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Abstract— Starting from a symmetric state-feedback solution
ensuring α-exponential convergence in an ellipsoidal sublevel
set, with asymmetric saturation and single-input linear plants,
we propose a novel asymmetric scheduled extension preserving
the original symmetric solution in that sublevel set and extend-
ing the guaranteed stability region to the union of all possible
contractive ellipsoids centered at a shifted equilibrium. Our
design being based on the solution of a parametric optimization
problem, we prove Lipschitz properties of the ensuing feedback
law and we compute its explicit state-feedback expression.

I. INTRODUCTION

While input saturation has been mostly studied using

symmetric limits (see, e.g., [11], [17]), asymmetric lim-

its often arise in practice, thereby making the symmet-

ric solutions (typically based on focusing on the smallest

limit) quite conservative. The community started looking

into nonsymmetric Lyapunov certificates in the presence of

symmetric stabilizers (see [4] and references therein, and also

[12], [13]). A piecewise quadratic Lyapunov function with

symmetric stabilizing saturated linear feedbacks is used in

[14] and [10], in the continuous-time and discrete-time cases,

respectively. Symmetrically stabilizing a shifted equilibrium

(see [5, Ch. 8] and references therein) comes at the cost of

not stabilizing the origin any longer. In [18], a switching

dynamical controller is designed to exploit the available

range of the control action on both sides of the saturation

levels. To provide enlarged basins of attraction, [15] proposes

the design of an asymmetric stabilizer, based on the convex

scaling in [6] for the shifted stabilizer. That solution pro-

vides significantly larger guarantees but has the drawback

of 1) restricting the achievable basin of attraction with a

conservative point inclusion condition required to apply the

technique in [6] and 2) reducing the local performance of the

symmetric solution. In model predictive control (MPC), con-

straints can be directly incorporated in the controller design:

explicit MPC can handle linear systems with symmetric or

asymmetric input saturation levels in an explicit controller

design [3]. However, explicit MPC derives a control law

based on discrete-time systems in general, whereas here we

address the problem in the continuous-time setting. See [3]

or [8] for details on (explicit) MPC.
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We propose a novel asymmetric scheme based on focusing

on the shifted equilibrium, as in [5, Ch. 8], and continuously

driving that equilibrium back to the origin by relying on the

solution of a parametric optimization problem. As compared

to [15], this solution is not based on convex scalings and

therefore preserves the convergence rate given by the sym-

metric stabilizer in its guaranteed ellipsoidal set. Moreover,

it does not require any point inclusion conditions, therefore

obtaining an estimate of the basin of attraction containing all

the contractive ellipsoids that can be constructed in shifted

coordinates. While the proposed framework applies to multi-

input plants, we focus most of the paper on the single-

input case, for which we can compute explicit expressions

of the control law solving the optimization. We discuss

symmetric and shifted asymmetric stabilizers in Section II,

then for the single-input case we propose our optimization-

based solution in Section III and its explicit version in

Section IV. Numerical examples in Section V show the

ability of our controller to provide greatly enlarged certified

stability regions.

Notation. For u−, u+ ∈ R
m
≥0, m ∈ N, sat[u−,u+](u) =

max{min{u+, u},−u−} defines the saturation, where the

maximum/minimum are to be understood componentwise.

The deadzone is defined as dz[u−,u+](u) = u−sat[u−,u+](u).
For Z ∈ R

n×n, He(·) denotes He(Z) = Z + Z⊤. For

Z ∈ R
n×m and z ∈ R

n, Z[k] and zk denote the k-th row and

the k-th entry, respectively. A vector v ∈ R
n satisfies v ≤

min{u−, u+} if vk ≤ min{u−
k , u

+
k } for all k ∈ {1, . . . , n}.

A positive definite matrix P ∈ R
n×n can be uniquely

decomposed as P = P
1
2P

1
2 where P

1
2 ∈ R

n×n is positive

definite. In R
n, we use the norms |x| =

√
xTx, |x|P =√

xTPx, P ∈ R
n×n positive definite, I ∈ R

n×n denotes

the identity matrix, 1 satisfies 1k = 1, k ∈ {1, . . . , n} and

int(A) denotes the interior of a set A ⊂ R
n.

II. SYMMETRIC AND SHIFTED STABILIZERS

We consider linear saturated continuous-time systems

ẋ = Ax+B sat[u−,u+](u) (1)

with state x ∈ R
n, input u ∈ R

m, A ∈ R
n×n, B ∈ R

n×m

and saturation limits u−, u+ ∈ R
m
>0. We define the average

saturation range and the average saturation center as

ū = 1
2 (u

+ + u−), u◦ = 1
2 (u

+ − u−). (2)

For simplicity, we assume that the average saturation

range ūk satisfies ūk = 1 for all k ∈ {1, . . . ,m}; this is

not restrictive and can always be assumed without loss of

generality for u−, u+ ∈ R
m
>0 by scaling the columns of B.

