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Abstract— In systems biology, perfect adaptation (adaptation)
denotes the property of a system reacting to a step input
stimulus by completely (partially) restoring the pre-stimulus
output value at steady state. We address the problem of
predicting adaptation for uncertain dynamical systems. To this
aim, we introduce a formal definition of adaptation tailored to
the robust analysis of dynamical systems. Whilst the definition
is more general and valid also for the step response analysis
of nonlinear systems, in the linear case such a definition of
adaptation reduces to the presence of a single real zero that
dominates all poles. Based on this definition, we can assess
robust adaptation by means of the robust real plot, which
characterises the position of real zeros and poles for linear
systems with parametric uncertainties.

I. INTRODUCTION: DEFINING ROBUST ADAPTATION

An input-output dynamical system exhibits adaptation to a
persistent constant input if the output initially increases and,
after a transient, eventually decreases; this is a widespread
concept in systems biology [1], [18]. Fig. 1 shows three
output signals: the green one does not show adaptation, since
it does not decrease asymptotically; the red one (first increas-
ing and then decreasing) shows adaptation; the purple one
shows over-adaptation, because the response first increases
and then decreases so much that it changes sign. In the
special case of perfect adaptation, the step response, starting
from zero initial conditions, is zero at steady state; hence,
asymptotically the output recovers the pre-stimulus value.
This property, well studied for biological systems [11], [15],
[20], can be characterised, robustly or even structurally [12],
as the transfer function vanishing at the origin.

Adaptation includes perfect adaptation, but is broader. We
require the step response to be essentially first increasing and
then decreasing: it can exhibit temporary trend changes and
oscillations during the transient, but it must be predominantly
decreasing for large values of t.

Although the concept as used in the biological literature
is intuitively clear, it is not easy to provide a formal defi-
nition, or a classification. For instance, the step response of
externally positive linear systems [3], [6], i.e. systems with
a positive impulse response (PIR) [8], [14], [16], including
input-output monotone systems [17] and unimodal systems
[13], is necessarily monotonically increasing, hence these
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Fig. 1: System with adaptive, over-adaptive and non-adaptive responses.

systems cannot be adaptive. However, we cannot claim that
non-PIR linear systems are adaptive in general, since they
include, for instance, systems whose step response exhibits
poorly damped oscillations, as well as spiking systems whose
step response is eventually increasing (see the second and
third case in Fig. 3). In particular, not all overshooting
responses [19] can be considered adaptive.

Assessing adaptation becomes even more challenging for
uncertain systems (such as biological systems) of the form

ẋ(t) = f(x(t), u(t), d), y(t) = g(x(t)) (1)

where x(t) ∈ Rn, u(t), y(t) ∈ R, and the origin is a steady
state, f(0, 0, d) = 0, for all values of the uncertain parameter
vector d ∈ D ( Rm. The uncertain system (1) enjoys
robust adaptation if it exhibits adaptation for any value of
the uncertain parameter d ∈ D. To enable a robust analysis
of adaptation for uncertain systems, we need to introduce
a new formal definition, based on an exponential weighting
function. We work under the following assumption.

Assumption 1. Given system (1), and d ∈ D, the step
response ys(t) corresponding to the input u(t) = ū is
initially positive (i.e. ∃ τ > 0 such that ẏs(t)

.
= d

dtys(t) > 0
for 0 < t ≤ τ ) and limt→∞ ys(t) is finite.

We assume that the sign of ū is implicitly chosen so that
ys(t) is initially positive. Then, the system is adaptive if ẏs(t)
is essentially positive at first and essentially negative in the
long run. Formally, consider the weighted integral

Ia =

∫ ∞
0

eatẏs(t)dt (2)

and define the abscissa of convergence, σ, as the largest value
of a for which the integral in (2) is finite:

σ = sup{a : |Ia| <∞}. (3)
For a = 0, the integral is equal to ys(∞) in view of the Final
Value Theorem, hence it is finite according to Assumption 1.
Now we look for a value ā < σ such that Ia > 0 for a < ā
and Ia < 0 for a > ā. If no such value exists, then the
system is not adaptive. This leads to the next definition.

