Chapter 15

On the LPV Control Design and Its
Applications to Some Classes
of Dynamical Systems

Franco Blanchini, Daniele Casagrande, Giulia Giordano and Stefano Miani

Abstract In this chapter, a control design approach based on linear parameter-
varying (LPV) systems, which can be exploited to solve several problems typically
encountered in control engineering, is presented. By means of recent techniques
based on Youla—Kucera parametrization, it is shown how it is possible not only to
design and optimize stabilizing controllers, but also to exploit the structure of the
Youla—Kucera parametrized controller to face and solve side problems, including:
(a) dealing with nonlinearities; (b) taking into account control input constraints;
(c) performing controller commutation or online adaptation, e.g., in the presence of
faults; and (d) dealing with delays in the system. The control scheme is observer-
based, namely a prestabilizing observer-based precompensator is applied. Conse-
quently, a Youla—Kucera parameter is applied to produce a supplementary input
ignition, which is a function of the residual value (the difference between the output
and the estimated output). Based on the fact that any stable operator which maps the
residual to the supplementary input preserves stability, several additional features
can be added to the compensator, without compromising the loop stability.
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320 F. Blanchini et al.

15.1 Introduction

Linear parameter-varying (LPV) systems constitute a class of linear time-varying
systems which lay in between uncertain systems and linear systems and allow for an
elegant and effective description of many dynamic systems for which the knowledge
of the current configuration is known pointwise in time, [29]. Such systems have been
studied since the 1990s (see [13, 15, 20, 22, 24, 26, 28, 33]) and can be thought
of as linear time-invariant plants with time-varying, uncertain but pointwise-in-time
known, parameters. The parametric structure may be intrinsic in the physical system
or may appear in the model, resulting, e.g., from the linearization of nonlinear systems
in different operating points, [1, 30], or from the adoption of different controllers,
each acting according to the designer-specified switching role, [5, 7, 14]. This last
point of view, say the analysis of LPV systems as the result of the combination of a
linear (possibly time-varying) system along with a scheduled controller, has provided
(1) a full comprehension of phenomena occurring during the system commutation,
and (i1) a full and exhaustive characterization of the stabilizing controllers that can
be adopted for this class of systems.

In this chapter, we will review the newly proposed results in this area and we
will provide several examples of systems for which the provided theory guarantees
an effective solution. These examples, aimed at bridging different fields under the
common denominator of LPV systems, span from the case of control in the presence
of actuator and sensor faults, for which effective results have been provided in [32],
to the case of control of time-delay systems, [6, 18, 21], and to the case of control
of saturated systems, [12].

15.2 LPYV Systems: Definition and Main Results

The class of LPV systems is described by the n-dimensional system with m inputs
and p outputs
o(x(1)) = A(w(®)x(t) + B(w(®))u(?),

y(t) = C(w(1))x(1), (15.1)

where w(-) is a function taking values in an assigned compact set WV and o (x(¢))
represents the differential operator in the continuous-time case and the single step
shift in the discrete-time case. The current value of w(#) € ¥V is known and available
for control purposes, whereas its future evolution is not.

Example 15.1 Consider a simple pendulum of length / and mass M. Its dynamics
are

x1(1) = x2(1),

. g . b 1
Xo(t) = 7 sin(x (7)) — M—lzxz(f) + M_lzu(t)’
y(t) = x1(1),
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where g is the gravity acceleration, b is the constant viscous coefficient, x| represents
the angle, x, the angular velocity and u the control input. Since the current value of
x1(t) = y(t) is known, the system can be “embedded” in an LPV system (precisely,

this particular case of LPV is also known in the literature as quasi-LPV, see [23] and
the references therein), e.g., by rewriting the nonlinear term sin(x; (¢)) as %xl (1)

and by defining w(¢) = %&({)) with W = [—0.2172 1]. By means of this parameter,

the dynamics of the systems can be written in the form (15.1) with

0 1 0
Aw () = [_M L } . Bw(n) = [ o } ., Cw®) =11 0l.
I MP MP
In this particular case, matrices B and C do not actually depend on w. O

Other significant examples of LPV systems will be reported along the chapter.

Definition 15.1 System (15.1)is LPV stable if the zero equilibrium is asymptotically
stable for any function w : [0, +00) — W.

