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Abstract— We design a new negative feedback molecular
oscillator and study its properties analytically and numerically.
This oscillator is composed of two synthetic genes intercon-
nected through their RNA outputs. Regulation of the genes
activity is achieved by controlling the activity of the enzymes
rather than the activity of the promoters. We show that a
simple model of this system has the potential to oscillate for
appropriate choices of the parameters. Our design can be built
experimentally using RNA aptamers.

I. INTRODUCTION

Nucleic acids are versatile molecular polymers, whose
thermodynamic and kinetic interactions can be programmed
exploiting Watson-Crick base pairing rules. By programming
the sequence content of ensembles of single stranded NA
species, we can specify their interactions and the dynamics
of such interactions. Using this simple principle, a variety of
dynamic and logic circuits have been recently demonstrated
experimentally [1], [2], [3], [4]. Potentially, we can create
arbitrary biomolecular circuit architectures having desired
dynamics [5].

In this and a companion paper [6], we propose to create
a molecular oscillator and a toggle switch, two canonical
biological dynamic networks, using RNA species designed
to change the activity of the enzymes producing them. These
RNA sequences capable of binding a target and changing its
properties are known as aptamers [7]; aptamers binding to a
specific target can be obtained systematically by randomized
evolution techniques. In particular, it is possible to use ap-
tamers to inactivate RNA polymerases, enzymes responsible
for RNA transcription [8], [9]. Based on the availability of
these aptamers, we propose to design a negative feedback os-
cillator where regulation is achieved by modulating enzyme
activity. Unlike recently proposed in vitro oscillators [2], [4],
our design has the potential to work in vitro because it relies
only on reaction pathways naturally present in the cellular
environment.

The structure of previously proposed in vitro oscilla-
tors is also based on the creation of a negative feedback
loop, destabilized by the presence of reactions causing a
delay [10], [2] or by a positive feeedback loop [4]. Our
oscillator is based on transcription reactions as the oscillator
studied in [10], [2], however we consider a very different
type of regulation: instead of modulating the activity of
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the promoters, we modulate the activity of the enzymes
performing transcription.

We study this proposed oscillator design analytically, em-
ploying classical control theoretic methods [11], [12], [13],
[14], and numerically. We note that the model proposed here
is not mechanistic nor exhaustive, but rather a simplified set
of differential equations that capture the main reactions at
the core of our design. Our analysis shows that this system
is a candidate oscillator. A thorough randomized search for
parameters yielding an oscillatory behavior returns reaction
rates that fall within a realistic range for experimental imple-
mentation. We focus on the role of RNA transcription rates,
which are difficult to control, and enzyme decay/recovery
rates, which will be engineered in the laboratory.

II. CIRCUIT DESCRIPTION AND MODELING

Biochemical oscillators are designed with a simple general
principle: a series of reactions must generate a negative feed-
back loop with suitable delay or positive feedback loop to
destabilize the system [15]. We focus on in vitro transcription
reactions, and we use RNA inputs to regulate the ability
of synthetic genes to generate RNA outputs. Regulation of
transcription is achieved by modulating the activity of RNA
polymerases (RNAP), rather than the activity of promoters.
Using specific RNA aptamers (short, noncoding RNA se-
quences that bind a desired target [16], [17]) we can inhibit
the activity of two well characterized and commercially
available bacteriophage RNAP species [8], [9].
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Fig. 1. A: General cheme of a two node transcriptional oscillator; G1 and
G2 are associated to genes. B: Proposed experimental implementation of
an RNA-based clock, where the transcription enzymes are directly inhibited
or activated by RNA aptamers.

