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Abstract— In this letter, we describe some of the most im-
portant objectives and needs in pandemic control. We identify
the main open problems in the different stages of the decision
making process, as well as the most significant challenges
to overcome them, leading to promising future research di-
rections. We provide a concise review of the most recent
literature describing such challenges, highlighting the main
results, achievements and methodologies that can be employed
to address them. In particular, we discuss some promising
recent techniques that have been successfully applied to the
Covid-19 pandemic and could be very valuable in the design
of novel methodologies to face future pandemics.

Index Terms— Biological systems, Emerging control appli-
cations, Healthcare and medical systems, Modeling, Network
analysis and control.

I. INTRODUCTION

In modern epidemiology, society is modelled as a highly

complex spatially distributed network in which pathogens

may spread. The emergence of a lethal infectious pathogen

can lead to a pandemic, resulting in a serious global health

emergency. For decision-makers, it is crucial to monitor

and anticipate the epidemic evolution, so as to plan multi-

pronged interventions aiming at reducing the diverse impacts

of the pandemic. The challenges raised by a pandemic

require the interplay between Epidemiology, Data Science

and Control Theory. Epidemiology is crucial to understand

the mechanisms that govern the spread of a disease. Data

Science provides techniques, often in a Big Data context,

to develop forecasting tools and spatio-temporal analysis.

Finally, the results from the Control Theory community are

used to design optimal mitigation and/or resource allocation

strategies.

Many challenges, of disparate nature, must be addressed

when monitoring, modelling and managing the evolution of

a pandemic (see Figure 1). Here, we identify and discuss the
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Automática, Universidad de Sevilla, Escuela Superior de Ingenieros, Sevilla,
Spain, (email: talamo@us.es).

2 P. Millán is with the Departamento de Ingenierı́a, Universidad Loyola
Andalucı́a, Seville, Spain, (email: pmillan@uloyola.es).

3 D.G. Reina is with the Departamento de Ingenierı́a Electrónica, Uni-
versidad de Sevilla, Escuela Superior de Ingenieros, Sevilla, Spain, (email:
dgutierrezreina@us.es).

4 V.M. Preciado is with the Department of Electrical and Systems
Engineering, University of Pennsylvania, Philadelphia, USA, (email: pre-
ciado@seas.upenn.edu).

5 G. Giordano is with the Department of Industrial Engineering, Univer-
sity of Trento, Trento, Italy, (email: giulia.giordano@unitn.it).

This work was supported by the Agencia Estatal de Investigación (AEI)-
Spain under Grant PID2019-106212RB-C41/AEI/10.13039/501100011033.
VP acknowledges the support of the US National Science Foundation under
grants CAREER-ECCS-1651433 and NSF-III-200884556. GG acknowl-
edges the support of the Strategic Grant MOSES at the University of Trento.

most critical needs and objectives in the control of epidemics

at different stages of the decision-making process, highlight-

ing the main open problems and promising techniques.

Some of the most relevant challenges are:

1) Data accessibility and quality (e.g. lack of trans-

parency, inconsistencies, different formats, reconciling

monitoring and privacy).

2) Modelling issues (e.g. system complexity, non-

identifiability issues, non-linearity, spatial distribution,

time-varying and heterogeneous dynamics, the crucial

role of delays, multiple pathogen strains, possible

asymptomatic population).

3) Challenges in planning interventions and epidemic

control (including physical distancing, non-

pharmaceutical interventions, testing, contact tracing,

drug distribution and vaccination campaigns),

predicting their effectiveness, and choosing the most

suitable criteria in the presence of multiple needs and

limited resources.

4) Challenges in the design of implementable interven-

tions, taking into account the complexity of human

behaviour, logistic, administrative and political issues.

Our selection of fundamental challenges, promising ap-

proaches and relevant directions for future research is fo-

cused on how to take advantage of available data and

advanced methodologies so as to better understand, predict

and control a pandemic in a highly interconnected and

technological society.