Assumption 1: It holds that ū = 1 ∈ R
m. ⋄
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To convey the idea of the controller design and to obtain

explicit formulations, we restrict our presentation in most

parts of the paper to the single input case and we assume

that the matrix A is non-singular. However, by discussing

different cases and by using a more convoluted notation,

the ideas appear to extend to the multi input case and to

dynamics (1) with singular matrix A.

Assumption 2: The pair (A,B) is stabilizable and A is

non-singular. ⋄
Of particular interest is the subspace of induced equilibria

Γ = {xe ∈ R
n : Axe +Bue = 0, ue ∈ R

m}. (3)

Under Assumption 2, there is a continuous mapping ue 7→
xe(ue) defined as

xe(ue) = −A−1Bue, (4)

characterizing pairs of induced equilibria (xe, ue) ∈ Γ×R
m

through the input ue ∈ R
m. In the definition of Γ, the satu-

ration levels are not present. System (1) with u ∈ [−u−, u+]
(to be understood componentwise) can only be stabilized at

xe if a corresponding input satisfies ue ∈ (−u−, u+).

In a neighborhood of the origin, we seek a feedback law

u = Kx+ L dz[u−,u+](u), (5)

with K ∈ R
m×n, L ∈ R

m×m, asymptotically stabilizing the

origin. Combining (1) and (5), the closed-loop dynamics can

be written as

ẋ = (A+BK)x− (B −BL) dz[u−,u+](u)

u = Kx+ L dz[u−,u+](u).
(6)

To characterize basins of attraction of asymptotically sta-

ble (induced) equilibria xe, we consider sublevel sets of

quadratic functions. In particular, for κ ∈ R≥0, xe ∈ R
n

and P ∈ R
n×n positive definite we define the set

Eκ
xe
(P ) = {x ∈ R

n : |x− xe|P ≤ κ}. (7)

Proposition 1 (Symmetric Stabilizer, [15, Theorem 1]):

Given the plant (1), let v ∈ R
m
≥0 with v ≤ min{u−, u+} and

let α ∈ R≥0. Moreover, let Qv ∈ R
n×n, Wv, Yv ∈ R

m×n,

Uv, Xv ∈ R
m×m be a solution of the optimization problem

max
Q,W,Y,U,X

log det(Q) (8)

subject to U > 0 diagonal, Q = Q⊤ > 0

He

[
AQ+BW + αQ −BU +BX

W + Y X − U

]
< 0

[
v2k Y[k]

Y ⊤
[k] Q

]
≥ 0, k = 1, . . . ,m.

Then, for

K = WvQ
−1
v , L = XvU

−1
v , Pv = Q−1

v (9)

the nonlinear algebraic loop in (5) is well posed (i.e., its

solution is unique and Lipschitz) and x⊤Pvx exponentially

decreases with rate larger than 2α within the set E1
0 (Pv).

Consequently, the origin of (6) is locally exponentially stable,

with basin of attraction containing the set E1
0 (Pv). y

The subscript v is used to indicate the dependence of

P on the selection of vector v ∈ R
m
≥0. In particular, we

observe that LMIs (8) are homogeneous in the decision

variables, except for v2k in the constraints. Therefore, scaling

vector v in Proposition 1 by a positive scalar κ leads to

scaling the corresponding optimal solution (8) by κ2. More

specifically, according to (9), this corresponds to a scaled

Pκv = κ−2Pv , whereas gains K and L remain unchanged

because the scaling cancels out (this is the reason why no

subscript is used in K and L). Finally, the certified ellipsoidal

set scales from E1
0 (Pv) to E1

0 (Pκv) = Eκ
0 (Pv). This fact is

stated in the next corollary.

Corollary 1 (Homogeneity): Let K, L, Pv defined in (9)

correspond to an optimal solution of (8) for v ∈ R
m
≥0. Then

for all κ ∈ R≥0 with κv ≤ min{u−, u+}, and with the same

gains K and L, function x⊤Pvx exponentially decreases with

rate larger than 2α within the set Eκ
0 (Pv). y

Proposition 1 can be used to define a control law stabiliz-

ing an induced equilibrium, instead of the origin. Consider an

equilibrium pair (xe, ue) satisfying (4) and assume that u−+
ue, u

+ − ue ∈ R
m
>0. Additionally, consider the coordinate

transformation x̃ = x− xe and ũ = u− ue. It holds that

˙̃x = ẋ = Ax+B sat[u−,u+](u)

= Ax̃+Axe +B(ue + sat[u−+ue,u+−ue](ũ))

= Ax̃+B sat[u−+ue,u+−ue](ũ). (10a)

with the shifted input ũ selected as follows

ũ = Kx̃+ L dz[u−+ue,u+−ue](ũ). (10b)

For the shifted dynamics (10), the same result as that

of Corollary 1 applies. This fact is stated in the follow-

ing corollary, where a more convenient expression of u
is deduced from (10b) exploiting the identities (4) and

dz[u−+ue,u+−ue](ũ) = dz[u−,u+](u), which follows straight-

forwardly from (10a).