As shown in Fig. 1, our scheme is based on two synthetic
genes producing RNA outputs R1 and R2. The RNA outputs
are transcribed by two different enzymes E1 and E2; for
example, one could use bacteriophage SP6 and T7 RNAPs,
and the corresponding promoter sequences (purple and blue
domains on the genes in Fig. 1). We assume that enzymes
can either be in an active or inactive state, and their mass
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is conserved: [Etoti ] = [Ei] + [E∗i ], i = 1, 2. Enzyme E2

is inhibited by RNA species R1 (through a direct aptamer
binding pathway), and it reverts to its active state at a given
rate which could be driven by a strand displacement reac-
tion [18] (i.e. another RNA or DNA specie binds to R1 and
releases the enzyme). Conversely, we assume that enzyme
E1 is activated by R2, and it decays at a given rate: direct
activation through an aptamer is not currently possible, but
R2 could act as a species displacing an inhibiting aptamer.
Since mechanisms to implement the enzyme decay/recovery
reactions are currently being researched, we will focus on
their role in achieving oscillations. We will contrast the role
of these reaction rates with the RNA transcription rates,
which depend on the chosen protein and are difficult to
engineer.

The overall list of reactions is:

Ei + gi
ki−−⇀ Ei +Ri + gi RNA production, i = 1, 2

Ri
δi−−⇀ 0 RNA degradation, i = 1, 2

E∗1 +R2
γ1−−⇀ E1 Activation

E1
β1−−⇀ E∗1 Decay

E2 +R1
γ2−−⇀ E∗2 Inhibition

E∗2
β2−−⇀ E2 Recovery

where Ei are active enzymes, E∗i are inactive enzymes, Ri
are RNA species, gi are genes (constant). In this paper,
we neglect the contribution of additional species required
to implement the decay and recovery reactions.

Using mass action kinetics, we can derive the ordinary
differential equations (ODEs) describing the dynamics of the
system:

˙[R1] = k1[E1][g1] − δ1[R1] − γ2([E2])[R1]

˙[E1] = −β1[E1] + γ1([Etot1 ] − [E1])[R2]

˙[R2] = k2[E2][g2] − δ2[R2] − γ1([Etot1 ] − [E1])[R2]

˙[E2] = β2([Etot2 ] − [E2]) − γ2[E2][R1]

We now switch to a more compact notation x1 := [R1],
x2 := [E1], x3 := R2 and x4 := E2. Because the
concentration of genes is constant, we also define lumped
parameters κi = ki[gi], and we rewrite the equations above
as: 

ẋ1 = κ1x2 − δ1x1 − γ2x4x1

ẋ2 = −β1x2 + γ1(xtot2 − x2)x3

ẋ3 = κ2x4 − δ2x3 − γ1(xtot2 − x2)x3

ẋ4 = β2(xtot4 − x4) − γ2x4x1

(1)

In the next sections, we analytically show that model (1)
can exhibit oscillations, and we numerically explore its
oscillatory domain. An interesting result of our numerical
simulations is that κ1 (production rate of R1) and β2

(recovery rate of E2) should be proportional on a logarithmic
scale to yield an oscillatory behavior. This result and other
trends in parameter space, identified in Fig. 6, will be useful
for the experimental implementation of the oscillator.

III. STABILITY ANALYSIS

We begin our analysis by stating the following bounded-
ness result.

Proposition 1: The solutions of system (1) are bounded
for any nonnegative initial condition such that x2(0) ≤ xtot2

and x4(0) ≤ xtot4 .
Proof: The bounds 0 ≤ x2(t) ≤ xtot2 and 0 ≤ x4(t) ≤

xtot4 are immediately derived from the second and the fourth
equations in (1). Now consider the quantities x+

1 = κ1

δ1
xtot2

and x+
3 = κ2

δ2
xtot4 . As long as the conditions 0 ≤ x1(t) ≤ x+

1

and 0 ≤ x3(t) ≤ x+
3 are satisfied for t = 0, they will be

fulfilled for each time t > 0. Furthermore, these conditions
are asymptotically satisfied for any initial state. Indeed, for
x1 we have: ẋ1 ≤ κ1x2 − δ1x1 ≤ κ1x

tot
2 − δ1x1. From

this differential inequality, we see that the solution x1(t) is
upper bounded by the solution of ẋ1 = κ1x

tot
2 −δ1x1, hence

x1(t) ≤ x+
1 + [x1(0) − x+

1 ]e−δ1t. Similarly, we can show
that x3(t) ≤ x+

3 + [x3(0) − x+
3 ]e−δ2t.

