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Abstract— Given a class of (bio)Chemical Reaction Networks
(CRNs) identified by a stoichiometric matrix S, we define as
dual reaction network, CRN∗, the class of (bio)Chemical Reac-
tion Networks identified by the transpose stoichiometric matrix
S

⊤. We consider both the dynamical systems describing the
time evolution of the species concentrations and of the reaction
rates. First, based on the analysis of the Jacobian matrix,
we show that the structural (i.e., parameter-independent) local
stability properties are equivalent for a CRN and its dual
CRN∗. We also assess the structural global stability properties of
the two dual networks, analysing both concentration and rate
representations. We prove that the existence of a polyhedral
(or piecewise-linear) Lyapunov function in concentrations for
a CRN is equivalent to the existence of a piecewise-linear in
rates Lyapunov function for the dual CRN∗; in fact, if V is a
polyhedral Lyapunov function for a CRN, the dual polyhedral
function V

∗ is a piecewise-linear in rates Lyapunov function for
the dual network. We finally show how duality can be exploited
to gain additional insight into biochemical reaction networks.

I. INTRODUCTION

We adopt a duality perspective to perform the structural

stability analysis of (bio)chemical reaction networks [6],

[14], [16], [18], [19], [20]. A property is structural if it is

satisfied by all the systems belonging to a class, characterised

by a structure, regardless of parameter values [10] (as op-

posed to robust properties, which only need to be preserved

under large parameter variations). The structural analysis

of Chemical Reaction Networks (CRNs) [18], [19], [20] has

provided fundamental results, such as the celebrated zero-

deficiency theorem and one-deficiency theorem [16] and a lot

of subsequent work [5], [13], [21]. In particular, structural

stability is investigated in [7], [8], [9] for a wide class of

(bio)chemical reaction networks, under the sole requirement

of monotonic reaction rates; the nonlinear system equations

are absorbed into a linear differential inclusion and then

the piecewise-linear, i.e., polyhedral [11], Lyapunov function

(if any) certifying the structural stability of the class of

systems is computed through an iterative algorithm. The

complementary class of piecewise-linear in rates Lyapunov

functions has been proposed in [1], [2], [3], [4] for the

stability analysis of chemical reaction networks.

Here, we propose the concept of dual chemical reaction

network. Given a chemical reaction network with stoichio-

metric matrix S ∈ Z
n×m, involving n species and m

reactions, its dual network has stoichiometric matrix S⊤ ∈
Z
m×n, and thus involves m species and n reactions. We
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credit Famili and Palsson for proposing the compound map,

associated with −S⊤ [15]; however, the equivalence stability

results we obtain for the dual network, associated with S⊤,

cannot be obtained for the compound map in [15].

Our main results establish the equivalence between the

structural stability properties of a CRN and its dual CRN∗:

• a CRN is structurally locally stable within its stoichio-

metric compatibility class (S-LSSC) if and only if its

dual CRN∗ is S-LSSC;

• the existence of a piecewise-linear Lyapunov function

(PLF) for a CRN is equivalent to the existence of a

piecewise-linear in rates Lyapunov function (PLF in

rates) for its dual CRN∗;

• in particular, if V is a PLF for a CRN, then the dual

function V ∗ is a PLF in rates for its dual CRN∗.

Concluding examples show the application of duality results

to the structural stability analysis of biochemical networks.

II. DUAL CRNS AND DUAL STRUCTURES

We consider general (bio)chemical reaction networks cor-

responding to nonlinear systems of the form

ẏ = Sg̃(y) + g0, (1)

where y ∈ R
n
+ is the state vector of species concentrations,

g̃(y) ∈ R
m
+ is the vector of reaction rate functions and

g0 ≥ 0 is a vector of constant influxes; S ∈ Z
n×m is

the stoichiometric matrix, whose Sij entry represents the

net amount of the ith species produced or consumed by the

jth reaction, excluding the contribution of constant influxes.

Therefore, Sij < 0 if the ith species is involved in the jth

reaction as a reagent, while Sij > 0 if the ith species is a

product of the jth reaction.