Definition 1. Under Assumption 1, consider the weighted
integral Ia defined in (2). If there exists ā < σ such that

Ia > 0 for a < ā,
Ia < 0 for ā < a < σ,
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Fig. 2: Increasing (resp. decreasing) a gives more relative weight to the
values of the function at later (resp. earlier) times.

then the step response, starting from zero initial conditions,
is adaptive. In particular, we have partial adaptation if ā >
0; perfect adaptation if ā = 0; over-adaptation if ā < 0.
Moreover, for the uncertain system (1), adaptation is robust
if the previous property holds for any ū and any d ∈ D.

Setting a < 0 weights more the values of ẏs(t) at earlier
times (mainly positive in an adaptive system), while setting
a > 0 weights more the values of ẏs(t) at later times (mainly
negative in an adaptive system); the effect becomes more
pronounced when increasing a, see Fig. 2. Observe that:
• Definition 1 does not require linearity of the system.
• In case of perfect adaptation, ẏs(t) has zero mean on

the interval [0,∞), i.e. ys(∞) = I0 = 0.
• In case of partial (resp. over-) adaptation, ẏs(t) has zero

mean on the interval [0,∞) if weighted by an increasing
(resp. decreasing) exponential eāt; namely, ys(∞) =
I0 > 0 (resp. ys(∞) = I0 < 0).

• ẏs(t) being sign definite (either positive or negative)
implies non-adaptation, but not the other way round.

A. The linear system case

When considering Linear Time-Invariant (LTI) sys-
tems, Assumption 1 implies Bounded-Input Bounded-Output
(BIBO) stability. In this case, adaptation and the parameter
ā introduced in Definition 1 have a simple characterisation.

Consider a LTI BIBO system with impulse response
f(t) = ẏs(t), for ū = 1, and rational transfer function
F (s). Then, σ, as defined in equation (3), is the abscissa of
convergence of F (s) and −σ is the spectral abscissa, namely,
the largest among the real parts of the poles of F (s).

Given the complex numbers z and w, we say that z
dominates w if Re(z) > Re(w). Then, the following
proposition states that adaptation, according to Definition 1,
is characterised by the presence of a single dominant real
zero, larger than the spectral abscissa.

Proposition 1. Let F (s) be the rational, strictly proper
transfer function of a linear asymptotically stable system.
Then, the step response is adaptive if and only if there exists
precisely one real zero, −z, such that z < σ. We have
partial adaptation if z > 0, perfect adaptation if z = 0,
over-adaptation if z < 0.

Proof. For a < σ, we have the equality

Ia =

∫ ∞
0

eatf(t)dt = lim
s→0

F (s− a) = F (−a).

Then, the value ā is exactly z, where −z is a real zero,
which must be the only zero in the open interval (−σ,∞)
to prevent other sign changes.
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Fig. 3: Step response (left) and impulse response (right) for the transfer
functions in (4), (5) and (6).

Example 1. For the three systems with transfer functions

FA(s) =
(s+ 0.5)[(s+ 1.5)2 + 1]

(s+ 2)(s+ 3)[(s+ 1)2 + 1]
, (4)

FNA1(s) =
(s+ 1.5)[(s+ 0.5)2 + 1]

(s+ 2)(s+ 3)[(s+ 1)2 + 1]
, (5)

FNA2(s) =
(s+ 1.5)(s+ 0.5)(s+ 0.3)

(s+ 2)(s+ 3)[(s+ 1)2 + 1]
, (6)

having the same poles but different zeros, Fig. 3 reports the
step response (left) and its derivative, the impulse response
(right). The dominant poles are −1 ± j, hence σ = 1: the
spectral abscissa is −1.
FA(s) has a dominant real zero at −0.5 and two complex

zeros at −1.5 ± j1. Hence, according to Proposition 1, it
is adaptive. Indeed, the step response is initially increasing
but essentially decreasing in the long run (it is not strictly
decreasing because the dominant poles are complex).

System FNA1(s) has complex dominant zeros −0.5 ± j
and a real zero at −1.5. It does not meet the criterion
of Proposition 1. Indeed, it has an eventually increasing
response, although there is an initial overshoot.