The letter is organized as follows. Section II analyses the

main challenges and methods for real-time monitoring of

pandemics. Section III addresses the problem of estimating

the state of an epidemic, focusing on testing, contact tracing

and observability/identifiability of mechanistic models. The

potential of multi-scale integrated modelling and its open

challenges are described in Section IV. The control objec-

tives in the context of an epidemic are detailed in Section

V. Section VI deals with control-oriented models, whereas

Section VII analyses available epidemic control techniques

and their limitations. Section VIII analyses the techniques

for the optimal allocation of resources to fight pandemics.

Finally, the main conclusions are summarised in Section IX.

II. REAL TIME EPIDEMIOLOGY

The vast amount of real-time data streams describing

the evolution of epidemics in the 21st century offers many

opportunities and challenges. Data sources are fundamental

to achieve different goals [1]:

(i) Detecting a novel epidemic outbreak in a surveillance

system.
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Fig. 1. Difficulties, as well as promising techniques and methods, in the control of a pandemic.

(ii) Monitoring the epidemic incidence and the strain on

the healthcare system.

(iii) Assessing the socioeconomic impact of the epidemic,

e.g. in terms of mobility, adherence of the population

to interventions and economic indicators.

(iv) Including fundamental auxiliary information (such as

demographics, weather and climate, air-transport con-

nectivity) within predictive models.

(v) Analysing the effectiveness of countermeasures and

planning of suitable control strategies.

Inferring meaningful information from the present data del-

uge is very challenging. First of all, the available data

sources exhibit important limitations [1, §4]: a wide variety

of data formats and structures, variability in criteria for data

collection and availability, lack of transparency related to

the real impact of the pandemic, and unreliable information

relative to low-to-middle-income countries, among others.

Secondly, highly resource-consuming big-data techniques are

required to process spatially distributed information from

mobility data sources, social networks, etc. In this context,

data curation is crucial to ensure active management of data

over its life cycle, guaranteeing that it meets the necessary

quality requirements for its practical usage. Data-driven

methods to monitor, model and manage an epidemic require

that data is trustworthy, accessible, reusable, and frequently

updated.

When monitoring the epidemic, aspects that can heavily

bias the estimated infection incidence, making it deviate

from the actual one, are the limited availability of tests, the

variety in reporting behaviours (e.g., the number of infected

is underestimated when only people with serious symptoms

seek for medical advice and get tested), and the delays in

detecting and reporting new infections [2]. Strategies such

as pool testing can help maximise the number of performed

tests even with scarce resources [3]. Early detection of

local outbreaks can be achieved by monitoring wastewater

systems, as well as through digital surveillance [4], which

however poses privacy issues.

Generating consolidated time series through pre-

processing raw data, data reconciliation, data fusion,

clustering methods, and time-series theory is a fundamental

step in developing data-driven methodologies. The objectives

are i) to correct possible inconsistencies and enhance the

quality of the raw time-series; ii) to combine data from

different sources; iii) to restructure data into clusters with

similar characteristics.

Geographic Information Systems (GIS) and big data tech-

nologies are fundamental for the rapid aggregation of multi-

source big data to synthesize mobility indexes, assess the

adherence of the population to interventions and determine

the spatial segmentation of the epidemic risk [5]. At the

technical level, spatio-temporal analysis methods for big data

are emerging [5], [6]. Promising techniques in this field are

spatio-temporal clustering, multilevel modelling for small

area estimation, and Bayesian approaches to disease map-

ping; see the review in [6]. For the decision-making process,

spatial sentiment analysis techniques [5] are emerging to

monitor the social impact of an epidemic and to anticipate

the potential effectiveness of a given intervention, taking the

complex nature of human behaviour into account.

III. ESTIMATING THE STATE OF THE EPIDEMIC

Estimating the epidemic size plays an important role in

assessing the clinical severity of the disease (e.g. case fatality

rate), the attained population-level immunity (which can

be estimated through seroepidemiological studies and sero-

surveillance), and epidemic evolution. Real-time estimation

of the epidemic incidence allows us to understand the most

common transmission vectors (in-house, in-hospital, at-work,

etc.) and identify the contexts or scenarios with the highest

risk of contagion, as well as those geographical areas with

high community transmission. It also plays an important role



in the predictions of future epidemic waves, along with the

time and magnitude of the associated peaks.