We assume there exists an equilibrium ȳ such that Sg̃(ȳ)+
g0 = 0. Without loss of generality, we can therefore consider

the shifted system with state x = y − ȳ and dynamics

ẋ(t) = S[g̃(x(t) + ȳ)− g̃(ȳ)]
.
= Sg(x(t)).

Then, to analyse the stability of the equilibrium, without

restriction we will consider a model of the form

ẋ(t) = Sg(x(t)), (2)

with no constant influxes g0, and its equilibrium at zero.

Hence, we make the following standing assumptions.

Assumption 1: Function g(0) = 0, hence system (2)

admits an equilibrium x̄ = 0. ⋄
Remark 1: Since we consider the shifted system around

the equilibrium, now set at zero, there is no need to assume

that x and g(x) are componentwise non-negative. ⋄
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Assumption 2: All the component functions of vector

g(x) are continuously differentiable. ⋄
Assumption 3: The reaction rate function gj(·) depends

on xi if and only if Sij < 0, and gj = 0 when xi = 0. ⋄
The coexistence of Assumptions 1 and 3 requires that, if

there are no negative entries in the jth column of S, then

gj ≡ 0.

Assumption 3 rules out autocatalytic reactions, such as

A −⇀ 2A or A+B −⇀ 2B.

Assumption 4: If function gj(·) depends on xi, then

∂gj/∂xi > 0. ⋄
Definition 1: Given a CRN of the form (2), its dual CRN∗

is the system

ż(t) = S⊤h(z(t)), (3)

where function h satisfies the same assumptions as g, but for

the new stoichiometric matrix S∗ = S⊤. ⋄
If a CRN has n species and m reactions, then its dual

CRN∗ has m species and n reactions.

Uppercase letters denote chemical species and the cor-

responding lowercase letters denote their concentrations;

reaction rate functions are also denoted by lowercase letters.

Example 1: Consider the chemical reaction network CRN

shown in Fig. 1 (left), composed of the chemical reactions:

A+B
p
−⇀ C, C +D

q
−⇀ E +A, E

r
−⇀ B +D.

Species D sequestrates A from the complex C = [AB] in

order to form the new complex E = [BD], which splits

again to release B. The associated dynamical system is






























ȧ = −p(a, b) + q(c, d)

ḃ = −p(a, b) + r(e)

ċ = +p(a, b)− q(c, d)

ḋ = −q(c, d) + r(e)

ė = +q(c, d)− r(e)

(4)

where the state vector is [a b c d e]⊤, the reaction

rate vector is [p(a, b) q(c, d) r(e)]⊤ and the stoichiometric

matrix is

S =













−1 1 0
−1 0 1
1 −1 0
0 −1 1
0 1 −1













.

Transposing the stoichiometric matrix S yields the dual

system with state vector [p q r]⊤, reaction rate vector

[a(p) b(p) c(q) d(q) e(r)]⊤ (adopting the same letters,

with swapped role) and stoichiometric matrix S⊤











ṗ = −a(p)− b(p) + c(q)

q̇ = a(p)− c(q)− d(q) + e(r)

ṙ = b(p) + d(q)− e(r)

(5)

corresponding to the dual CRN∗

P
a
−⇀ Q, P

b
−⇀ R, Q

c
−⇀ P, Q

d
−⇀ R, R

e
−⇀ Q.

The dual network is associated with a structurally stable

mono-molecular reaction network (where all reactions have

the form X −⇀ Y ): as we will see, this allows us to claim

that the primal network is structurally stable too. ⋄
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Fig. 1: The reaction network in Example 1 (left) and its dual (right).

To write the system in reaction rate coordinates (see [1],

[2], [3], [4], as well as [8], and the references therein), we

introduce the rate variable r(t)
.
= g(x(t)). Recall that g(x̄) =

g(0) = 0 in view of Assumption 1. The system of rate

equations is achieved by differentiating d
dt
r = ∂g

∂x
ẋ = ∂g

∂x
Sr,

hence

ṙ(t) =
∂g

∂x
Sr(t). (6)

We can define a system of rate equations for the dual network

as well, by considering w(t)
.
= h(z(t)), and we get

ẇ(t) =
∂h

∂z
S⊤w(t). (7)

Due to the possible presence of conservation laws, any

chemical reaction network of the form (2) evolves in a

positively invariant subspace denoted as stoichiometric com-

patibility class (SC) [14], [16], [18]:

S = Ra[S] = {x : x = Sv, v ∈ R
m},

where Ra[S] is the range, or image, of matrix S. In the orig-

inal coordinates, the SC for (1) would be an affine manifold,

S̃(y0) = {y ≥ 0 : y = y0 + Sv, v ∈ R
m}, depending

on the initial conditions y(0) = y0. Since we assumed that

an equilibrium exists for (1), and it is at the origin for the

shifted system (2), we can write S as the linear manifold

above. Our structural analysis allows us to assess the stability

of the equilibrium regardless of the original (pre-translation)

stoichiometric compatibility class and equilibrium value; this

confers an intrinsic robustness with respect to the ubiquitous

noise one encounters in experimental settings.

Definition 2: A system of the form (2) is

• stable in the stoichiometric compatibility class (SSC)

if, for every initial condition of the form x(0) = Sv0,

with v0 ∈ R
m, the state x(t) converges to 0 as t → ∞;

• locally stable in the stoichiometric compatibility class

(LSSC) if the linearised system at 0,

ẋ = S

[

∂g

∂x
(x̄)

]

x̄=0

x,

is stable in the stoichiometric compatibility class (which

is the same as for the nonlinear system).

The class of systems of the form (2) is structurally stable,

or locally stable, in the stoichiometric compatibility class

(resp. S-SSC and S-LSSC) if the above conditions hold for

arbitrary vector functions g satisfying our assumptions. ⋄



We now observe that an interesting relation exists between

the structure of a system and the structure of its dual.

To this aim, we define the qualitative class Σ of non-

negative matrices that have positive entries corresponding to

the negative entries of the stoichiometric matrix S and zero

entries elsewhere:

Σ = {M : sign(M) = sign(max{−S, 0})}. (8)

We also define Σ⊤ = {M : M⊤ ∈ Σ}.
For instance, for the class of systems (4) in Example 1,

Σ =

{

M : sign(M) =

[+1 0 0
+1 0 0
0 +1 0
0 +1 0
0 0 +1

]}

.

Let us denote ∂g
∂x

.
= G and ∂h

∂z

.
= H . We notice that G ∈

Σ⊤, because the non-zero partial derivatives of g, which are

positive in view of Assumption 4, are associated with the

negative entries of S and correspond to the negative entries

of S⊤ as per Assumption 3 (gj depends on xi if and only if

Sij < 0). Analogously, H ∈ Σ, because hj depends on zi if

and only if S⊤
ij < 0, and all its non-zero partial derivatives

are positive.

Then, we can write the Jacobian of system (2) as

S
∂g

∂x

.
= SG, with G ∈ Σ⊤, (9)

and the Jacobian of the dual system (3) as

S⊤ ∂h

∂z

.
= S⊤H, with H ∈ Σ. (10)

III. STRUCTURAL LOCAL STABILITY ANALYSIS

We prove our main result concerning structural local

stability in the stoichiometric compatibility class.

Theorem 1: System (2) is S-LSSC if and only if its dual

system (3) is S-LSSC. �

Proof: First, notice that (2) is S-LSSC if and only if SG
is Hurwitz in the stoichiometric compatibility class (HSC;

namely, any trajectory originated in the SC converges to zero)

for all G ∈ Σ⊤. Indeed, given some matrix G ∈ Σ⊤, we can

always find functions gk, possibly linear, whose derivatives

at zero are equal to the entries of G (cf. also [9], where a

similar construction is proposed). We therefore wish to show

that SG is HSC for all G ∈ Σ⊤ if and only if S⊤H is HSC

for all H ∈ Σ. Consider rank[S] = r ≤ n and apply a

similarity transformation T such that

TSGT−1 =
[

S̃1 S̃2

0 0

] [

G̃1 G̃2

G̃3 G̃4

]

= M1 =
[

S̃1G̃1+S̃2G̃3 S̃1G̃2+S̃2G̃4

0 0

]

,

where S̃1 and S̃2 have r rows. In the new representation,

the initial conditions in the SC are all vectors of the form

[x⊤
1 0]⊤, with x1 ∈ R

r and 0 a row vector of n − r zeros.