It is a rather established fact that stability of A(w) for every constant value of
w € W is just a necessary condition for the stability of (15.1) in the sense of Defin-
ition 15.1.

The asymptotic stability of the zero equilibrium is equivalent to the existence of
a Lyapunov function.

The peculiarity of LPV systems, as far as control design is concerned, lies in the
fact that the future evolution of the time-varying parameter w(¢) is unknown, but
its current value is known. This characteristic allows us to derive nonconservative
conditions for the existence of an LPV stabilizing regulator based on linear matrix
inequalities (LMIs), [2, 3, 9, 20, 25], as per the following result proved in [3, 5].

Theorem 15.1 The LPV system (15.1) is (quadratically) stabilizable via a n-dimen-
sional observer—based LPV regulator if and only if there exist two symmetric
positive—definite matrices P and Q, both in R"*", and two matrices U(w) € R™*"
and Y (w) € R™P such that the following set of LMIs (in the continuous-time and in
the discrete-time case, respectively) is satisfied for every w € W.

e Continuous-time:
PA(w)" + A(w)P + B(w)U(w) + U(w) ' B(w)" <0, (15.2)
Aw) O+ QA(w) + Y(w)C(w) + C(w) Y (w)" < 0. (15.3)

e Discrete-time:

P (A(w)P + B(w)U(w))"
| A(w)P + B(w)U(w) P } >0, (15.4)
| 0 (QA(w) + Y (w)Cw)) T
| QA(w) + Y (w)C(w) 0 } > 0. (15.5)
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If the above conditions are satisfied for every w € VW, then the observer—based
control law

o(x(1) = [A(w(®) + L(w(0)C(w(®)) + B(w ()] (w(1))] X(1)
—L(w®)y(®) + B(w(®))v(), (15.6)
u(t) = J(w(®)x(1) + v(@),

with v(t) = 0, is stabilizing. The observer and estimated state gains are
J(w(t)) = U(w(t))P! (15.7)

and

L(w(t) = Q'Y (w(®)). (15.8)

Remark 15.1 The conditions reported in the previous theorem guarantee the exis-
tence of a Luenberger observer-based controller of the same dimension of the plant.
The interested reader is referred to [5] for necessary and sufficient conditions for the
existence of a linear extended observer when the LMI conditions just reported fail.

It is worth stressing that the stabilizability conditions might correspond to an
infinite number of LMIs. However, there are important cases in which such a set of
LMIs reduces to a finite number, thus the solution is easily computable by means of
standard software tools. Two interesting cases are the following.

1. Systems where the input and output matrices are constant, while A(w(?)) is poly-
topic [11: A(w(1)) = D __; Aiw;(1), with w; () > 0 Viand D> __, w;(¢) = 1.
2. Systems belonging to the class of switching systems, [7, 16], described by

ox(1)) = Ajnx(t) + Binu(),
y(t) = Cipx(1),

where i(f) € {1, ..., r}is a switching signal.

In both cases, the set of r 4+ r LMISs to be solved is the following (the continuous-
time case LMIs only are reported):

PA] +AP+B U +U'B] <0, i=1,....r (15.9)
AlQ+ QA +Y,Ci+CTY <0, i=1,...,r (15.10)

with the understanding that B; = B for all i and C; = C for all i if the input and output
matrices are constant.

! The signal v(7) is introduced in (15.6) to avoid duplicating the observer-based stabilizing regulator
equations and will be used later, when the Youla—Kucera parameter will come into play.
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In case 1, the stabilizing observer—based controller is

o(x(t) = Z [A; + L;C + BJ;]w;(1)x(t) — ZLiwi(f)y(f) + Bu(?),
i1 =l (15.11)
u(®) = D Jawi(OR() + v(0),

i=1
whereas in case 2 it is

o(x(1)) = (Aiwy + LiyCiy + BioyJicny) X(1) — Liyy(t) + Binv (), (15.12)
Lt(t) = Ji(t)fc(t) + U(l) )
and, again, J; = UP ' L = Q‘lYi, while v(#) = 0 (see Footnote 1).
The signal v(¢) appearing in Theorem 15.1, and so far set to 0, can be successfully
employed to parametrize all the linear stabilizing compensators via Youla—Kucera
parametrization. Moreover, if it is generated as the output of an LPV stable operator
whose input is the estimation error, then the overall system remains stable, as per the
next result.