Efficient approaches for testing and contact tracing are

required to assess the epidemic situation in real time, which

is critical while containing the contagion. Since contact

tracing can only be effective at low enough case numbers,

it is an effective countermeasure jointly with other non-

pharmaceutical interventions, like physical distancing [7],

[8].

Powerful tools to estimate the state of an epidemic are of-

fered by compartmental and mechanistic models that emulate

how the disease spreads. The classical approach partitions a

population into different compartments and employs mecha-

nistic differential-equation models to describe the transitions

between compartments. The SIR compartmental model in-

cludes Susceptible, Infected and Recovered/Removed com-

partments, while SEIR models include an Exposed compart-

ment to model the latent period after the infection; different

extensions to these compartmental models include extra com-

partments to characterize asymptomatic but still contagious

population, population in quarantine, or hospitalised patients,

just to name a few [9]. Also, networked models are adopted

to take spatial heterogeneity and individual interactions into

account [10],[11]. All epidemiological models depend on

several parameters (such as the contact rate, the transmission

probability, the average infectious period) that can be either

constant or time-varying [12].

The state variables associated with some compartments

are directly measurable, such as the number of hospitalised

patients, while others, such as the number of asymptomatic

infection cases, are impossible (or at least impractical) to

measure. Asymptomatic transmission is a crucial issue for

several pathogens, including SARS-CoV-2, Zika virus and

HIV. Similar considerations can be made with respect to the

model parameters. Therefore, estimating unmeasured state

variables and parameters based on available measurements

is key. Structural observability/identifiability [13] plays here

a crucial role: for a given compartmental model and mea-

surable outputs, it allows to determine which compartments

and parameters can be respectively observed and identified.

Thus, this kind of analysis provides excellent tools to choose

among different models and estimation goals depending on

the situation, and prevents the use of unreliable combinations

of measurements, models, and estimation goals that can lead

to poor predictions, conflicting conclusions, and distrust of

epidemiological models.

An additional challenge in state estimation arises where

time delays are explicitly considered. Delays affect, among

others, the process of detecting/reporting contagions [2] or

the latency between infection and infectiousness. Delays

are often incorporated in compartmental models, whose

observability can be analysed resorting to the backward shift

operator and rewriting the equations in differential form

to determine whether strong, regular, or weak observability

holds (see [14] for an application to the Covid-19 pandemic).

The most common situation in epidemic modelling is

to have only partial information about the recovery and

infection events (incomplete epidemic data). In this context,

Markov Chain Monte Carlo methods (MCMC) and Expected

Maximization (EM) algorithms are valuable methodologies

to make Bayesian inferences about the missing data and the

unknown parameters [12, §4].

Fitting the model parameters to the data available can

be challenging even for medium-complexity models be-

cause of possible non-identifiability issues: different sets of

parameters, yielding a similar fit to data, may provide a

significantly different estimate of the main epidemic features,

such as peak size or reproduction number [13], [8, §2.2].

This is critical, since very different control outputs could

be proposed depending on the selected set of parameters.

A promising approach to address this issue is to employ

large-scale convex optimization to fit spatially distributed

data in network modelling. The main idea is to use data rec-

onciliation and regularization techniques, assuming that the

spread of the disease is similar in locations with analogous

characteristics [15]. In this way, the degrees of freedom in

the identification process can be reduced to a level at which

the obtained results are robust and consistent.

When both observability and identifiability analyses are

correctly performed, the state estimation of the pandemic can

provide essential information, such as e.g. the (possibly time-

varying) rates of transmission and recovery, the latent period,

and the fractions of asymptomatic population or exposed

population.

IV. MULTI-SCALE INTEGRATED MODELLING

Modelling epidemics is challenging due to the complex

nature of the spreading phenomena, which are intrinsically

nonlinear and typically time-varying [9], [7], spatially dis-

tributed [10], [16] and large-scale, since they result from

the interactions among myriads of agents. Delays (e.g. in

symptom onset, in reporting infections) have a crucial role

in the ensuing dynamics, which can be further complexified

by the concurrent presence of multiple pathogen strains [17]

and on-going mass vaccination. Other challenges are due to

population heterogeneity, since the incidence and the clinical

evolution of the disease can vary depending on demographic

factors (such as age, gender, ethnicity), and to the need of

accounting for unpredictable human behaviours [18].