System FNA2(s), has two real zeros −0.5 and −0.3
dominating the spectral abscissa, and it is non-adaptive. The
step response is spiking (with a strong overshoot), but not
adaptive, because it is increasing in the long run (its value
is more than doubled from time t = 3 to the end of the plot).

Remark 1. Externally positive systems, having a positive
impulse response f(t), clearly cannot be adaptive according
to Definition 1. In fact, they must have a dominant real pole
−p1 that dominates all real zeros −zk [3], [14], [16].

Remark 2. For linear systems, the integral Ia has two addi-
tional interpretations. If (A,E,H) is a minimal realisation
of F (s), then Ia is the static gain of the modified system
(aI + A,E,H). Also, Ia describes the long term response
to the input e−atū: for t large, y(t) ≈ Ia e

−atū. Hence,
the system is adaptive if, when replacing the step e0tū with
the decaying step e−atū, the response becomes negative
when a gets close to σ. For nonlinear systems, the proposed
interpretations are not equivalent.
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II. LINEAR UNCERTAIN SYSTEMS: ROBUST ADAPTATION

Consider a linear uncertain system of the form

ẋ(t) = A(d)x(t) + Eu(t), y(t) = Hx(t), (7)

with A(d) = BD(d)C, where D(d) =
diag{d1, d2, . . . , dm}, while matrices B and C have
size n×m and m× n, respectively. This class significantly
includes chemical and biochemical reaction networks [2],
[7], [10], [12]. The uncertain parameters dk, k = 1, . . . ,m,
are subject to the interval bounds

d−k ≤ dk ≤ d
+
k , k = 1, . . . ,m, (8)

where d−k and d+
k are known. Henceforth we write d̂k when

the parameter lies on a vertex, d̂k ∈ {d−k , d
+
k }. We collect all

the uncertain parameters in the vector d = [d1 d2 . . . dm]>.

Assumption 2. The system’s transfer function is rational and
strictly proper, F (s, d) = q(s, d)/p(s, d), and the coefficients
of both the numerator and the denominator polynomials,
q`(d) and ph(d), are multi-affine functions of the parameters
d. The denominator p(s, d) has order n, and it is monic
(pn ≡ 1) and Hurwitz for all values of d satisfying (8).

Remark 3. Assumption 2 always holds for systems of the
form (7); our results are valid for generic linear systems with
parametric uncertainties satisfying the assumption. Com-
puting the polynomial coefficients may be cumbersome for
large systems, but we do not need their explicit expressions.
Numerically, we can exploit the expressions: p(s, d) =

det
[
sI −BDC

]
and q(s, d) = det

[
sI −BDC −E

H 0

]
.

To check whether the uncertain system (7) exhibits adap-
tation, we need to assess for all admissible values of d:
• the position of its real zeros;
• the spectral abscissa −σ (largest real part of all poles).

If, for all possible values of the uncertain parameters, there
is a single real zero −z with z < σ, this reveals robust
adaptation. To solve the problem, we propose graphical
methods inspired from the theory of parametric robustness
[5], and we consider the robust real plot.

A. Evaluating σ

First, we discuss how to evaluate the spectral abscissa −σ.
Given s = jω − a, we consider the polygon in the complex
plane defined as the convex hull of the 2m values of p(s, d̂)
obtained for d̂k chosen at the extrema of the interval bounds:

C(ω, a) = conv
{
p(jω − a, d̂), d̂k ∈ {d−k , d

+
k }
}
.

Proposition 2. Assume that, for a given value of a, the zero
exclusion condition holds: 0 6∈ C(ω, a), for all ω ≥ 0. Then,
−a is a robust spectral abscissa: a < σ(d) for all d satisfying
(8), where σ(d) is the abscissa of convergence associated
with the transfer function F (s, d).

Proof. It is a consequence of the mapping theorem [5].
Indeed, the spectral abscissa −σ is less than −a iff all
roots of p(s, d) have real parts less than −a, equivalently, iff

p(s−a, d) is Hurwitz for all d satisfying (8). The remaining
part follows from [5, Section 14.6].

The condition can be checked by fixing a and depicting
via computer graphics the set C(ω, a) for all frequencies (in
practice, the frequency range can be chosen to be finite and
sufficiently large), possibly iterating on a.