Theorem 15.2 Assume the stabilizability conditions in Theorem 15.1 are satisfied.
Let
o(r) = C(w(@®))x(t) — y(1) (15.13]

and consider any globally asymptotically stable operator mapping o(t) into v(t),
ie.,
o(z(t)) = g(z(1), 0(1), 1),
15.14
v(t) = hz(0). o(0). 1). (149
Then the observer—based regulator (15.6), with v(-) defined by (15.14) and (15.13),
is stabilizing.
Under the additional assumption of the existence of a single quadratic Lyapunov
function for the closed-loop system, the converse is also true. Consider the closed-
loop system obtained from (15.1) when the stabilizing controller

o(q(®) =fq@®),y®), 1),

u(t) = k(g(t), y(0), 1) (15.15)

is adopted and assume that such system admits a single quadratic Lyapunov function.
Then the stabilizing controller (15.15) can be parametrized as in (15.6) for a proper
stable operator (15.13), (15.14), which is known as the Youla—Kucera parameter.

The constructive proof of this theorem is reported in the Appendix, along with the
procedure to compute the Youla—Kucera parameter. Here it is worth stressing that
the parameterization of all the stabilizing controllers, depicted in Fig. 15.1, is exactly
the classical Youla—Kucera parameterization.
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Apart from the case in which the stabilizing operator is itself LPV, the determi-
nation and realization of the Youla—Kucera parameter are far from being simple and
will not be investigated here (the interested reader is referred to [4] and the references
therein). We rather stress, once again, that the freedom in the choice of the stable
operator can be successfully exploited to cope with different problems, as will be
seen in the next section.

15.3 Exploiting the Youla—Kucera Parameter Choice

In this section, some applications of the proposed results will be presented, to show
how it is possible to take advantage of the freedom in the choice of the Youla—Kucera
parameter, so as to deal with several side problems.

15.3.1 Online Controller Adaptation Induced by Faults

In the recent literature, several LPV fault-tolerant control schemes have been ana-
lyzed (see, for instance, [27, 31]). Here, the case of real over-actuated control systems
with multiple sensing channels is considered. The input and output channel redun-
dancy is supposed to be introduced for security reasons (think, as an example, of the
flap control of an airplane).
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Fig. 15.2 The system of
three tanks considered in
Sect. 15.3.1. Dashed lines
represent normal flows while
solid lines represent
additional flows

In such systems, rather than designing a single robust controller to cope with
every fault scenario, it is natural to design different controllers for every possi-
ble fault configuration, so as to fully exploit the available sensors and actuators in
each configuration and then commute among the different controllers when a fault
is sensed. Unfortunately, since the commutations can be assumed to be random,
the switching between stabilizing controllers can result in an unstable behavior. To
overcome this limit, it is sufficient to verify the LMI conditions in Theorem 15.1,
design the observer-based controller and then realize the obtained controllers via the
Youla—Kucera parametrization.

In this example, to keep the exposition simple, only the determination of the
observer—based controllers will be dealt with and the Youla—Kucera parameters
will be set to zero.

The dynamics of the system we consider are

x(t) = Ay Xx(@) + Bypu(t),
y(t) = Cw(t)x(t)a

where the integer parameter w(?) is associated with the wth fault scenario. To illus-
trate the idea, consider the simple system formed by three connected tanks as in
Fig. 15.2, in which a natural flow occurs between the different tanks, proportional
to their relative levels.> The flow from tank k to tank £ is qu, (t) = a(xc(t) — x(2)),
with a > 0. Moreover, tank 3 has a discharge channel, whose flow is proportional
to its level, g3(¢) = (Bx3(t), and tank 1 is fed by uy. An additional flow between the
tanks can be forced by three connecting valves (one for each pair of tanks). In the

%Levels and flows have to be intended as the deviation from the steady—state values.
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nominal condition, the three sensors measuring the levels work, as well as the three
valves controlling the additional flow. In the present example, it is assumed that the
system is always working in some faulty condition corresponding to one sensing
channel and one valve working. Thus the parameter w(#) can be represented as a pair
(i, j) belonging to the set W = {1, 2, 3}2; the corresponding LPV system is

x = Ax + B,mu,
y = Cjpx,
where
20 « a
A: [0 —205 (e} .
a o —2a-p
1 1 0O 1 0 0O 1 00 1
Bi=10-100]|, Bb=|001 0], Bs=|[00O0 0
0O 0 0O 0 0-10 0 0 0 -1
and

100 000 0
ci=|l000]|, =010/, c3=]|0
000 000 0

witha = 1and 5 = 0.5.