Hurwitz stability in the SC is equivalent to x1(t) → 0 for

each initial vector [x⊤
1 (0) 0]

⊤. Structural local stability in the

SC is then equivalent to matrix S̃1G̃1+ S̃2G̃3 being Hurwitz

for all G ∈ Σ⊤.

The same arguments for S⊤H lead to a partition

M2 =

[

Ŝ1Ĥ1 + Ŝ2Ĥ3 Ŝ1Ĥ2 + Ŝ2Ĥ4

0 0

]

and structural local stability in the SC is equivalent to matrix

Ŝ1Ĥ1 + Ŝ2Ĥ3 being Hurwitz for all H ∈ Σ. Since the two

upper-left blocks of M1 and M2 have size r, both matrices

have n− r zero eigenvalues.

Matrices M1 and M2 have the same eigenvalues as SG
and S⊤H , respectively, or equivalently the same eigenvalues

as SG and H⊤S (by transposition). Matrix SG (respectively

S⊤H) is structurally Hurwitz in the SC if and only if, for

every G ∈ Σ⊤ (respectively H ∈ Σ), it has precisely n− r
zero eigenvalues and r eigenvalues with negative real part.

Since G and H⊤ have the same structure (G,H⊤ ∈ Σ⊤),

we can always pick H = G⊤. The proof is concluded by

recalling that SG and H⊤S = GS share the same non-zero

eigenvalues (just take GSx = λx 6= 0, hence SG(Sx) =
λ(Sx) 6= 0), which have a negative real part.

The structural local stability of the primal/dual class of

systems can be assessed via convex optimisation, parametric

Lyapunov functions or deficiency theory [12], [14], [16].

Example 2: Consider the CRN in Example 1. Its dual

CRN∗ is mono-molecular and has a weakly diagonally

dominant Jacobian, hence structural local stability in the SC

is guaranteed for both the dual and the primal system. ⋄

IV. JACOBIAN DECOMPOSITION AND DUALITY

We recall that the Jacobian of system (2) can always be

decomposed as [7], [9]

SG = B∆C, (11)

for all G ∈ Σ⊤, where the diagonal matrix ∆, of size q,

carries on the diagonal all the non-zero entries of G. To

generate the constant matrices B and C, the q non-zero

partial derivatives need to be ordered as ∆k = ∂gj/∂xi =
Gij > 0, k = 1, . . . q, so that two indices i(k) and j(k)
correspond to each k. Then, for each k:

• the kth column of B is the jth column of S, j = j(k),
• the kth row of C is e⊤i , i = i(k),

where e⊤i is the ith row vector of the canonical basis. The

pair (B,C) captures the system structure, and a given choice

of the diagonal entries of ∆ yields a specific realisation.

The same property holds for the rate representation [8].

We can associate the linearisation of (6) with matrix

GS = E∆F, (12)

where the constant matrices E and F (after ordering the

non-zero partial derivatives ∆k = ∂gj/∂xi = Gij > 0) are

formed as follows:

• the kth column of E is ej , j = j(k),
• the kth row of F is S⊤

i , the ith row of S, i = i(k),

where ej is the jth column vector of the canonical basis.

Now the system structure is captured by the pair (E,F ).
In the sequel we assume that the order of the partial

derivatives in ∆ is the same for both representations (in

concentrations and in rates).



Example 3: Consider the CRN associated with equations










ȧ = −ga(a)− gac(a, c)

ḃ = ga(a)− gbc(b, c)

ċ = ga(a)− gac(a, c)− gbc(b, c)

(13)

corresponding to the general model (2) with x = [a b c]⊤,

S =





−1 −1 0
1 0 −1
1 −1 −1



 , g(x) =





ga(a)
gac(a, c)
gbc(b, c)



 .

By ordering the partial derivatives as ∆1
.
= ∂ga/∂a, ∆2

.
=

∂gac/∂a, ∆3
.
= ∂gac/∂c, ∆4

.
= ∂gbc/∂b, ∆5

.
= ∂gbc/∂c,

the system structure is captured by the B∆C decomposition

with matrices

B =
[

−1 −1 −1 0 0
1 0 0 −1 −1
1 −1 −1 −1 −1

]

and C =

[

1 0 0
1 0 0
0 0 1
0 1 0
0 0 1

]

,

while the E∆F decomposition has matrices

E =
[

1 0 0 0 0
0 1 1 0 0
0 0 0 1 1

]

and F =

[−1 −1 0
−1 −1 0
1 −1 −1
1 0 −1
1 −1 −1

]

.