To better understand, predict and control epidemics, we

need multi-scale mathematical models that describe the in-

terplay between the in-host and between-host evolution of

infectious diseases. In-host dynamic captures the biological

characteristics of the pathogen and its biochemical interac-

tions with the host cells and immune system [19]. Between-

host dynamic captures the spread of the disease in a pop-

ulation, describing the evolution of contagion both through

aggregate compartmental models [9], [7] and through agent-

based or networked models of the population [10].

To capture the spread of the disease considering the

complex web of interactions between individuals, promis-

ing techniques are offered by spatial and network-based

epidemiology [6], [10], often relying on big data [5], to

infer realistic mobility/contact patterns, as well as temporal



network epidemiology [6], [11]. Originating in statistical

physics, percolation theory is a large branch of network

theory concerned with the outcome of deleting nodes or

edges from networks. It constitutes a powerful tool to un-

derstand the stochastic spread of an epidemic in a complex

time-varying network [11, §6]. Another possibility to analyse

the complex non-linear spatio-temporal spread is to resort

to Dynamic Mode Decomposition and Koopman Operator

Theory; preliminary results along these lines can be found

in [20].

A holistic multi-scale perspective, embracing both in-

host and between-host dynamics and taking into account

the interactions between them, as well as including psy-

chological, social and economic effects of the epidemic and

the adopted countermeasures, is fundamental for a thorough

understanding of the epidemic phenomenon as a whole. It

also enables the design of optimal control interventions both

at the patient level (pharmaceutical interventions, such as

vaccines or targeted drugs) and at the population level (non-

pharmaceutical interventions, such as lockdown, physical

distancing, use of protective equipment, testing and contact

tracing), which take into account the epidemiological and

public-health perspective along with the impact on society

at large. In this context, multi-scale stochastic models for

epidemics have been recently put forth [21]. A fore-running

attempt for multi-scale epidemic modelling that integrates

epidemiology, immunology and economy is sketched in [22],

but holistic multi-scale models are still in their infancy and

constitute a promising direction for future interdisciplinary

research.

Another open challenge is to devise novel integrated

model-based and data-based approaches that are tailored to

nonlinear spreading dynamics. Through an integrated model-

and-data framework [12], we could both leverage insights

provided by first-principle knowledge about the epidemic

phenomena and the current availability of huge amounts

of data, which are, however, often inaccurate, incomplete

or uncertain, and from which further knowledge can be

extracted through learning approaches.

V. CONTROL OBJECTIVES

In order to contain the spread of an epidemic, it is nec-

essary to decide on the most effective timing and stringency

of interventions, and the optimal distribution of available

resources. This is a multifaceted problem that, in most cases,

can be stated as a constrained optimization problem [23],

[10]. Taking a holistic perspective, the objective function

should account for health, social and financial impacts of

the pandemic. From a public health viewpoint, the goal is to

minimize the total number of deaths due to the disease, or

the total number of infections (or of proxy variables, such

as the reproduction number). From a financial perspective,

the aim is to minimize the impact of the disease on both the

economy and financial agents; the economic consequences

of an epidemic can be measured through indexes related to

wealth creation and job destruction. The temporal persistence

of the disease is a major factor in this direction; in fact, it

impacts the three facets mentioned above: health, society, and

finance. Hence, the optimization problem should not only

minimize the total number of deaths (or of infections), but

it should do so in the shortest possible time.