Corollary 2: Let Assumption 2 be satisfied. Consider an

equilibrium pair (xe, ue) defined through (4). Given κ ∈ R>0

and v ∈ R
m
≥0 assume that κv ≤ min{u− + ue, u

+ − ue},

and let K, L, Pv defined in (9) correspond to an optimal

solution of (8). Then the following selection of the input u

u = ue +K(x+A−1Bue) + L dz[u−,u+](u) (11)

ensures that function Vxe
: Rn → R≥0

Vxe
(x)=(x− xe)

⊤Pv(x− xe)= |x− xe|2Pv
= |x̃|2Pv

(12)

exponentially decreases with rate larger than 2α, i.e.,

〈2Pv(x− xe), Ax+B sat[u−,u+](u)〉< −2αVxe
(x), (13)

within the sublevel set x̃ ∈ Eκ
0 (Pv). Consequently, selection

(11) locally exponentially stabilizes the (induced) equilib-

rium xe(ue) of (1), as per (4), with basin of attraction

containing the shifted ellipsoid Eκ
xe
(Pv) defined in (7). y

Remark 1: Expression (11) specifies the control input u
only implicitly, even though Proposition 1 ensures that the

corresponding solution is Lipschitz. Proceeding as in [15,

Lemma 3], for the single-input case m = 1, the selection

u = ue +K(x+A−1Bue) (14)

+ L(I − L)−1 dz[u−,u+](ue +K(x+A−1Bue))

can be proven to be the explicit solution to (11). ◦
Note that an appropriate coordinate transformation x 7→
P

1
2
v x, i.e.,

χ = P
1
2
v x ⇐⇒ x = (P

1
2
v )−1χ, (15)
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Fig. 1. Level sets of the function V (x) = x⊤P1x in the original

coordinates (left) and in the rotated coordinates χ = P
1
2

1 x (right).
Additionally, the subspace of induced equilibria (3) is shown in red.

with P
1
2
v ∈ R

n×n symmetric and positive definite, allows us

to consider, instead of the Lyapunov function with ellipsoidal

level sets, a Lyapunov function with circular level sets.

Using the notation introduced in the results discussed in this

section, the function (12) reduces to the Euclidean norm in

the χ-coordinates, V̂χe
: Rn → R≥0, V̂χe

(χ) = |χ − χe|2.

With C := P
1
2
v A−1B, induced equilibria (4) are given by

χe(ue) = P
1
2
v xe(ue) = −P

1
2
v A−1Bue (16)

in the χ-coordinates. While using coordinates χ instead of x
is not necessary in the following sections, the interpretations

in the χ-coordinates are more illustrative in some places.

Example 1: Consider the dynamical system (1) defined

through the matrices A =
[
0.6 −0.5
0.3 1.0

]
and B = [ 13 ].

Solving (8)1 the positive definite matrix P1 = Q−1
1 =[

0.7399 −0.6654
−0.6654 0.8266

]
is obtained for v = 1 and α = 0.1.

In Fig. 1 the level sets of the function V (x) = x⊤P1x
and V̂ (χ) = χ⊤χ are shown on the left and on the right,

respectively. Here, we obtain P
1
2

1 =
[

0.7447 −0.4305
−0.4305 0.8008

]
. In

addition, the subspace of induced equilibria Γ defined in (3)

is shown in red in Fig. 1. Since v = 1, if κ ≤ min{u−, u+}
for κ ∈ R>0, then the origin of the closed-loop system (6) is

asymptotically stable and the domain of attraction contains

the set Eκ
0 (P1) according to Proposition 1 and Corollary 1.

Assume now that the saturation levels are fixed at u− =
1.5 and u+ = 0.5. Then Proposition 1 and Corollary 1 can

be applied with v = 1 and κ = 0.5 guaranteeing that the blue

sublevel set in Fig. 2 is contained in the basin of attraction

of the closed-loop system (6). Alternatively, the sublevel sets
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Fig. 2. Sublevel sets Eκ
xe

(P ) for different (induced) equilibria for which the
combination of Proposition 1 and Corollaries 1 and 2 guarantee asymptotic
stability of the (induced) equilibrium xe of the closed-loop system.