There are nine possible configurations, but given the input and output matrices
combinations are independent, it is sufficient to solve six LMIs (15.2) and (15.3) so
as to obtain the following gains:

[ 0.8018 1.0654 —4.4610] 1.9252 —5.4114 1.2044
;o | 08977 —11775 14267 | 0 0 0
= 0 0 0 271 1.1919 0.4867 —1.3340 |’
|0 0 0 L 0 0 0 J
0.9573 —4.8721 1.0890 - 0.8372 00
Jy = 0 0 0 , Li=|-0952700 |,
0.7539 13342 —1.4642 | —0-8679.00 ]
0 —0.9527 0 700 —0.7796 ]
L,=1|0 08372 0|, Ly=|00-0.7796 | .
0 —0.8679 0 | 00 09233
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Fig. 15.4 Time histories of the flow deviations from steady—state values

During the system evolution, the ith sensor and the jth actuator faults are sensed and
the corresponding input and output gains are used in the observer-based regulator
(15.12).

Figures 15.3 and 15.4 depict the system signals evolution during the transient when
the initial condition is x(0) = [15 11 3]T, an arbitrary sequence of faults occurs, and
each of the Youla—Kucera parameters is set to zero (i.e., the standard Luenberger
observer-based controllers are used).

To be more precise, Fig. 15.3 depicts the evolution of the state and actual out-
put deviations from steady-state values. The representation in Fig.15.3 has to be
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interpreted as follows: the solid line is the active output and the dotted lines are the
state values. To clarify the representation, it can be noted that during the first instants,
the second sensing channel is working, then the third, then the first just before r = 1s,
then the second again, etc.

Figure 15.4 depicts the evolution of the system input deviation from the steady-
state value, and the pictorial representation is as follows: the active output (corre-
sponding to the working actuator) is working whenever it is different from zero. To
make things clear, the second valve is active during the first instants, then the first,
then the third, etc.

15.3.2 Discrete-Time Delays in Network Controlled Systems

Consider a network controlled n-dimensional discrete-time plant with m inputs and
p outputs in the presence of unknown—but—bounded integer observation delay?
7(t) € {0, 1, ..., Tmax} (and without delays in the actuator channel). This system can
be modeled by the equations

x(t+ 1) = Ax(t) + Bu(?),
y(@) = Cx(t — 7()),

and can be alternatively represented by the following switching system, by adding
delayed copies of the output to the state:

X, (t + 1) = A%, (1) + Bu(t)
() = Cpxe(t)

with 7(¢) € {0, 1, ..., Tmax} and

A OnX(Tmax—l)p 0nxp
A — C OpX(TmaX—l)p orxp ,
O(Tmax_l)pxn I(Tmax_l)p O(Tmax_l)xp)

B
Be — Opxm
O(Tmax_l)pxm

Cé = [C 0P Tmax=1)p ()PXP] ,

C¢ = [OpX(n+(i—1)p) 1P OPX(Tmax_i)p]
l ’

3The delay is assumed to be a multiple of the sampling period if the discrete-time system is obtained
as the discretization of a continuous-time system.
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fori=1,..., Tmax. The above system falls in the class of LPV systems described
in the previous sections. Hence, assuming the satisfaction of the LMIs (15.4) and
(15.5), it is possible to parametrize every stabilizing observer by means of the pro-
posed Youla—Kucera structure. This in turn allows the designer to choose Tyax + 1
compensators, each stabilizing the system for a constant value of the delay 7, and
realize such compensators by means of a proper Youla—Kucera parameter, thus guar-
anteeing stability of the system in the presence of arbitrary (bounded) sequences of
delays. Note that the number of variables of the augmented system may be large if
Tmax 15 large, which may result in a heavy computational load. In addition, when the
variation of the delay is very fast, the system may not be robust. We do not consider
these questions here, since an analysis of the robustness of the method and of its
efficiency when applied to a real problem is beyond the scopes of the chapter. For
numerical examples of network controlled systems, we refer the reader to [18], or
to [17].