An alternative, non-conservative, but harder to implement,
is to check whether p(s − a, d) is Hurwitz, by solving a
convex optimisation problem [9].

B. Robust Real Plot

Now, we consider the problem of locating the real zeros
and poles. Consider the following functions of the real
variable λ:

φ−(λ) = min
{
q(λ, d̂), d̂k ∈ {d−k , d

+
k }
}
,

φ+(λ) = max
{
q(λ, d̂), d̂k ∈ {d−k , d

+
k }
}
,

ψ−(λ) = min
{
p(λ, d̂), d̂k ∈ {d−k , d

+
k }
}
,

ψ+(λ) = max
{
p(λ, d̂), d̂k ∈ {d−k , d

+
k }
}
.

Then, we can state the following result.

Theorem 1. Under Assumption 2, the real λ is not a zero
(resp. a pole) of the transfer function F (s, d), i.e. q(λ, d) 6= 0
(resp. p(λ, d) 6= 0), for all dk satisfying (8) iff functions
φ−(λ) and φ+(λ) (resp. ψ−(λ) and ψ+(λ)) have the same
sign.

Proof. For fixed λ, q(λ, d) is multi-affine in d, so it achieves
its minimum, φ−(λ), and maximum, φ+(λ), on a vertex of
the box (8). So, if φ−(λ) and φ+(λ) have the same sign,
also q(λ, d) does. Conversely, if these extrema have different
sign, i.e. φ−(λ)≤0≤φ+(λ), then by continuity there exists
d∗ such that q(λ, d∗) = 0. The proof for the pole case is
identical.

Corollary 1. The functions φ−(λ) and φ+(λ) (ψ−(λ) and
ψ+(λ)) are tight, namely, for each real λ they are the actual
minimum and maximum of q(λ, d) (resp. p(λ, d)) over d.

Remark 4. The previous corollary means that we can draw
the exact envelope of the real plot (robust real plot) of poly-
nomials p(λ, d) and q(λ, d). Conversely, robust adaptation
cannot be assessed directly in the time domain, since the
envelope of the step responses is not so easily characterised.

Then, drawing the two functions φ−(λ) and φ+(λ) (resp.
ψ−(λ) and ψ+(λ)) is enough to locate the real zeros (resp.
real poles) of the uncertain system.

Corollary 2. The set of all zeros (poles) of the transfer
function in Assumption 2 is the (possibly empty) union of
a finite number of intervals. Denoting by n the degree of the
denominator and by r the relative degree, there are at most
n−r disjoint intervals for the zeros, at most n for the poles.

Proof. The set {λ ∈ R : φ−(λ) ≤ 0 ≤ φ+(λ)} of all
zeros is the union of a finite number of intervals in view of
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continuity and of the fact that both φ−(λ) and φ+(λ) have
a finite number of intersections with the real line. The same
argument applies to the pole case. Now, assume that [cLk , c

R
k ]

is an isolated interval for the roots. Then, by continuity, for
each d as in (8) there is a root in this interval. Hence there
can be at most n− r (resp. n) disjoint intervals for the zeros
(resp. poles).

Example 2. Consider the (bio)chemical reaction network
∅ u1−⇀ X1, ∅ u2−⇀ X2, X1

g1−⇀ X3, X1 + X2
g12−−⇀ ∅,

X3
g3−⇀ X1, X2

g2−⇀ ∅, and denote by x =
[
x1 x2 x3

]>
the corresponding state vector. Linearisation yields a system
of the form (7) with

