over the
interval t ∈ [0, τ). The noise ηλ in the perturbed system
may prevent the state from converging to the set A, but at
least the nominal dynamics of the system keeps the state
close to the attractor A of the nominal system.

The family F is (∞, 1, δ, δ)-resilient if, for all x0 ∈ Aδ ∩
B(A),

inf
λ∈I\{λ0}

Pλ

(
sup
t>0

dist (x(t;x0, ηλ), A) ≤ δ

)
= 1.
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In particular, if ηλ is deterministic (e.g., an exogenous
disturbance), we can omit Pλ and reinterpret (∞, 1, δ, δ)-
resilience as x(t;x0, ηλ) ∈ Aδ for all t > 0 and λ ∈ I \
{λ0}. In comparison to the definition of A being a robust
attractor for the trajectories x(t;x0, ηλ) of the family F ,
as per Definition 1, (∞, 1, δ, δ)-resilience of the family
means that for any deterministic perturbation, the state
x(t;x0, ηλ) remains in Aδ for all t > 0: no deterministic
perturbation in the family F can drive the state away from
a δ-neighbourhood of A.

The next definition allows the system state x(t;x0, ηλ) to
exhibit weak oscillations and arbitrarily large detours away
from the attractor A.

Definition 3. (Asymptotic practical resilience). Consider a
family of systems F = {Gλ}λ∈I and let (A,B(A)) be an
attractor-basin pair corresponding toGλ0

. Let the distance
δ ∈ [0,∞) and the confidence level γ ∈ (0, 1] be fixed. The
system Gλ is (γ, δ)-asymptotically practically resilient if,
for all x0 ∈ B(A),

Pλ

(
lim sup
t→∞

dist (x(t;x0, ηλ), A) ≤ δ

)
≥ γ.

The family F is (γ, δ)-asymptotically practically resilient
if, for all x0 ∈ B(A),

inf
λ∈I\{λ0}

Pλ

(
lim sup
t→∞

dist (x(t;x0, ηλ), A) ≤ δ

)
≥ γ.

When δ = 0, we say that the system (respectively, the
family) is γ-asymptotically resilient.

Remark 1. When δ = 0 and γ = 1, Definition 3 of
asymptotic resilience reduces to robustness of the property
P in (6) according to (7).

Differently from Definition 2, which deals with the tran-
sient behaviour of the system trajectories, Definition 3
deals with their asymptotic properties and requires the
trajectories emanating from x0 ∈ B(A) to converge to a δ-
neighbourhood of the attractor A with probability at least
γ > 0.

The efficacy of the proposed definitions is demonstrated in
Section 3, by considering their application to Examples 1
and 2 in Section 2.1.

Remark 2. The proposed definitions of resilience heavily
rely on the structure of the family F . In particular, the
attractor-basin pair (A,B(A)) is determined (and fixed)
by reference to the nominal deterministic system Gλ0

.
The resilience of Gλ for λ ̸= λ0 is then determined by
relating the behaviour of the trajectories x(t;x0, ηλ) to a
neighbourhood of A. Consider, for example, Definition 3
for λ ̸= λ0. Even when ηλ is deterministic, its addition
to the right-hand side of the ODEs may alter the at-
tractor A to a new attractor A(λ), which will be close
to A, subject to appropriate assumptions on ηλ. Hence,
allowing for δ > 0 in Definition 3 is essential to obtain a
meaningful definition. An alternative approach to defining
resilience would be to require the property of existence of
an attractor-basin pair (which may be different from the
pair (A,B(A)), induced by the nominal system Gλ0) to
be preserved, with high enough probability. This is a valid
alternative approach, which is outside the scope of the
current paper, and is left for future investigation.

2.3 Attraction time as a resilience indicator

As a specific resilience indicator (see e.g. Dakos et al.
(2015) for an introduction to the topic), we consider the
attraction time of a system, which probabilistically quanti-
fies the time it takes for a perturbed/noisy system to reach
a neighbourhood of a prescribed equilibrium state. Here,
we show how such an indicator can be formally defined for
the considered family of systems (see Section 2.1), relying
on Definition 3.

Definition 4. Consider the family F = {Gλ}λ∈I . Let λ ̸=
λ0 and assume that Gλ is (γ, δ)-asymptotically practically
resilient. Let x0 ∈ B(A), ν ∈ [0,∞), τ ∈ (0,∞) and
µ ∈ (0, 1]. Then, the system Gλ has a (τ, µ, ν)-attraction
time with respect to x0 if

Pλ

(
sup

t∈[τ,∞)

dist (x(t;x0, ηλ), A) ≤ ν

)
≥ µ.