15.3.3 Smith Predictor for LPV Stable Plants

The combination between time-delay and parameter-dependency may lead to several
different linear parameter-varying time-delay systems (see, for instance, [10]). Here
we focus on the problem of controlling an LPV stable continuous-time system in the
presence of aknown, time-varying but bounded, delay. We show that this problem can
be solved with the technique described in Sect. 15.2. The considered dynamics are

x(1) = A(w)x(r) + B(w)u(r),
y(1) = Cw)x(t — 7(w)),

with 7(w) € [0, 7], for some 7 > 0, for all w € VW. We denote by IT(w) = {A(w),
B(w), C(w)} the state-space representation of the delay—free part of the plant, by
Wp(s, w) its transfer function, by W (s, w) the (parametric) transfer function of the
controller and by A(s, w) the block corresponding to the delay, namely A(s, w) =
e~ "5 These notations are used in the block diagram of Fig. 15.5 that represents
the Smith predictor scheme.

Apart from the block associated with the delay, this scheme is analogous to the
scheme depicted in Fig. 15.1, with the negative feedback loop inside the smaller
dashed rectangle playing the role of the Youla—Kucera parameter; however, the block
corresponding to J(w) is absent, since the plant is assumed to be stable. The (para-
metric) transfer function of the Youla—Kucera parameter is

Wyk (s, w) = [I + We(s, w)Wp(w, s)]_IWc(s, w). (15.16)
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Fig. 15.5 Smith predictor control scheme
Consider, now, a state-space realization ®@ (w) = {F(w), G(w), H(w), K(w)} of the
transfer function (15.16) associated with the equations

(1) = F(w()z(1) + G(w®)v(0),
n) = Hw(®))z(?) + K(w(@)v(@).

The overall system equations, in the absence of an external input, are

x(1) = A(w®)x(1) + B(w(®)u(), (15.17)
Yo(t) = C(w(0)x (1), (15.18)
Xe(t) = A(w(@)xc (1) + Bw®)u(?), (15.19)

Yeo (1) = Cw(£)x.(2), (15.20)

2(1) = F(w()z(1) + G(w(1)v(0), (15.21)

n(t) = Hw(1)z(?) + K(w(®)v (), (15.22)

v(®) = yeot = 7) = yo(t = 7), (15.23)

where x denotes the plant state, x. denotes the state of the copy of the plant in the
feedback loop and z denotes the state of the Youla—Kucera block ®.

The main result concerning the stability of LPV control systems with delay is the
following [6].

Theorem 15.3 The control system (15.17)—(15.23), as in Fig. 15.5, is LPV stable if
the state-space realization ®(w) is LPV stable.

In order to apply Theorem 15.3, one needs an LPV stable realization of the controller
that can be obtained by steps 5 and 6 of the procedure reported in the Appendix.
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Remark 15.2 The scheme based on the Smith predictor can be fragile with respect
to delay uncertainties (see [19]). However, we stress that in the present setting the
time-varying parameters (one of which is the delay) are assumed to be exactly known
at each time instant. A discussion on the robustness of the proposed method with
respect to uncertainties in the plant only can be found in [6].

15.3.3.1 Example

As an example, we consider the dam—gallery system analyzed in [8] and we focus on
the transfer function between the upstream flow Qy and the downstream flow Qp.
By using simplified Saint-Venant’s equations, and choosing the downstream flow as
scheduling parameter, this transfer function turns out to be, [8],

e—ST(w)

1+ ki (w)s + ko (w)s?”’

Wp(w, s) = (15.24)

where w = Qp and where k;(w), k>(w) and 7(w) are polynomials in w of degree
three. A stability analysis, omitted for brevity, shows that, with the polynomial coef-
ficients reported in [8], system (15.24) is LPV stable. Therefore, Theorem 15.3 can
be applied. The LPV controller

2
R(s. w) = Kl +ki(w)s + kr(w)s ’
s(1 +sT)

for instance, which cancels the system dynamics and introduces the new poles 0 and
—1/T, can be adopted. If R(s, w) is realized according to steps 4, 5, and 6 of the
procedure reported in the Appendix, then the closed-loop system is stable for any
time-varying w.