Boundedness implies the existence of an equilibrium
point inside the nonnegative box delimited by the quantities
x+

1 , x
tot
2 , x+

3 , x
tot
4 ([19], see also [20], [21]). We perform

our stability analysis by finding equilibrium conditions for
model (1). Setting ẋ2 = 0 we find

x3 =
β1x2

γ1(xtot2 − x2)
,

which can be substituted into equation ẋ3 = 0, yielding an
expression of x4 as a function of x2:

x4 = f(x2) =
1

κ2

[
δ2β1x2

γ1(xtot2 − x2)
+ β1x2

]
.

Similarly, from ẋ4 = 0 we get

x1 =
β2(xtot4 − x4)

γ2x4
,

which, substituted in equation ẋ1 = 0, yields an expression
of x2 as a function of x4:

x2 = g(x4) =
1

κ1

[
δ1β2(xtot4 − x4)

γ2x4
+ β2(xtot4 − x4)

]
.

The equilibrium conditions in the variables x2 and x4 are
represented in Fig. 2. Parameters used for this plot are in
Table I, and are realistic for in vitro synthetic networks [22].
Due to the monotonic trend of the equilibrium conditions (f
is increasing and g is decreasing), the following proposition
is immediate.

Proposition 2: System (1) admits a single equilibrium.
We now proceed with a structural analysis, which is useful

to find local stability results. The Jacobian matrix

J =


−γ2x̄4 − δ1 κ1 0 −γ2x̄1

0 −β1 − γ1x̄3 γ1(xtot
2 − x̄2) 0

0 γ1x̄3 −γ1(xtot
2 − x̄2)− δ2 κ2

−γ2x̄4 0 0 −β2 − γ2x̄1


is sign definite and, through a state transformation

T =

0 0 0 −1
0 1 0 0
1 0 0 0
0 0 1 0

 ,
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Fig. 2. Phase plane and equilibrium conditions for a series of trajectories of
model (1) using parameters in Table I (Table II shows the same parameters
expressed in different units) . The red line corresponds to x4 = f(x2) and
the black line to x2 = g(x4). This plot corresponds to the black diamond
in all panels of Fig. 7.

it is similar to a matrix J̃ = T−1JT :

J̃ =


−γ1(xtot

2 − x̄2)− δ2 γ1x̄3 κ2 0
γ1(xtot

2 − x̄2) −β1 − γ1x̄3 0 0
0 0 −β2 − γ2x̄1 γ2x̄4

0 −κ1 γ2x̄1 −γ2x̄4 − δ1

 .
The new state vector corresponding to the transformed J̃ is:

ζ =
[
ζ1 ζ2 ζ3 ζ4

]>
=
[
(x3 − x̄3) (x2 − x̄2) (x4 − x̄4) −(x1 − x̄1)

]>
.

As it is emphasized by this transformation, the overall
system is the negative feedback interconnection of two
subsystems (respectively governed by the variables x3–x2

and x4–x1) which are input–output monotone with respect
to the positive orthant and which are both stable. This
means that instability can only occur due to a complex pair
of unstable poles. In other words, the system admits only
oscillatory transitions to instability [23]. This can be seen
either by calculating the coefficients of the characteristic
polynomial, which are all positive, or by means of the
following considerations.

To recap, we have seen that:
• every solution of the overall system is bounded;
• the overall system is the positive feedback interconnec-

tion of two subsystems which are input–output mono-
tone and anti–monotone respectively;

• the input–output characteristics of the two subsystems,
x2 = f−1(x4) and x4 = g−1(x2), are monotonically
increasing and decreasing, respectively.