⋄
The dual chemical reaction network CRN∗ admits the

same types of decomposition, B∗∆∗C∗ and E∗∆∗F ∗, in

concentrations and in rates.

Numerically, the partial derivatives of a system and of

its dual could be different. However, the numerical values

of the parameters do not affect our parameter-free analysis,

which is focused on the structure: in the sequel, the statement

J = B∆C means that the structure of the system Jacobian is

captured by the matrix pair (B,C), namely that the equality

holds for some (no matter which) ∆ ∈ D, where D is the

family of diagonal matrices, of size q, with positive diagonal

entries. Hence, in the following we will drop the star in ∆∗

and denote by ∆ the generic element of the family D. Then,

the dual decomposition is related to the primal decomposition

as shown next (see Table I).

Theorem 2: Consider the CRN system (2) and its dual

CRN∗ system (3), along with their Jacobian decompositions

with the non-zero partial derivatives ordered in a diagonal

matrix ∆ ∈ D. Then:

• the dual CRN∗ in concentrations has the same structure

as the transpose of the primal CRN in rates:

B∗∆C∗ = F⊤∆E⊤, ∆ ∈ D;

• the dual CRN∗ in rates has the same structure as the

transpose of the primal CRN in concentrations:

E∗∆F ∗ = C⊤∆B⊤, ∆ ∈ D.

�

Proof: The primal CRN has Jacobian SG = B∆C
for some G ∈ Σ⊤, while the dual CRN∗ has Jacobian

S⊤H = B∗∆C∗ for some H ∈ Σ. For the primal rate

representation, GS = E∆F for some G ∈ Σ⊤, hence

S⊤G⊤ = F⊤∆E⊤ for some G⊤ ∈ Σ. This proves the

Table I: The duality (transpose) relation among Jacobian representations.

in concentrations: in rates:

CRN: B∆C E∆F

CRN∗: F⊤∆E⊤ C⊤∆B⊤

first statement, since H,G⊤ ∈ Σ have the same structure.

Also, for the dual system in rates, HS⊤ = E∗∆F ∗ for

some H ∈ Σ. Since G⊤S⊤ = C⊤∆B⊤ for some G⊤ ∈ Σ,

the second statement is also proven.

V. LYAPUNOV NORMS AND DUALITY FOR GLOBAL

STABILITY ANALYSIS

To derive a global stability condition, we first examine the

relation between the representations in concentrations and in

rates. Since g(0) = 0 in view of Assumption 1, if x(t) → 0,

then also r(t) = g(x(t)) converges to zero. Conversely, if

we assume that Sg(x̄) = 0 implies x̄ = 0 (i.e., zero is the

only equilibrium in the SC), then convergence of r = g(x)
to zero implies x(t) → 0.

Structural convergence of x(t) to zero can be proven by

absorbing system (2) in a differential inclusion. Indeed, the

same matrices (B,C) as in the Jacobian decomposition (11)

can be used to provide a global representation of the system.

Consider the general property

Sg(x) = Sg(x̄) +

[
∫ 1

0

J(x̄+ σ(x− x̄))dσ

]

(x− x̄),

where J = ∂
∂x

[Sg(x)]. Since J = B∆C in view of (11),
∫ 1

0

Jdσ = B

(
∫ 1

0

∆dσ

)

C = BD(x)C

for some diagonal D(x) (see [9], [10] for details). We also

define Ĝ(x)
.
=

∫ 1

0
∂g
∂x

(x̄+σ(x− x̄))dσ. Since x̄ = 0, system

(2) admits the equivalent global representation

ẋ(t) = SĜ(x(t))x(t) = BD(x(t))Cx(t),

where matrix D depends on the current state x(t). For

our structural analysis, we drop the dependence of D on

x to consider a generic diagonal matrix D(t) with positive

diagonal entries. The set of solutions of system (2) is always

a subset of the solutions of the differential inclusion [7], [9]

ẋ(t) = SĜ(t)x(t), Ĝ(t) ∈ Σ⊤, (14)

or equivalently

ẋ(t) = BD(t)Cx(t), D(t) ∈ D. (15)

Therefore, the stability of the differential inclusion implies

the structural stability of (2); note that systems (14) and (15)

have the same stoichiometric compatibility class, because

matrices S and B have the same range.