15.3.4 Youla—Kucera Parameter as an Input Limiter
Jor Constrained Systems

Another interesting problem is the control of LPV systems with input saturation (see,
for instance, [11, 34]). Here we propose a solution based on the idea that, since the
Youla—Kucera parameter can be any stable operator that maps the signal o(¢) to the
signal v(7), it can be exploited to achieve override control, [12]. When the absolute
value of the control input is constrained to remain below a threshold u, the principle
of the override control is to consider the actual control input u(¢) as the sum of the
ideal stabilizing control u,,(#) and of an additional signal v(z) defined by
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Fig. 15.6 The overriding Ugtab
Youla—Kucera block

overriding

S S e B pra [ S
| 1+sT

saturation  filtered gain

u— Ustab (t) if Ustab (t) > U
U(t) = 0 if |ustab(t)| <u
—u — Ustab (t) if Ustab (t) < -—u

thus guaranteeing |u(¢)| < u. Since the actual control is different from the ideal one,
the problem is how to ensure stability of this type of scheme. A possible solution,
justified by the fact that the override control is useful at the beginning of the transient,
is to activate it only when the absolute value of the observer error is above a given
threshold 0. When |o(?)| < o, the state is suitably reconstructed and the override
signal is inactivated. A realization of this idea is depicted in Fig. 15.6. The absolute
value of o(?) is filtered by a filter with transfer function +— and then saturated to 1
to obtain the activation signal a(¢). The aim of the filter is twofold. First, it avoids
the action to be disabled if the signal |o(?)| is less than the threshold for a too short
interval (for instance when it “passes through zero). Second, the constant gain k can
be chosen so as to scale the estimation error to a magnitude suitable for the saturation
function. For large values of o(f), a(t) = 1 and the override control is active; after
the transient, o(¢) goes to zero and so does a().

Figs. 15.7 and 15.8 report the transient for the system with

0 1 1
Az[o O],B:[O} c=[10], (15.25)

and u = 1. The matrices provided by the LMIs (15.2) and (15.3) are

J=[ -1 —2],L=[:”.

The parameters of the filter are k = 10 (corresponding to 0 = 0.1) and 7 = 3.
Figure 15.7 shows the transient from the initial condition [2 21" without the over-
riding scheme: it can be seen that the control bound is deeply violated. Conversely,
Fig. 15.8 shows the transient from the same initial condition [2 2]" with the overrid-
ing scheme: control bounds are not violated. The scheme can be applied in the same
way also when observer and feedback gain are gain—scheduled.
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u(t)

Fig. 15.7 The transient of the states (fop) and of the control input (bottom) for the system (15.25)
without the overriding scheme
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Fig. 15.8 The transient of the states (fop) and of the control input (bottom) for the system (15.25)
with the overriding scheme
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15.4 Conclusions

In the present work, the class of LPV systems and some recent fundamental results,
concerning the possibility of resorting to the classical Youla—Kucera parametriza-
tion of stabilizing controllers, have been introduced. The presented results have been
accompanied by several case studies, to illustrate the potential benefits of the pro-
posed approach in different areas. Future research directions include a full charac-
terization of override control schemes in an LPV framework, an investigation of the
benefits of the LPV approach in fault-tolerant multisensor control schemes, [21], and
the exploitation of recent set-theoretic results in the time-delay framework, [32], to
provide a solution to the control of LPV continuous-time open-loop unstable plants
in the presence of time-varying bounded delays.

Appendix
Proof of Theorem 15.2

Proof We sketch the proof of the first part, and of the second part for the case in
which the operator is linear. The interested reader is referred to [4] for the general
case.

Consider the variables e(r) = x(¢) — x(t), x(¢) and z(z), so that the resulting
dynamic system is

o(e) = [A(w) + L(w)C(w)]e
o(x) = [A(w) + B(w)J(w)]x + B(w)J (w)e + B(w)v
0(z) =9g(z, 0,1)

o= Ce

In view of the quadratic stabilizability conditions in Theorem 15.1, both matrices
A(w) + L(w)C(w) and A(w) + B(w)J(w) are asymptotically stable (since each of
them admits a single quadratic Lyapunov function). Hence, the variable e(t) — 0 as
t — oo. This in turn implies that also o(#) — 0 and, since the operator that maps
the output error o into v is asymptotically stable, also v — 0. Now, going back to
the state evolution, this is governed by an asymptotically stable system fed by two
signals that vanish as t — oo, which is enough to conclude that x — 0.