D = diag{∂g1/∂x1, ∂g12/∂x1, ∂g12/∂x2, ∂g3/∂x3, ∂g2/∂x2},

B =

−1 −1 −1 1 0
0 −1 −1 0 −1
1 0 0 −1 0

 , C =

1 1 0 0 0
0 0 1 0 1
0 0 0 1 0

>

and with bounds 0.5 ≤ dk ≤ 1. Let E =
[
1 0 0

]>
and

H =
[
0 0 1

]
be the input and output vectors, respectively,

and consider a perturbation u on the input u1, i.e., u1 + u.
The system has one zero (which is real) and three poles (of
which either one or three are real). The bounding functions
for numerator and denominator are reported in Fig. 4.
Then, for all possible values of the uncertain parameters,
the zero can only lie in the interval [−4.0,−1.6] and the
real pole(s) can only lie within the union of the intervals
[−6.49,−1.14] and [−0.75,−0.058]. Hence, the system is
not robustly adaptive (rather, it is robustly non-adaptive):
the real zero is robustly dominated by a real pole. Moreover,
to assess that the abscissa of convergence of the system is
larger than a = 0.03, Fig. 5 illustrates the set C(ω, a) for
the frequency range ω ∈ [0.05, 0.5]. In view of Proposition 2,
since C(ω, a) does not include the origin, then −a = −0.03
is a robust spectral abscissa.

III. ASSESSING ROBUST ADAPTATION

To investigate whether an uncertain system has a real dom-
inant zero for all possible values of the uncertain parameters
we need to preliminarily check Assumption 1.

Lemma 1. Assumption 1 is verified for all d satisfying (8)
iff the leading coefficient of q(s, d) is positive for all dk ∈
{d−k , d

+
k }.

Proof. The step response is positive in a right neighbour-
hood of 0 due to Assumption 1. Hence, the first non-
zero derivative of f(t), which is the rth order deriva-
tive (where r is the relative degree of F (s, d)), must
be positive. Then, by applying the initial value theorem,
limt→0 f

(r)(t) = lims→∞ srF (s, d) > 0, hence the leading
coefficient qn−r(d) of q(s, d) must be positive for all dk ∈
[d−k , d

+
k ]. In view of Assumption 2, qn−r(d) is a multi-affine

function, hence its minimum is achieved on the vertices
dk ∈ {d−k , d

+
k }. Then, it is necessary and sufficient that the

2m values at the vertices are all positive.

Definition 2. The transfer function in Assumption 2 has the
weakly robust real zero dominance property if, for each d
satisfying (8), there exists a real zero that dominates −σ.
Furthermore, if −σ < 0 is a robust spectral abscissa (i.e. it
dominates all poles for all d satisfying (8)), the system has
the strongly robust real zero dominance property if, for all
d satisfying (8), there exists a real zero that dominates −σ.

The strong property implies the weak property (which is
in general harder to check), but not the other way round.
Strongly robust real zero dominance can be checked as
follows.

Proposition 3. Let −σ be a robust spectral abscissa for the
transfer function in Assumption 2. Under Assumption 1, the
system has the strongly robust real zero dominance property
if φ+(−σ) < 0. Furthermore, the real dominant zero is
unique if q′(λ, d), the derivative of q(λ, d) with respect to λ,
is positive for all d̂k ∈ {d−k , d

+
k } and for all λ ∈ [−σ,∞).

Proof. The leading coefficient of q(s, d) is positive under
Assumption 1, hence q(λ, d) converges to +∞ as λ→ +∞.
If φ+(−σ) < 0, then q(−σ, d) < 0 for all d, hence there is
at least one real root to the right of −σ, i.e. a dominant real
zero. The root is unique if, for all λ ∈ [−σ,∞), q′(λ, d) > 0
for all d, which is implied by q′(λ, d̂) > 0 for all d̂k ∈
{d−k , d

+
k } due to the multi-affinity of the derivative.

The presence of at least one dominant real zero suggests
that there is adaptation, but is not enough: the dominant real
zero must be unique in view of Proposition 1. In general, to
establish robust uniqueness, we can exploit the next result.

Proposition 4. Let [cL, cR] be an interval where φ− and
φ+ have opposite sign and φ+(cL) = 0 and φ−(cR) = 0
(or the other way round). Each point in the interval is a
root of q(s, d) for some d satisfying (8). The root is unique
for all d satisfying (8) if all the 2m derivative polynomials
q′(s, d̂), d̂k ∈ {d−k , d

+
k }, have the same sign (either positive

or negative) in this interval.
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Proof. The intersection of q(s, d) with the interval [cL, cR]
is unique for all d satisfying (8) if the derivative q′(s, d)
does not change sign in the interval for all d satisfying (8).
Since the derivative q′(s, d) is a multi-affine function of d,
its maximum and minimum value are on the extrema d̂k ∈
{d−k , d

+
k }.