We can analogously prove the convergence in rate coordi-

nates [1], [2], [3], [4], [8], since all the solutions of system

(6) are a subset of the solutions of

ṙ(t) = G(t)Sr(t), G(t) ∈ Σ⊤, (16)



Table II: The four system representations.

in concentrations: in rates:

CRN: ẋ(t) = BD(t)Cx(t) ṙ(t) = ED(t)Fr(t)

CRN∗: ż(t) = F⊤D(t)E⊤z(t) ẇ(t) = C⊤D(t)B⊤w(t)

(again we drop the dependence of G = ∂g/∂x on x), or

equivalently

ṙ(t) = ED(t)Fr(t), D(t) ∈ D. (17)

Stability of system (17) implies convergence to zero of the

rate variable r(t).
Analogous representations in concentrations and in rates

hold for the dual CRN∗. The four representations are sum-

marised in Table II.

We now consider Lyapunov norms, according to the fol-

lowing definition.

Definition 3: A norm V (x) is a Lyapunov norm if it

is non-increasing along the trajectories of system (15) or

(17). If V (x) is polyhedral, we call it Polyhedral Lyapunov

Function (PLF). ⋄
Remark 2: The existence of a Lyapunov norm is not

enough to ensure asymptotic stability. We also need an

assumption on the partial derivatives: there exist two (un-

known) numbers ǫ, no matter how small, and µ, no matter

how large, such that

0 < ǫ ≤ Di(t) ≤ µ. (18)

Without this assumption, no robust convergence can be

claimed: for instance, ẋ = −d(t)x(t) does not converge

to zero for all d(t) > 0, even though |x(t)| is decreasing.

Conversely, provided that (18) holds, if the Lyapunov norm

is polyhedral and the differential inclusion is non-singular,

then asymptotic stability is ensured [9]. ⋄
Given a norm V (x), its dual is defined as

V ∗(z) = max
V (x)≤1

x⊤z.

Given a full-row-rank matrix X , a polyhedral norm can be

defined through a vertex representation as

VX(x) = inf{‖p‖1 : Xp = x}, (19)

while, given a full-column-rank matrix Z, a polyhedral norm

can be defined through a plane representation as

UZ(z) = ‖Zz‖∞. (20)

As shown in [11, Proposition 4.35], a duality relation exists

between (19) and (20):

V ∗
X(x) = UZ(z) if Z = X⊤.

Theorem 3: Consider the four representations in Table II.

The CRN in concentrations (x-system) admits a PLF if and

only if the CRN∗ in rates (w-system) admits the dual PLF;

the same holds for the z-system and the r-system. �

Proof: Given a polyhedral norm V and a matrix A, we

define the matrix measure as

µV (A) = lim
h→0

V (I + hA)− 1

h
,

where V (M) is the induced norm of matrix M . Since

V (M) = V ∗(M⊤), we have µV (A) = µV ∗(A⊤). Assume

that (15) admits a PLF V (x) or, equivalently, that V (x) is

a common PLF for all linear systems with matrix BDC,

D ∈ D. Consider expression (19) for V ; the proof can be

also carried out using (20). Then, for any D ∈ D we must

have

BDCX = XP (D)

with µV1
(P (D)) ≤ 0 [11]. Transposing both sides yields

X⊤C⊤DB⊤ = P (D)⊤X⊤

with µV∞
(P (D)⊤) ≤ 0. This implies that the dual norm

V ∗(x) is a PLF for all linear systems with transposed matrix

C⊤DB⊤, D ∈ D (see again [11] for details).

Remark 3: Theorem 3 answers the question: which are

the most suitable polyhedral Lyapunov functions to prove

the structural stability of chemical reaction networks, those

in concentrations or those in rates? The answer is a draw:

for any network admitting a PLF in concentrations, there is

another network, the dual, admitting a PLF in rates; and vice

versa. ⋄
Polyhedral functions are amenable for efficient computa-

tion [7], [4]. Moreover, it has been shown that there are

examples of networks for which the only possible structural

Lyapunov function is polyhedral [9]; Theorem 3 implies that

there are networks for which piecewise-linear functions in

rates [1], [2], [3], [4] have the same exclusive property.