1To avoid numerical problems, the absolute values of unknowns in (8)
are additionally constrained to be less or equal to 10. Here, (8) is solved
through CVX [9] in Matlab.

guaranteeing asymptotic stability of the induced equilibria

xe = −A−1Bue, ue ∈ (−1.5, 0.5), using the feedback law

(11) can be derived through Corollary 2. For ue = −0.5, the

assumptions of Corollary 2 are satisfied for κ = 1, leading to

a larger sublevel set E1
xe(ue)

(P1), compared with E0.5
0 (P1),

for which convergence to xe is guaranteed (see Fig. 2). ⋄

III. OPTIMIZATION-BASED SHIFTED STABILIZER

Fig. 2 and the discussions above clearly indicate that

the size of the estimate of the basin of attraction varies

significantly with the induced equilibrium to be stabilized.

We exploit here this potential by deriving a modified con-

troller with a larger estimate of the basin of attraction. In

particular, the basin of attraction of our modified feedback

law includes all sublevel sets Eκ
xe(ue)

(P1), ue ∈ (−u−, u+),
for which asymptotic stability of xe is guaranteed through

Proposition 1, Corollaries 1 and 2 with the shifted feedback

law (11). From this point onwards, we restrict our attention

to the single input case, i.e., we assume that m = 1.

A. Properties of the shifted stabilizer

Let Pū be the solution of (8) with v = ū = 1 defined in

(2). Then, the function β : [−u−, u+] → [0, 1] defined as

β(ue) = min{u− + ue, u
+ − ue} (17)

=

{
u− + ue, for ue ∈ [−u−, u◦]
u+ − ue, for ue ∈ [u◦, u

+]

defines the maximal value β(ue) = κ in Corollary 2 (with

v = ū) such that the assumptions of Corollary 2 are satisfied.

Moreover, according to Corollary 1, the feedback law (11)

guarantees the asymptotic stability of xe(ue) in (4), with

basin of attraction containing the set

Eβ(ue)
xe(ue)

(Pū) = {x ∈ R
n : |x− xe(ue)|Pū

≤ β(ue)}. (18)

In the χ-coordinates, introducing χe(ue) := P
1
2

ū xe(ue)

(see (16)), the set Eβ(ue)
xe(ue)

(Pū) simplifies to

Eβ(ue)
χe(ue)

(I) = {χ ∈ R
n : |χ− χe(ue)| ≤ β(ue)}, (19)

which we will work with in the following. In this section

we will prove that the proposed scheduled law is stabilizing

with basin of attraction containing the union of the sublevel

sets generated by all possible values of ue ∈ (−u−, u+),

Rx=
⋃

ue∈(−u−,u+)

Eβ(ue)
xe(ue)

(Pū), Rχ=
⋃

ue∈(−u−,u+)

Eβ(ue)
χe(ue)

(I), (20)

expressed in the x- and χ-coordinates, respectively. Also

with symmetric saturation limits, Rx may provide a larger

estimate of the basin of attraction than the ellipsoidal esti-

mates of the form Eβ(0)
0 (Pū). For χ ∈ int(Rχ) we consider

the following optimization problem

u⋆
e(χ) ∈ argmin

ue∈[−u−,u+]

χe(ue)
⊤χe(ue)

subject to |χ− χe(ue)| ≤ β(ue).
(21)

Based on a state χ ∈ int(Rχ), optimization problem (21)

implicitly defines an induced equilibrium pair (χ⋆
e, u

⋆
e), with

χ⋆
e=χe(u

⋆
e) := P

1
2

ū xe(u
⋆
e)=−Cu⋆

e := −P
1
2

ū A−1Bu⋆
e (22)



such that χ ∈ Eβ(u⋆
e)

χ⋆
e

(I) holds. Moreover, the objective

function is defined so that, from the set of feasible solutions,

the one with the shortest distance to the origin is selected.

Lemma 1: Let m = 1 and assume that Assumptions 1

and 2 are satisfied. Consider the optimization problem (21)

where β and Rχ are defined in (17) and (20), respectively.