Therefore, according to Theorem 3 in [11], the overall system
has a globally attractive equilibrium if the scalar discrete–
time system

xk+1
4 = (g−1 ◦ f−1)(xk4) (2)

has a globally attractive fixed point.
This criterion offers as a sufficient condition for local

stability that the iterated values of the discrete system (2)

locally converge. Hence, a necessary condition to have
sustained oscillations is that the iterated values of (2) diverge.
This is equivalent to local convergence of the discrete–time
system

xk−1
4 = (f ◦ g)(xk4). (3)

Local convergence of iterations is assured if the deriva-
tive of the overall function is smaller than 1 in absolute
value. Thus, our necessary condition for oscillations can be
expressed as

−df(x2)

x2

dg(x4)

x4
< 1

or, equivalently, as

−df
−1(x4)

x4

dg−1(x2)

x2
> 1.

The minus sign is due to the fact that dg(x4)
x4

< 0 and
dg−1(x2)

x2
< 0.

We have seen that the iteration method provides a nec-
essary condition for the onset of oscillations. This method
will be numerically implemented in Section IV-A to analyze
our model. A criterion based on linearizion, which we will
discuss in the following subsection, may seem preferable.
However, two basic facts have to be considered.
• The iteration method provides an insight about the

oscillatory condition. In essential, for the oscillations
to occur, it is necessary that at the intersection point
the derivatives of both the curves x4 = f(x2) and
x2 = g(x4), i.e. df(x2)/dx2 and dg(x4)/x4, are large
in magnitude.

• Perhaps more importantly, the fourth–order model we
consider is simple and suitable for analysis, but too
simplified to provide a faithful representation of the phe-
nomenon. In particular, the chain of reactions involved
in the true process may include delays, which this model
neglects. The presence of delays does not affect the
iteration method, as long as we can assume that the
overall system is the feedback interconnection of two
subsystems which are monotone and anti–monotone.

A. Local linearized analysis

We now consider the transformed Jacobian matrix J̃ and
proceed with a local linear analysis. We linearize the first
subsystem, obtaining matrices

A1 =

[
−γ1(xtot2 − x̄2) − δ2 γ1x̄3

γ1(xtot2 − x̄2) −β1 − γ1x̄3

]
,

B1 =

[
κ2

0

]
, C1 =

[
0 1

]
,

where the state vector is
[
ζ1 ζ2

]>
, the input is ζ3 and the

output is ζ2. The second linearized subsystem is represented
by matrices

A2 =

[
−β2 − γ2x̄1 γ2x̄4

γ2x̄1 −γ2x̄4 − δ1

]
,

B1 =

[
0

−κ1

]
, C2 =

[
1 0

]
,
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where the state is
[
ζ3 ζ4

]>
, the input is ζ2 and the output

is ζ3.
We can notice that, since both of the monotone linearized

subsystems are associated with a strongly diagonally domi-
nant Metzler matrix, they both are locally stable.
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Fig. 3. Block diagram of the overall system, represented as the negative
feedback interconnection of two monotone subsystems.

The overall linearized system is the negative feedback
interconnection (Fig. 3) of the two linearized subsystems
above, which are associated with the transfer functions

F1(s) =
n1(s)

p1(s)
, F2(s) =

n2(s)

p2(s)
,

where

n1(s) = κ2γ1(xtot2 − x̄2),

p1(s) = s2 + [β1 + δ2 + γ1x̄3 + γ1(xtot2 − x̄2)]s+

+ [β1δ2 + β1γ1(xtot2 − x̄2) + γ1δ2x̄3],

n2(s) = κ1γ2x̄4,

p2(s) = s2 + (β2 + δ1 + γ2x̄1 + γ2x̄4)s+

+ (β2δ1 + β2γ2x̄4 + γ2δ1x̄1).

Of course, the characteristic polynomial of the overall
system is equal to the denominator of the closed loop transfer
function:

p(s) = p1(s)p2(s) + n1(s)n2(s) =

= p1(s)p2(s) + κ1κ2γ1γ2(xtot2 − x̄2)x̄4.

Since all the coefficients of p(s) are positive, the system
does not admit real positive eigenvalues; therefore, if it be-
comes unstable, instability must be oscillatory. By computing
the Routh–Hurwitz table, it is possible to verify that, for
some choice of the parameters, instability can only occur
due to two unstable eigenvalues, which must correspond to
a complex pair of eigenvalues.