To achieve these objectives, decision makers have at their

disposal a wide array of tools. At the earliest stage of a

new epidemic, pharmaceutical interventions are often not

available and the main mechanism to contain the disease is

movement restrictions within a region, traffic control across

regions, and social distancing measures, which come at

a social and economic cost. In this scenario, a decision

maker needs current estimates of the epidemic state and

predictive models of the disease to assess the situation and

the risks, and implement movement restrictions aimed at

creating firewalls around areas with high prevalence, as

well as social distancing measures to reduce the spread of

infections. As mentioned above, these complex decisions can

be made aided by optimization tools, intended for reducing

the total number of infections/deaths while minimizing the

socioeconomic costs of the implemented measures [10]. To

formulate a suitable optimization problem, we need reliable

and robust models able to predict the impact of different

countermeasures on the future epidemic evolution [7], [8].

We also need appropriate cost functions accounting for the

socioeconomic costs of these countermeasures. The opti-

mization problem can then be formulated in three closely

related ways: (1) finding a point in a Pareto boundary

by choosing the relative importance of health, social, and

economic factors; (2) setting mathematical bounds on the

levels of acceptable social/economic costs and then deter-

mining the optimal resource distribution to minimise the

impact on health; (3) setting bounds on the healthcare system

strain (such as bounds on the number of occupied ward

or intensive-care-unit beds in hospitals) and minimising the

socioeconomic impact.

VI. CONTROL-ORIENTED PREDICTIVE MODELS

Prior to developing a control strategy, it is important

to implement predictive models to assess the impact of

interventions on the spread of the pathogen, the healthcare

system, the mortality rate, and so on. In this regard, it is

important to have access not only to the data corresponding

to epidemiological variables, but also to keep track of the

implemented non-pharmaceutical interventions [1, §8.2].

Both the time-varying and stochastic nature of the epi-

demic phenomenon require not only the design of fore-

casting tools [24, §4], but also the quantification of the

uncertainty related to the obtained predictions [25]. The

accuracy limitations of the predictive models are due to

different factors, like gaps in our mechanistic understanding

of disease transmission, low quality data, and fundamental

limits to the predictability of complex epidemic processes

[25]. Another relevant source of uncertainty is the interplay

between disease and human behaviour, which can lead to

outcomes that are difficult to predict [18]. This is fueled

by social media, fear-reinforcing 24/7 news, and political

polarization.



Sensitivity analysis, Monte Carlo methods, generalized

polynomial chaos are examples of uncertainty quantification

techniques [26] that are often used in epidemiology. An

emerging technology in epidemic modelling is the use of

positive systems theory: since populations in a compart-

mental model are non-negative, it is possible to develop

guaranteed interval predictions that account for all the range

of variability of the uncertain parameters [8, §5].

In order to develop control strategies, it is of paramount

importance to develop predictive models well-suited for the

implementation of effective decision making in the context

of an epidemic outbreak. There is a trade-off between highly

complex models and oversimplified ones. For example, not

considering the asymptomatic population in the Covid-19

pandemic can result in an excessive oversimplification, while

too complex networked models might hinder the numerical

solution of the optimization problems that arise in an opti-

mal control formulation. Medium-complexity compartmental

models have been often used as predictive models for control

in the Covid-19 pandemic (e.g. the SIDARTHE model [7] in

the model predictive control formulation proposed in [8] and

the switching approach in [27]). The focus is on the robust

achievement of various epidemic objectives, and not on the

development of a precise model.

VII. CONTROL TECHNIQUES

In a control setting, an epidemic is a time-varying un-

certain process in which adaptive feedback strategies are

required to compensate for uncertainty, model mismatch and

time-varying nature.

To make decisions in such a highly uncertain context,

where exact parameter values are hardly known, it would

be important to identify scale-invariant and parameter-

independent features of epidemiological models, based on

which robust decisions could be safely enforced even with

poor knowledge of the system parameters; to this aim, struc-

tural approaches tailored to biological and epidemiological

models, such as those surveyed in [28], could be exploited.

The need to enforce restrictions during an epidemic, com-

bined with behavioural fatigue due to their socioeconomic

consequences, is likely to trigger intermittent containment

measures, with the alternation between higher-transmission

and lower-transmission phases. Promising techniques for

the design of intermittent restrictions (trigger control) are

outlined in [27], [16]. In this setting, as commented before,

the control goals are often stated in terms of a multi-objective

formulation. Trigger control of an epidemic can be addressed

by means of oracle-based approaches: given a particular

epidemiological situation, the oracle answers yes or no to the

question whether a given intervention should be adopted (see

e.g. [8, §3.1.2]). In this context, the decision problem can

be viewed as a classification problem (supervised learning),

for which many approaches from machine learning exist

(support vector machines, random forest, neuronal networks,

etc.). In this case, interpretable classification techniques are

preferable, because they not only provide an answer, but also

motivate it.