Then the following properties are satisfied:

1) For all χ ∈ int(Rχ), (21) is feasible, the feasible set

is closed and convex and its interior is nonempty;

2) The set-valued map F : int(Rχ) ⇉ [−u−, u+],

F (χ) = {ue ∈ [−u−, u+]| |χ− χe(ue)| ≤ β(ue)},
defining the feasible set, is continuous;

3) u⋆
e(χ) = 0 for all χ ∈ Eβ(0)

0 (I);
4) u⋆

e(χ) satisfies |χ − χe(u
⋆
e)| = β(u⋆

e) for all χ ∈
int(Rχ)\Eβ(0)

0 (I);
5) u⋆

e(χ) ∈ (−u−, u+) is unique for all χ ∈ int(Rχ);
6) u⋆

e(·) : int(Rχ) → (−u−, u+) is Lipschitz. y

Proof: Item 1. Feasibility follows immediately from

the definitions of function β and the set Rχ. Moreover,

since [−u−, u+] is non-empty, for each χ ∈ int(Rχ), there

exists ue ∈ (−u−, u+) satisfying χ ∈ int(Eβ(ue)
χe(ue)

(I)) and

continuity of |χ−χe(·)| and β(·) imply the existence of ε > 0

such that χ ∈ Eβ(ue+δ)
χe(ue+δ)(I), ue + δ ∈ (−u−, u+) whenever

|δ| ≤ ε, namely the feasible set has nonempty interior.

Closedness of the feasible set follows from continuity of

|χ − χe(·)| and β(·) and the nonstrict inequality in (21).

Let χ ∈ Rχ and take ue1 , ue2 ∈ [−u−, u+] such that

|χ − χe(ue1)| ≤ β(ue1) and |χ − χe(ue2)| ≤ β(ue2). Then

for all λ ∈ [0, 1], using (16)

|χ−χe(λue1 + (1− λ)ue2)|
≤ λ|χ− χe(ue1)|+ (1− λ)|χ− χe(ue2)| (23)

≤ λβ(ue1) + (1− λ)β(ue2) ≤ β(λue1 + (1− λ)ue2).

The last step follows from the concavity of β in (17). Thus,

the feasible set is convex.

Item 2. Continuity of F follows from the properties es-

tablished in item 1 together with [7, Example 3B.4] (or [7,

Theorem 3B.3]). In particular, (23) shows that g(χ, ·) =
|χ− χe(·)| − β(·) is convex on the domain of interest.

Item 3 follows from (19) and the objective function.

Item 4. To obtain a contradiction, assume that |χ −
χe(u

⋆
e)| < β(u⋆

e). Since χ /∈ Eβ(0)
0 (I) it follows that

χe(u
⋆
e) 6= 0, i.e., u⋆

e 6= 0. Since β(·), χe(·) and | · | are

continuous, there exists u#
e ∈ [−u−, u+] with |u#

e | < |u⋆
e|

and |χ−χe(u
#
e )| < β(u#

e ). Moreover, the condition |u#
e | <

|u⋆
e| implies that χe(u

#
e )

⊤χe(u
#
e ) < χe(u

⋆
e)

⊤χe(u
⋆
e), which

contradicts the optimality of u⋆
e and thus completes the proof.

Item 5. Since the feasible set is closed, convex and com-

pact (see item 1) and the objective function is continuous, the

minimum |χe(u
⋆
e(χ))|2 in (21) is attained through u⋆

e(χ) ∈
F (χ) ⊂ [−u−, u+]. Moreover, since the objective function

is strictly convex, u⋆
e(χ) ∈ (−u−, u+) is unique.

Item 6. Since F (·) is continuous and due to the selection

of the objective function, u⋆
e(·) is continuous (see [2, Ch.

1, Sec. 7, Thm. 1] and [1, Ch. 6.5.1]). As a next step

consider u1, u2 ∈ (−u−, u+) and χ1, χ2 ∈ int(Rχ) with

χ1 ∈ Eβ(u1)
χe(u1)

(I), χ2 ∈ Eβ(u2)
χe(u2)

(I). For any λ ∈ [0, 1]
consider the convex combinations

uλ = λu1 + (1− λ)u2, χλ = λχ1 + (1− λ)χ2.

Then proceeding as in (23), we get

|χλ − χe(uλ)| = |λ(χ1 − χe(u1)) + (1− λ)(χ2 − χe(u2))|
≤ λ|χ1 − χe(u1)|+ (1− λ)|χ2 − χe(u2)| ≤ β(uλ),

i.e., χλ ∈ Eβ(uλ)
χe(uλ)

(I) and χλ ∈ Rχ. Consider any

χ1, χ2 ∈ int(Rχ) and the corresponding optimal solutions

u⋆
e(χ1), u

⋆
e(χ2) ∈ (−u−, u+). For any λ ∈ [0, 1] consider

χλ = λχ1 + (1− λ)χ2, the corresponding optimal solution

of (21) denoted by u⋆
e(χλ) and the suboptimal solution

ũλ = λu⋆
e(χ1) + (1 − λ)u⋆

e(χ2) characterized above. From

optimality, the square root of the objective function satisfies

|χe(u
⋆
e(χλ))| ≤ |χe(ũλ)|

≤ λ|χe(u
⋆
e(χ1))|+ (1− λ)|χe(u

⋆
e(χ2))|.