Example 3. Consider the (bio)chemical reaction network
∅ u1−⇀ X1, ∅ u2−⇀ X2, X1 + X2

g12−−⇀ X3
g3−⇀

X4, X1 + X4
g14−−⇀ ∅, X2

g2−⇀ ∅, X4
g4−⇀ ∅, with

x =
[
x1 x2 x3 x4

]>
the associated state vector. Lin-

earisation yields a system of the form (7) with D =
diag{∂g12∂x1

, ∂g12∂x2
, ∂g3∂x3

, ∂g14∂x1
, ∂g14∂x4

, ∂g2∂x2
, ∂g4∂x4
},

B =

 −1 −1 0 −1 −1 0 0
−1 −1 0 0 0 −1 0
1 1 −1 0 0 0 0
0 0 1 −1 −1 0 −1

 ,

C =

 1 0 0 1 0 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 0 1 0 1


>

.

Consider an additive input on x1 and take x3 as output,
namely E = [1 0 0 0]> and H = [0 0 1 0]. Let the bounds
on d be d− = [1 1 1 1 1 0.0 3] and d+ = [2 2 2 2 2 0.1 4].
For d6 = 0, the system has perfect adaptation. Is adaptation
maintained, although non-perfect, for small values of d6?
The real plot in Fig. 6 shows that the dominant zero interval
[−0.1,−0.0] is to the right of the dominant pole interval,
[−0.79,−0.133]. Therefore, we have strongly robust real zero
dominance. The same conclusion can be drawn by noticing
that −a = −0.133 is a robust spectral abscissa (since the
origin does not belong to the set C(ω, a), see Fig. 7), and
that ψ+(−a) < 0.

A. Systems with All-Real or Dominant-Real Poles

If the system has only real poles, or a dominant real
pole, assessing robust adaptation boils down to checking
whether a single real zero robustly dominates the dominant
pole. The problem is easy to solve if the dominant poles
and the dominant zeros are confined in disjoint intervals,
as in Example 2 where the zero dominates. Conversely, if
the dominant zero and the dominant pole have overlapping
intervals, then the next robustness result comes into play.

Proposition 5. Consider a transfer function as in Assump-
tion 2 whose dominant pole is real and lies in an interval
[cL, cR]. Assume that, for an arbitrary choice d̄ of the
parameters d, the dominant zero is to the right (resp. left) of
the dominant pole. Then, the dominant zero is to the right
(resp. left) of the dominant pole for all values of d satisfying
(8) iff there are no real zero-pole cancellations in [cL, cR].

Proof. Sufficiency. By contradiction, if there exists d̃ such
that the dominant root of q(λ, d̃) is less than the domi-
nant root of p(λ, d̃), then, by continuity of the roots of a
polynomial, there must exist d̄ and λ̄ for which q(λ̄, d̄) =
p(λ̄, d̄) = 0, hence a cancellation occurs. Necessity. If there
is a cancellation, the dominant zero does not fulfill the
condition of dominance, because z < σ is not strict.

Then, we propose a numerical test to check weak robust
real zero dominance.

Proposition 6. Let [cL, cR] be an interval where both p(s, d)
and q(s, d) have (dominant) real roots. Assume that, for
some d̂, each root of p(s, d̂) in the interval is dominated
by some root of q(s, d̂) in the interval. Then, the roots of
q(s, d) dominate the roots of p(s, d) in [cL, cR] for all d if
there exists a multiplier θ > 0 such that the 2m polynomial
inequalities

θp(λ, d̂)− q(λ, d̂) > 0, d̂k ∈ {d−k , d
+
k },

are satisfied for all λ ∈ [cL, cR].

Proof. In view of multi-affinity of θp(λ, d) − q(λ, d), the
condition on the vertices d̂k ∈ {d−k , d

+
k } implies the same

conditions for all dk ∈ [d−k , d
+
k ], i.e. θp(λ, d)− q(λ, d) > 0.

Then, no cancellations are possible, since p and q cannot be
both zero, and the proof follows from Proposition 5.