IV. NUMERICAL ANALYSIS
A. Iteration method

We have implemented the iteration method discussed in
Section III in order to analyze system (1) and show that, for
a suitable range of parameters, the necessary condition for
sustained oscillations is actually verified.

Fig. 4 shows the equilibrium conditions x4 = f(x2)
and x2 = g(x4), for the nominal parameter values shown
in Table II, and the convergence of the counterclockwise
(backward) iteration xk−1

4 = (f ◦ g)(xk4) to the equilibrium
point. It is possible to verify that, for these parameter
values, the system Jacobian has a complex pair of unstable
eigenvalues, thus oscillations actually arise.

Fig. 5 shows the result of an iteration–convergence test
and of the eigenvalues computation for a wider interval
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Fig. 4. Convergence of the counterclockwise (backward) iteration xk−1
4 =

(f ◦ g)(xk4) to the equilibrium point for the system with the nominal
parameters shown in Table II; convergence is a necessary condition for
oscillations. The inset shows a magnification of the iteration near the
equilibrium.

of parameters: while the other parameters are kept as in
Table II, β1 and κ1 are logarithmically varied from 0.1
to 10 times their nominal value. In Fig. 5 (a), the blue
area represents parameter choices for which the iteration
procedure converges (which is a necessary condition for
oscillations), while in Fig. 5 (b) the blue area represents
parameter choices for which the system Jacobian admits a
complex pair of unstable eigenvalues (which means that the
system does in fact oscillate). As expected, the oscillatory
domain is completely included in the convergence domain.

B. Randomized parameter search

We set up a numerical simulation to find parameter sets
that yield an oscillatory behavior in model (1). We generated
random parameters values starting from the nominal param-
eter set listed on Table II. We generated several hundreds
additional random parameter sets, in the range from 10−3

to 103 times their nominal values, except for xtot2 and xtot4 ,
which are in the range from 10−1 to 101 times their nominal
values listed on Table II. Then, the differential equations are
solved using the deterministic integrator RADAU, included
in the software PyDSTool [24]. A paramter set is considered
acceptable if the period of the resulting oscillations beween
0.5h and 10h, and the amplitude is larger than 1 nM.
When integrating our ODEs, we assumed initial conditions
x1(0) = 0, x3(0) = 0, x2(0) = xtot2 and x4(0) = xtot4 .

Period and amplitude were computed by identifying min-
ima and maxima of oscillations, as shown in the inset of
Fig. 6 (c). Maxima and minima are identified as follows.
For each three consecutive points of a trajectory, we define
d1 and d2 as shown in Fig. 6 (b): d1 = pn − pn−1 and
d2 = pn − pn+1. If the product d1 · d2 is positive and d1
is positive, then pn is classified as a local maximum; if d1
is negative, then pn is classified as a local minimum. Period
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(a) Parameter choices which guarantee convergence

(b) Parameter choices which guarantee sustained oscillations

78.6472 122.078 193.929 308.069 489.388 777.424 1234.99 1961.86 3116.54 4950.83 7864.72
0.436088
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2.71359

4.31071

6.84784

10.8782

17.2808

27.4517

43.6088

κ
1

β 1

Oscillatory Domain

Fig. 5. Simulations which show (a) the iteration convergence domain and
(b) the oscillatory domain, consistent with Fig. 7. β1 and κ1 vary from
0.1 to 10 times their nominal value, while the other parameter values are
those in Table II. The blue region in panel (b) is entirely included in the
blue region in panel (a), as it must be, since convergence is a necessary
condition for oscillations.

and amplitude are computed from the identified maxima and
minima, as sketched in Fig. 6 (c). Period and amplitude are
averaged over all the different measured peaks and wells and
compared to the aforementioned thresholds.