In particular, |χe(u
⋆
e(·))| : int(Rχ) → (−u−, u+) is a

convex function and thus a locally Lipschitz continuous

function (see [16, Thm. 10.4]), i.e., for each compact and

convex set K ⊂ int(Rχ) there is L > 0 such that

|C| · ||u⋆
e(χ1)| − |u⋆

e(χ2)|| = ||χe(u
⋆
e(χ1))| − |χe(u

⋆
e(χ2))||

≤ L|χ1 − χ2| ∀χ1, χ2 ∈ K.

This estimate in particular implies that

|u⋆
e(χ1)− u⋆

e(χ2)| ≤ L
|C| |χ1 − χ2| ∀χ1, χ2 ∈ K

whenever u⋆
e(χ1), u

⋆
e(χ2) ∈ [−u−, 0] or u⋆

e(χ1), u
⋆
e(χ2) ∈

[0, u+]. As a last step, we define the functions α+ :
int(Rχ) → [0, u+], α− : int(Rχ) → [−u−, 0] ,

α+(χ) = max{u⋆
e(χ), 0}, α−(χ) = min{u⋆

e(χ), 0}
satisfying u⋆

e(χ) = α+(χ) + α−(χ) for all χ ∈ int(Rχ).
Moreover, since u⋆

e(·) is continuous, α+(·) and α−(·) are

continuous, and the estimate

|u⋆
e(χ1)−u⋆

e(χ2)| =
∣∣α+(χ1)−α+(χ2)+α−(χ1)−α−(χ2)

∣∣
≤

∣∣α+(χ1)− α+(χ2)
∣∣+

∣∣α−(χ1)− α−(χ2)
∣∣

≤ L
|C| |χ1 − χ2|+ L

|C| |χ1 − χ2| ≤ 2L
|C| |χ1 − χ2|

shows local Lipschitz continuity of u⋆
e .

B. Stabilization with scheduled shifted coordinates

With Lemma 1 we are able to construct a control law

stabilizing the origin from any initial condition satisfying x ∈
int(Rx). Recall that, through the coordinate transformation

(15), there is a one to one mapping between x and χ,

therefore we can equivalently express the control law as a

function of χ or x. Opting for the formulation as a function of

x, we can now state the main feedback controller proposed in

this paper, combining the results of Corollary 2 and Lemma 1

together with Remark 1 for the case m = 1 addressed here.

The controller is given by the state feedback law

u = u⋆
e(x) +K(x+A−1Bu⋆

e(x))) (24)

+ L(I − L)−1 dz[u−,u+]

(
u⋆
e(x) +K(x+A−1Bu⋆

e(x))
)
,

defined through the optimal solution of (21). Based on

Lemma 1, our main theorem proves its properties.

Theorem 1: Consider system (1) with m = 1, satisfying



Assumptions 1 and 2. Let u−, u+ ∈ R>0, let Pū denote the

solution of (8) for v = ū and α > 0 arbitrary. Then (24)

1) is well defined and Lipschitz for all x ∈ int(Rx);

2) coincides with (5) for all x ∈ Eβ(0)
0 (Pū) and thus

locally preserves performance; and

3) asymptotically stabilizes the origin of (1) with basin

of attraction containing int(Rx). y

Proof: The proof exploits Lemma 1. The equivalence

between the coordinate representations χ and x allows us to

derive the results in the χ coordinates.

Item 1. That (24) is well defined in χ ∈ int(Rχ) and

Lipschitz continuity of the feedback law follow from the

corresponding properties in Lemma 1 and from Remark 1.

Item 2. First, through the second item in Lemma 1, in the

set Eβ(0)
0 (I), the modified control law (24) and the original

control law (5) coincide. Moreover, Proposition 1 implies

that the origin is locally asymptotically stable, and Eβ(0)
0 (I)

is forward invariant and contained in the basin of attraction.