Similarly, given x0 ∈ B(A), the family F has a (τ, µ, ν)-
attraction time with respect to x0 if

inf
λ∈I\{λ0}

Pλ

(
sup

t∈[τ,∞)

dist (x(t;x0, ηλ), A) ≤ ν

)
≥ µ.

In words, Gλ has a (τ, µ, ν)-attraction time if the proba-
bility of the state to return to a ν-neighbourhood of the
attractor A after time τ is at least µ. Note that, given
ν, smaller τ and/or larger µ for which Gλ has (τ, µ, ν)-
attraction time imply higher resilience of the attractor A
of Gλ0

when the dynamics is perturbed by ηλ.

The next proposition shows that the notion of attraction
time is well-defined.

Proposition 1. Let Gλ be (γ, δ)-asymptotically practically
resilient for x0 ∈ B(A) and some δ ∈ [0,∞), γ ∈ (0, 1].
Then, there exist some ν, τ ∈ (0,∞) and µ ∈ (0, 1) such
that Gλ has a (τ, µ, ν)-attraction time.

Proof 1. Choose ν > δ and define the following sets

E0 =

{
lim sup
t→∞

dist (x(t;x0, ηλ), A) ≤ δ

}
,

En =

{
sup
t≥n

dist (x(t;x0, ηλ), A) ≤ ν

}
.

By definition of the limit superior, E0 ⊂
⋃

n∈N En. Also,
En ⊆ En+1 for all n ∈ N. Hence, by monotone convergence

γ ≤ Pλ(E0) = lim
n→∞

Pλ (E0 ∩ En) ≤ lim
n→∞

Pλ(En).

Hence, for any 0 < ζ < 1, there exists a sufficiently large
n such that Gλ has a (n, ζγ, ν)-attraction time.

3. NUMERICAL EXAMPLES

3.1 Example 1: Turing patterns

We consider Example 1 from Section 2.1 to illustrate
how resilience definitions can quantify the sensitivity of
a model to noise and initial conditions, over its dynamical
evolution. As discussed by Bashkirtseva et al. (2021), the
deterministic Levin-Segel model (3) exhibits regions of
multistability, where patterns may temporarily form but
ultimately dissipate and other stable structures emerge,
with the limit case of spatially homogeneous equilibrium

values (ū, v̄) =
(

ad
bc−de ,

ac
bc−de

)
when Du = Dv = 0. Noise
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may further alter the picture, yielding alternative patterns
during the time evolution. Practical resilience and attrac-
tion time provide summary statistics to quantitatively
compare different scenarios. Consider the stable pattern
in Fig. 4, obtained through the Crank-Nicolson numerical
scheme applied to (3) with Neumann boundary conditions,
λ = λ0 = 0, a = d = e = 0.5, b = c = 1, Dv = 0.005,
Du = 1.4 · 10−4, spatial step dx = 0.01 and time step
dt = 0.01 over a rectangle with spatial length L = 1 and
time horizon tfin = 250 s.

Fig. 4. Left: Turing-pattern attractor corresponding to u from the
deterministic system (3) with λ = λ0 = 0, visualised over space
x and time t, with the parameter values described in the main
text. Right: Turing-pattern attractor for u, blue, and v, orange.

Fig. 5. Realisations of states u(t, ·) and v(t, ·) of system (3), with
t = 250 s, in the deterministic case λ = λ0 = 0 (solid) and
in the stochastic case λ = 40 · 10−4 (dashed), with the other
parameter values described in the main text.

Initial conditions within ±δ distance from the Turing-
pattern attractor, as well as noise levels λ, alter the
system state at each time point (see e.g. Fig. 5). Practical
resilience (Definition 2) with ε = δ and attraction time
(Definition 4) allow to identify up to which distance levels
δ (uniform over the spatial grid) the Turing patterns can
be considered resilient, depending on the noise intensity
λ. Table 1 reports selected case studies. For low levels
of λ, the system state may remain within distance δ
from the deterministic Turing-pattern attractor, with a
probability Pλ that increases for larger δ, as expected.
However, increasing λ disrupts the patterns and drives
the states away from the attractor. Using the attraction
time as a resilience indicator offers a consistent insight.
We compute the worst-case attraction time over all the
simulated initial conditions. As can be seen in Table 1,
τ is smaller when the corresponding probability is larger,
and vice versa; the indication ‘−’ for τ denotes settings
for which asymptotic practical resilience was not achieved
within the simulation horizon tfin = 250 s. Overall,
this analysis allows to identify probabilistic performance
guarantees, beyond robustness analysis, according to a
desired confidence level γ.