In Fig. 6 (a) we show the correlations among pairs of
parameters that yield oscillations. Some of these correlations
show clear patterns. For example κ1 (production rate of
R1) and β2 (recovery rate of E2) should be proportional
on a logarithmic scale. For the chosen parameter set, this
relationship is quite critical. Also, β1 (decay rate of E1),
δ2 (degradation rate of R2) and γ2 (inhibition rate of E2)
exhibit a minimum threshold level. We recall that β1 and
β2 are the enzymes recovery and decay rates, whose exact
mechanisms of implementation are still under investigation,
and thus are particularly relevant in our analysis.

C. Classification of dynamic behaviors in a region of the
parameter space

Given a certain parameter set, we classify parameter that
yield a ’spiral source’, ’spiral sink’ and ’sink node’ behavior,
checking the eigenvalues of the system linearized around its
only equilibrium. Starting from the nominal parameters listed
in Table II , each parameter is varied from 0.1 to 10 times its
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Fig. 6. (a): Dark points mark parameter combinations that yield oscillations
in the system. Parameters variations are on a logarithmic scale relative to the
parameters listed in Table II. (b) and (c): sketch of our criteria to identify
maxima and minima, and to mesure period and amplitude.

nominal value. Then, the equilibrium points are computed to
find the eigenvalues from its Jacobian.

We summarize our results in Fig. 7, which shows the
influence of the parameters on the stability properties of the
unique equilibrium of the system. The classification is color
coded as follows (legend is also shown in Fig. 7): points at
which we find real and negative eigenvalues are shown in
blue color; points where at least one eigenvalue is complex
with negative real part are shown in orange color; points
where at least one eigenvalue is complex with positive real
part are shown in grey color.

This plot will be a useful guide for tuning experimental
parameters without losing the oscillatory behavior. The plot
also identifies critical parameter combinations which should
not be changed beyond a narrow range. In particular, we
observe that κ1 and β2 must be proportional as in Fig. 6.
We note that this plot summarizes local stability properties,
and thus provides less general information than Fig. 6
which is obtained simulating the full nonlinear system. We
conclude observing that the relationship between parameters
κ1 and β1 found in Fig. 6 is consistent with the oscillatory
domain found at Fig. 5 using the iteration method described
in Section III. The κ1/β1 region in which the linearized
system admits oscillations is quite narrow given the chosen
combination of paramters.

V. CONCLUSION

We have proposed the design of a molecular oscillator
where a negative feedback loop is created by modulating
enzymatic activity through RNA aptamers. Our analysis and
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Fig. 7. Stability of the equilibrium, parameters are varied on a logarithmic
scale; the black diamond represent the parameters shown in Table (II). The
central panel shows the results for varying β1 and κ1, and is consistent
with the results of Fig. 5.

TABLE I
SIMULATION PARAMETERS, IN UNITS OF M AND s

β1 κ1 δ1 γ1 xtot2
1/s 1/s 1/s 1/Mol.s µM

1.211e-3 0.219 5.53e-5 2.297e2 0.886

β2 κ2 δ2 γ2 xtot4
1/s 1/s 1/s 1/Mol.s µM

4.832e-2 5.422e-2 2.085e-4 2.599e5 1.145

TABLE II
SIMULATION PARAMETERS SHOWN IN TABLE I,

CONVERTED TO UNITS OF µM AND h

β1 κ1 δ1 γ1 xtot2
1/h 1/h 1/h 1/µM .h µM

4.3609 786.4720 0.1991 0.8270 0.886

β2 κ2 δ2 γ2 xtot4
1/h 1/h 1/h 1/µM .h µM

173.9377 195.1742 0.7504 935.6293 1.145

numerical simulations show that the proposed architecture
exhibits oscillations for appropriate parameter choices, albeit
for the chosen region in parameter space the required rela-
tionship between certain parameters are tight. We are actively
pursuing the experimental construction of this oscillator.
While we expect that a more detailed mechanistic model
will have to be built to fit data and to guide experiments (in
particular once the decay/recovery reaction mechanisms are
identified), our analysis of this simple model provides useful
insights in the potential of this circuit for oscillations.
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