Item 3. We complete the proof by showing attractivity

from int(Rχ). To this end, we first show that for each pair

w,w ∈ (−u−, u+), with w ≤ 0 ≤ w, the set

R[w,w]
χ =

⋃

ue∈[w,w]

Eβ(ue)
χe(ue)

(I) (25)

is forward invariant. Assume that χ ∈ ∂R[w,w]
x ; i.e., χ is

in the boundary of the set. Since 0 ∈ [w,w] and since

the distance of ue to the origin is minimized through the

objective function in (21), it holds that u⋆
e(x) ∈ [w,w]. Thus,

from Corollary 2 and the strict inequality in (13), the closed-

loop vector field points to the interior of Eβ(u⋆
e(χ))

χe(u⋆
e(χ))

(I) and

since Eβ(u⋆
e(χ))

χe(u⋆
e(χ))

(I) ⊂ R[w,w]
χ it also points to the interior of

R[w,w]
χ . From continuity, forward invariance of int(R[w,w]

χ )

follows. Now, let χ(·) : R≥0 → int(R[w,w]
χ ) be a solution

satisfying χ(0) ∈ int(R[w,w]
χ ). If we define

w(t) = min{u⋆
e(χ(t)), 0}, w(t) = max{0, u⋆

e(χ(t))}
then the forward invariance of int(R[w(t),w(t)]

χ ) implies that

|u⋆
e(χ(·))| is monotonically decreasing.

Let us complete the proof by showing that χ(t) → 0 for

t → ∞. Since u⋆
e(χ(·)) is Lipschitz continuous, u⋆

e(χ(·))
is differentiable for almost all t ∈ R≥0. For the sake of a

contradiction, if χ(t) does not converge to the origin, the set

Eβ(0)
0 (I) is not reached in finite time. This implies that (due

to the monotonicity and boundedness of |u⋆
e(·)|) u̇⋆

e(χ(t)) →
0 for t → ∞ (for almost all t ∈ R≥0) and (due to the

objective function of the optimization problem (21)) |χ(t)−
χe(u

⋆
e(t))| 9 0 for t → ∞. Lemma 1.4 implies that |χ(t)−

χe(u
⋆
e(t))|2 = β(u⋆

e(t))
2 and the time derivative satisfies

(χ− χe(u
⋆
e(χ)))

⊤(χ̇− χ̇e(u
⋆
e(χ))) = β(u⋆

e)
∂β
∂u⋆

e
(u⋆

e)u̇
⋆
e

for almost all t ∈ R≥0. Exploiting χ̇e(u
⋆
e(χ)) = −Cu̇⋆

e(χ)

and using the decrease condition (13) for 〈∇V̂χe
(χ(t)), χ̇(t)〉

this expression leads to the estimate[
−(χ−χe(u

⋆
e(χ)))

⊤C+β(u⋆
e)

∂β
∂u⋆

e
(u⋆

e)
]
u̇⋆
e<−α|χ−χe(u

⋆
e)|2

for almost all t ∈ R≥0. Thus, u̇⋆
e(χ(t)) 9 0 for t → ∞,

leading to a contradiction and completing the proof.

IV. EXPLICIT EXPRESSION OF THE STABILIZER

So far the feedback law (24) is only implicitly defined

through the optimal solution of (21). In the single-input case,

due to the simplicity of the optimization problem, a finite

set of possible optimal solutions can be derived offline, from

which the online/real-time computation of the control input

becomes possible with low computational burden. To present

the corresponding result we use the quantity C defined in

(22) and define u⋆
e in terms of χ instead of x. Additionally,

we define u#i
e ∈ C ∪ {±∞}, i ∈ {1, . . . , 6} with

u#1

e (χ) =
−|χ|2 + (u−)2

2(χ⊤C − u−)
, u#2

e (χ) =
−|χ|2 + (u+)2

2(χ⊤C + u+)
,

u#3,4

e (χ)=
χ⊤C−u−±

√
(χ⊤C)2−|C|2|χ|2+|Cu−−χ|2

1− |C|2 ,

u#5,6

e (χ)=
χ⊤C+u+±

√
(χ⊤C)2−|C|2|χ|2+|Cu++χ|2

1− |C|2 .

Theorem 2: Let the assumptions of Theorem 1 be satisfied

and consider the optimization problem (21) and C defined

in (22). If |C| = 1 define

S = ({u#1

e } ∩ [−u−, u◦]) ∪ ({u#2

e } ∩ [u◦, u
+])

and for |C| 6= 1 consider

S=({u#3

e , u#4

e }∩[−u−, u◦])∪({u#5

e , u#6

e }∩[u◦, u
+]).

Then, for χ ∈ int(Rχ)\Eβ(0)
0 (I), the optimal solution of

(21) satisfies

u⋆
e(χ) ∈ argminue∈S |χe(ue)|2, (26)

while, for χ ∈ Eβ(0)
0 (I) it is given by u⋆

e = 0. y

Note that the set S , which can be easily constructed,

contains at most 4 points. Thus, the optimal solution of (21)

is obtained by calculating and comparing the objective values

of ue ∈ S in (26).