Example 4. Reconsider Example 3 with bounds d− =
[1 1 1 1 1 0.0 3] and d+ = [2 2 2 2 2 0.3 4]. Since the set
C(ω, a) does not include the origin, see Fig. 8, −a = −0.1
is a robust spectral abscissa. The dominant zero interval is
[−0.3 0.0], while the dominant pole interval is [−0.89 −
0.13]: the intervals have the intersection [−0.3 − 0.13].
Hence, there is no strongly robust real zero dominance.
However, for θ = 0.4, the polynomial θp(λ, d̂) − q(λ, d̂) is
positive on [−0.3 − 0.13]: we have weakly robust real zero
dominance.

B. Parallel of Systems: the Incoherent Feed-Forward Loop

We consider here the composition of systems in parallel.
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Fig. 8: The set C(ω, a) for a = 0.1 and ω ∈ [0.01, 0.1] in Example 4.

Proposition 7. (Parallel). Consider the transfer function

F (s, p
(k)
i , δ(k)) =

M∑
k=1

Fk(s, p
(k)
i , δ(k)) =

M∑
k=1

q(k)(s, δ(k))∏nk

i=1(s+ p
(k)
i )

with q(k)(s, δ(k)) multi-affine in the parameter vector δ(k).
Assume that: there exists a real zero −z1 for all values of the
parameters; all poles lie in intervals p(k)

i ∈ [p
(k)−
i , p

(k)+
i ];

there is no intersection between the intervals corresponding
to the poles of different transfer functions. Then, either
1) the dominant zero −z1 dominates the poles for all d; or
2) the dominant zero −z1 is dominated by a pole for all d.

Proof. Consider minimal realisations of the transfer func-
tions Fk. The parallel of reachable and observable SISO
systems is reachable and observable iff the systems have
no common poles, and the result follows from Proposi-
tion 5.

We can apply Proposition 7 to the Incoherent Feed-
Forward Loop (IFFL), a widespread fundamental motif re-
curring in biological systems [1], described by the transfer
function F (s) = F1(s) + F2(s) = α

(s+p1) −
β

(s+p2)(s+p3) =
αs2+[α(p2+p3)−β]s+(αp2p3−βp1)

(s+p1)(s+p2)(s+p3) . Take for instance 1 ≤ α ≤
2, 3 ≤ β ≤ 4, 3 ≤ p1 ≤ 4, 1 ≤ p2 ≤ 3 and 6 ≤ p3 ≤
7. The numerator leading coefficient is positive. The pole
intervals are disjoint. The robust real plot of the numerator, in
Fig. 9, shows the two disjoint zero intervals [−6.16,−3.78]
and [−1.47, 2.87], which overlap with the pole intervals.
However, for some parameter values there is a zero that
dominates all the poles; therefore, according to Proposition 7,
the zero is dominant for all parameter values.

−8 −6 −4 −2 0 2 4
−40

−20

0

20

40

60

80

100

120

Fig. 9: Lower and upper bounding functions for the numerator of the IFFL.

If the interval of p1 overlaps with the intervals of p2 or
p3, a cancellation can occur, so we need to check that the
dominant zero is not cancelled. Assume for instance that
p1 = p3, then F (s) = αs+αp2−β

(s+p1)(s+p2) and the zero dominance
condition is β−αp2 > −αpi, i = 1, 2, hence β > 0 (always
true) and β − α(p2 − p1) > 0, which is robustly satisfied if
β− > α+(p+

2 − p
−
1 ).

IV. CONCLUSIONS AND FUTURE WORK

A novel notion of adaptation for linear systems has been
associated with the presence of a single real dominant zero.
The robust real plot allows to robustly assess adaptation
for systems with parametric uncertainties [5], by identifying
the intervals where real zeros and poles can lie. Future
research aims at extending this analysis to nonlinear systems
by adopting the technique of model matching [4]. Our
novel tools to robustly assess adaptation can ensure that an
uncertain model always exhibits adaptation, and can help
falsify models (when the model is adaptive for all possible
parameter values, but absence of adaptation is experimentally
observed at least once, then the model is not well suited to
describe the phenomenon), particularly in systems biology.
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