δ (for Pλ) δ (for τ [s])
λ (·10−4) 0.01 0.05 0.1 0.01 0.05 0.1

1 0.125 0.875 0.958 200 85 61
9 0 0 0.5 - - 162
25 0 0 0 - - -
40 0 0 0 - - -

Table 1. Values of Pλ (center) and of the worst-
case attraction time τ (right) for given choices of the
distance δ and of the noise intensity λ, for system (3)

with parameter values as in the main text.

3.2 Example 2: gene regulatory network

For Example 2 from Section 2.1, we now assess (τ, γ, δ, δ)-
practical resilience. To this end, we perform numerical
simulations of the system (5) around the stable equilibrium
x3 (see Fig. 6), for uniformly spaced initial conditions
x0 ∈ (x3 − δ;x3 + δ), and assess whether the trajectories
lie within (x3 − δ;x3 + δ) over a finite horizon tfin, for a
range of noise intensities λ.

Fig. 6. Trajectories for the nominal system (1), converging to a
stable state x3 for a range of initial conditions x0 in a δ-
neighbourhood of the attractor.

We consider different values of the distance δ ∈ [δmin, δmax],
with δmin = 0.05x3 and δmax = |x3 − x2|, which is the
distance from the unstable equilibrium x2. Fig. 7 shows
the values of Pλ depending on δ and λ: as expected, the
probability of remaining within a δ-neighbourhood of the
attractor is larger if δ is larger and if the noise intensity λ
is smaller. Setting the desired γ threshold for Pλ identifies
specific resilience levels.

Fig. 7. Dependence of Pλ on δ and λ for the stochastic gene
regulation model (5) with k = 0.1, h = 2 and a = 2 (within the
bistable region shown in Fig. 2).

Considering the worst-case attraction time τ (over all
simulated initial conditions) as a resilience metric yields
the values shown in Fig. 8. For system (5), τ is computed
by setting ν = δ and µ = 1, for each of the values
of δ and λ considered above. As shown by comparing
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Fig. 7 and Fig. 8, the region with high values of Pλ

(close to 1) is correlated with smaller values of the worst-
case attraction time. The upper bound on τ in Fig. 8
designates the simulation horizon tf and identifies cases
where asymptotic practical resilience was not observed.

Fig. 8. Worst-case attraction time τ for different δ and λ for system
(5) with k = 0.1, h = 2 and a = 2.

Simulations so far demonstrated the definitions for pre-
scribed values of the system parameters. The deterministic
model (1) with fixed k = 0.1 and h = 2 exhibits a
bifurcation when a = ac,1. It is of interest to understand
how proximity of a to ac,1 affects the resilience of the
perturbed stochastic system Gλ in (5). To this end, we
study (∞, ·, δ(a), δ(a))-practical resilience, where δ(a) =
|x3(a) − x2(a)| and a ∈ (ac,1; amax). Here, ac,1 ≈ 1.77
corresponds to the lower bifurcation value (see Fig. 2) and
amax ≈ 1.89 < ac2 ≈ 2.63 is within the bistable parameter
region, while x3(a) is a stable equilibrium and x2(a) is
the unstable equilibrium (see Fig. 1). The values of the
probability Pλ are given in Fig. 9. The perturbed system
trajectories reside within a δ(a)-neighbourhood of x3(a)
when the bifurcation parameter a is sufficiently far from
ac,1, for all simulated noise intensities. However, as a tends
to ac,1, the probability associated with practical resilience
decreases sharply. Specifying a desired γ then allows one to
identify regions of interest where practical resilience holds.

Fig. 9. Dependence of Pλ on λ and a− ac,1, where ac,1 is the lower
bifurcation value, for system (5) with k = 0.1 and h = 2.

4. CONCLUSION

Motivated by applications in systems biology, we intro-
duced definitions of resilience for a class of stochastic
dynamical systems, to complement previous notions of
robustness. Our definitions allow for a quantitative proba-
bilistic assessment of the impact of noise on desired system
properties, related to the preservation of an attractor. Fur-
thermore, the proposed concepts allow to formally define
the attraction time as a rigorous resilience indicator. We

show how our definitions can be applied to gain insight
into the behaviour of widely used biological systems.

Future work will include the application of the pro-
posed framework to the numerical and analytical study of
complex systems subject to parametric uncertainties and
stochastic disturbances. This study also paves the way to
the design of additional resilience indicators. Moreover, it
would be interesting to explore the connection between
the proposed definitions and a stochastic version of the
stability radius (Hinrichsen and Pritchard, 2005), which
may allow for further quantification of resilience.
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