Proof: The fact that u⋆
e(χ) = 0 for χ ∈ Eβ(0)

0 (I)
follows from Lemma 1, item 3. The six values u#i

e (χ),
i ∈ {1, . . . , 6} are obtained by solving the constraint

|χ− χe(ue)|2 = (β(ue))
2 (27)

of the optimization problem (21) for β(ue) = u− + ue and

β(ue) = u+ − ue according to the definition of β in (17).

Using an equality instead of the inequality in (27) is justified

by Lemma 1, item 4. It follows from standard calculations

that u#i
e (χ), i ∈ {1, 2}, represent the solutions of (27) in the

case |C| = 1 while u#i
e (χ), i ∈ {3, . . . , 6} are the solutions

of (27) in the case |C| 6= 1. Then, the assertion follows by

combining Lemma 1, items 1, 4 and 5.

V. NUMERICAL ILLUSTRATION

Example 2: We continue with the setting discussed in

Example 1. The closed-loop solutions using the feedback law

(24) initialized at x0 = [4.8 3]⊤ and x0 = [−1.6 − 0.96]⊤

are shown in Fig. 3. The sets Rx and Rχ, respectively, from

which convergence to the origin is guaranteed are shown in

cyan. The sets Eβ(0)
0 (P1) and Eβ(0)

0 (I) (blue), correspond

to the estimate of the basin of attraction obtained from the

method in Proposition 1, while the sets Eβ(u◦)
xe(u◦)

(Pū) and

Eβ(u◦)
χe(u◦)

(I) (green), show the enlarged estimate obtained by
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Fig. 3. Closed-loop solutions using the feedback law (24) converging to the

origin (black). Additionally, Rx, Rχ (cyan), E
β(0)
0 (P1), E

β(0)
0 (I) (blue),

E
β(u◦)
xe(u◦)

(P1), E
β(u◦)
χe(u◦)

(I) (green) and the subspace of induced equilibria

Γ (red) are shown.

0 10 20 30 40
-1.5

-1

-0.5

0

0 10 20 30 40
0

5

0 10 20 30 40
0

0.5

0 10 20 30 40
-2

-1

0

Fig. 4. Evolution of input u, state x and points ue and xe for the initial
conditions x0 = [4.8 3]⊤ (left) and x0 = [−1.6 − 0.96]⊤ (right). The
kink occurs when the slope of β(ue) changes from increasing to decreasing

(left) and when the state x enters the set E
β(0)
0 (P1) (right).

the solution in [15], which however modifies the local per-

formance. Our sets int(Rx) and int(Rχ) clearly outperform

both approaches. In particular, even though not represented

in our figures, the solutions corresponding to the initial

conditions x0 = [4.8, 3]⊤ and x0 = [−1.6,−0.96]⊤ using

the original control law (5) are diverging. The time evolution

of the input u and the state x is visualized in Fig. 4, which

also shows the evolution of u⋆
e(x) and xe(u

⋆
e(x)).

Example 3: To illustrate that our solution applies with any

state dimension n ∈ N, consider plant (1) with

A =
[
0.6 −0.8 0.3
0.8 0.6 0.5
1.0 0.3 −1.0

]
and B =

[
1
4
2

]
. (28)

Similar to the two-dimensional case in Figs. 3 and 4,

estimates of the basin of attraction and a closed-loop solution

are visualized in Fig. 5. The control law is again obtained by

solving (8)2 for v = 1 and α = 0.1 and the saturation levels

are defined as u− = 1.5 and u+ = 0.5. The closed-loop

solution shown in Fig. 5 is initialized at x0 = [3.5 1.5 2.5]⊤.

VI. CONCLUSIONS

Through a suitably scheduled shift of the equilibrium,

an enlarged estimate of the basin of attraction for bounded

control laws with asymmetric saturations has been obtained.

The control law is implicitly defined through an optimization

problem. The focus on the single-input setting enables an

illustrative interpretation of the controller design and allows

for an explicit representation of the control law.

Future work will address the multi-input case and re-

move the assumption that A be non-singular, by directly

representing Γ through the kernel of [A B]. To derive

explicit solutions of (21) in the multi input setting, the

0 5 10 15

-1

-0.5

0

0 5 10 15

0

2

4

Fig. 5. Example 3: Estimates of the basin of attraction and a closed-loop
solution using the feedback law (24) for dynamics (28).

2As in Example 1, the absolute values of the unknowns are constrained
to be less than or equal to 10.

optimization problem may be reduced to a one dimensional

subspace in the kernel of [A B], depending on the state

position. Alternatively, sample-and-hold approaches may be

investigated, where (x⋆
e, u

⋆
e) are only updated at discrete time

steps.
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