As far as the converse part is concerned, assume there exists an LPV stabilizing
regulator

o(q()) = F(w)q(®) + G(w)y(?)

u(t) = Hw)q(t) + K (w)y(0) (15.26)
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so that the closed-loop system

[a(x)] B [A(w) + B(w)K (w)C(w) B(w)H(uD} H — Ay (w) [2 }

olg) ] G(w)C(w) F(w) q

is LPV stable and admits a quadratic Lyapunov function. This means that there exists

Py Prp
P = >0
el

such that (in the continuous-time case), the following Lyapunov inequality is satisfied
Aq(w)P + PA)(w) < 0. (1525

Denoting by U(w) = K(w)C(w)P;; + H(w)Psz, the upper—left block of (15.27)
gives

(A(w) + Bw)K (w)C(w)Py; + (Bw)H (w))P],
+ P11 (A(w) + Bw)K(w)C(w)) " + Pio(B(w)H (w)) "
= A(w)Py; + P1iA(w) " +Bw)U(w) + U(w)' B(w) < 0,

which corresponds to (15.2) with P = P;;. Similarly, if we pre- and post-multiply

(1527)by P! =Q = |: 1T1 812], we obtain QA (w) —I—AZ(w)Q < 0 and, by con-
12 %22

sidering the upper-left block of this expression, condition (15.3) with Q = Qy; is
obtained for Y(w) = Q;1B(w)K(w) 4+ Q12G(w). To conclude, it must be shown
that the stabilizing LPV regulator can be realized as (15.6) and (15.13) for a proper
stable operator (15.14). To this aim, set

J(w) = U(w)Py}
L(w) = P3, Y (w)

and consider the observer-based stabilizing regulator (15.6). By resorting to the stan-
dard Youla—Kucera parameterization, since for every fixed value of w the resulting
closed-loop system is stable, it is known that for each value of w the stabilizing reg-
ulator (15.26) can be realized as (15.6) and (15.13) where the stable operator (15.14)
is linear, say

o(z(1)) = Fo(w)z + G,(w)o(t) (15.28)
v(t) = Hy(w)z + Ky (w)o(?)
Since the matrices F,(w) are Hurwitz stable (Schur stable, in the discrete-time case),
each of them satisfies the Lyapunov equation

F,(w) P(w) + P(w)F,(w) = —I (15.29)
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for P(w) > 0. Now, let £2(w) be the square root of P(w) = 2" (w)$2 (w) and apply,
for each w, the following similarity transformation:

Fo(w) = 2W)Fo(w)2(w)™", Go(w) = 2Ww)G,(w), (15.30)
Hy(w) = Hy(w)$27"(w), Ko(w) = K, (w) '
Notice that, in view of the applied transformation, all of the matrices F,(w) share

the same quadratic Lyapunov function with P = I, since

Fow)" + Fo(w) = =27 T (w)2 '(w) <0
for every w. This amounts to saying that the Youla—Kucera parameter

oz(1) = F,(w)z + G,(w)o(t)
v(t) = H,(w)z + K, (w)o(t) (15.31)

has the same input—output behavior as the “original” one and is LPV stable. ]

The constructive proof described above for the determination of the Youla—Kucera
parameter is summarized in the next procedure.

Given the LPV plant (15.1) and a family of LPV regulators of the form (15.6)—
(15.14), each stabilizing the LPV plant for a constant value of w:

1. solve the LMIs (15.2) and (15.3) (or (15.4) and (15.5) in the discrete-time case);

2. compute the gains (15.7) and (15.8);

3. compute the Luenberger observer-based controller (15.6);

4. for every stabilizing regulator (15.6)—(15.14), compute the Youla—Kucera para-
meter (15.28);

5. solve the Lyapunov equation (15.29) (or the discrete-time Lyapunov equation, in
the discrete-time case) and, for every w, determine the corresponding square root
Q2 (w) (such that P(w) = 27T (w)2 (w));

6. apply the suggested transformation to derive the LPV stabilizing Youla—Kucera
parameter (15.31).

Note that the described procedure has to be repeated for all w € W.
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