Model Predictive Control (MPC) formulations are particu-

larly flexible, because they can explicitly consider constraints

(e.g. bounds to prevent the saturation of the healthcare

system) and support decisions by identifying the optimal

timing and intensity of interventions [29], [8].

The output of a model predictive controller is adaptive,

in the sense that it takes into account the latest available

information on the epidemic state; MPC schemes can cope

with model uncertainty and/or disturbances. Moreover, some

MPC formulations explicitly consider the uncertainty af-

fecting the parameters of the epidemic model [8]. Because

of the spatially clustered distribution of an epidemic [10],

specific control techniques from the field of distributed model

predictive control can be applied, as in [29].

VIII. OPTIMAL RESOURCE ALLOCATION: TESTING AND

VACCINATION

At the early stage of a pandemic, the optimal distribution

of medical tests is of utmost importance. Since the adopted

policies are decided based on the available estimates of

the epidemic state, it is of critical importance to design an

efficient strategy to distribute tests throughout the population.

This problem can be posed as an optimization program

where the objective is to maximize the amount of collected

information about the state of the disease, while satisfying

constraints on the number of available tests [3]. An appro-

priate distribution of tests not only better informs health

agencies about the state of the disease, but can also be used as

a tool for early detection of new outbreaks. Since outbreaks

tend to grow exponentially at the early stages, an effective

system for early detection of outbreaks can drastically reduce

both social and economic impacts.

The production and distribution of vaccines is another

essential pillar in the suppression of an epidemic, especially

for a pandemic that demands global-scale vaccine logistics

[30]. The distribution of vaccines should be strategically

designed to minimize the total number of deaths at the end of

the vaccination campaign. To this aim, not only fabrication

and distribution limits should be taken into account, but also

an allocation strategy should be carefully designed to decide

which subpopulations should be vaccinated first. Obviously,

those with a higher mortality rate should have a priority

in the vaccination process; however, to face an infectious

disease, the optimal strategy might be to also vaccinate

potential superspreaders, such as frontline workers, at an

early stage. Furthermore, the optimal distribution of different

types of vaccines, each with a different price, efficacy, and

fabrication/distribution limits, requires the solution of a large

optimization program. Another challenge in this scenario is

the emergence of different pathogen strains during the vacci-

nation roll-out, as in the Covid-19 pandemic, against which

different available vaccines may be differently effective.

IX. CONCLUDING DISCUSSION

We have selected the main objectives and challenges when

addressing epidemics, and pandemics, from a systems-and-

control perspective. Adopting a holistic approach, we have



described and discussed the main tasks required for data-

driven management of an epidemic: i) monitoring the disease

spread, ii) developing control-oriented predictive models, iii)

making optimal decisions for planning both interventions

and allocation of resources. We have highlighted the most

promising emerging methodologies to address the different

challenges raised by present and future epidemics of the

21st century. The general methodologies proposed in our

references, although often applied to the topical case study

of Covid-19, could be adopted as well to deal with other

infectious diseases. Useful tools for an improved manage-

ment of pandemics from a systems-and-control perspective

can be inspired by the theory of the robust control of

positive systems, structural approaches to assess properties of

systems even in highly uncertain settings, polynomial chaos

techniques for uncertainty quantification, percolation theory

to effectively assess the evolution of epidemics through

complex network-based models, approaches for large-scale

optimization suitably tailored to exploit the specific features

of epidemiological models. Promising avenues for future

interdisciplinary research are opened by the need of holis-

tic, integrated models that bridge multiple resolution scales

and incorporate the multi-faceted impact of epidemics on

healthcare as well as the social, psychological, economic

consequences of the contagion and of the necessary coun-

termeasures to stop its spread.
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