Remark 4: The result can be generalised to any norm [17]:

if V is a Lyapunov norm for (15), then V ∗ is a Lyapunov

norm for the rate representation of the dual. ⋄

VI. APPLICATIONS AND CONCLUDING DISCUSSION

We discuss in this section some implications of our duality

results and their applicability to gain additional insight into

chemical reaction networks.

First, duality can be exploited to immediately assess the

structural stability of a complex chemical reaction network

by simply inspecting its topology. Let us consider uni-

tary networks, namely CRNs such that all entries Sij ∈
{−1, 0, 1}. The next result is proven in [7].

Proposition 1: Assume that, in a unitary CRN, each re-

action affects at most two nodes (species), i.e. there are at

most two non-zero coefficients in each column of S. Then,

the network is structurally stable with ‖x‖1 as a PLF. �

The conditions in Proposition 1 are extremely simple to

check, even for very large CRNs. The same is true for the

conditions in the following new result, which we can prove

by adopting duality.

Proposition 2: Assume that, in a unitary CRN, each node

is affected by at most two reactions, i.e. there are at most two

non-zero coefficients in each row of S. Then, the network is

structurally stable with ‖w‖∞ as a PLF in rates. �



Proof: It follows from Proposition 1 and Theorem 3,

since V∞ = ‖ · ‖∞ is the dual norm of V1 = ‖ · ‖1.

For instance, it can be immediately seen from Fig. 1

(left) that the CRN in Example 1 satisfies the conditions

of Proposition 2, hence it is structurally stable in the SC.

Example 4: The metabolic network










































ȧ = −p(a, e)

ḃ = p(a, e)− q(b)

ċ = q(b)− r(f, c)

ḋ = r(f, c)− s(d)

ė = −p(a, e) + r(f, c)

ḟ = −r(f, c) + p(a, e)

(21)

adapted from [22, Chapter 17] has the form (2) with

S =





−1 0 0 0
1 0 0 −1
0 −1 0 1
0 1 −1 0

−1 1 0 0
1 −1 0 0



 .

It can be seen that the SC is identified by the conservation

laws b + c + e = constant and e + f = constant, and an

equilibrium exists at zero. The dual network


















ṗ = −a(p) + b(q)− e(p) + f(r)

ṙ = −c(r) + d(s) + e(p)− f(r)

ṡ = −d(s)

q̇ = −b(q) + c(r)

(22)

is mono-molecular and satisfies the assumptions of Proposi-

tion 2 (there are at most two non-zero entries in each row of

S), hence also the primal network is structurally stable. ⋄
It is interesting to observe that the dual of a reversible net-

work (such that all reactions are reversible) is not reversible,

and not even weakly reversible according to the definition

in [16]. If the reaction rates are of the mass-action type,

i.e. of the form κambn, these functional expressions are not

preserved for the dual.

Example 5: The dual of the reversible network

2A+B
p
−⇀↽−
q
C

r
−⇀↽−
s
D

is the non-reversible network

2P
a
−⇀ 2Q, P

b
−⇀ Q, Q+R

c
−⇀ P + S, S

d
−⇀ R.

Under mass-action kinetics, the primal has reaction rate

functions p = αa2b, q = βc, r = γc, s = δd, while the

dual has reaction rate functions a = ǫp2, b = ηp, c = µqr,

d = νs. ⋄
Very interestingly, duality results can enable us to easily

assess the structural stability of non-unitary networks, for

which computing PLFs is not easy [7].

Example 6: The reversible network in Example 5 is non-

unitary. To study its structural stability in the SC, we can

consider its dual network


















ṗ = −2a(p)− b(p) + c(q, r) = −g(p) + c(q, r)

q̇ = +2a(p) + b(p)− c(q, r) = g(p)− c(q, r)

ṙ = −c(q, r) + d(s)

ṡ = +c(q, r)− d(s)

(23)

where g(p)
.
= 2a(p) + b(p). This new network with g(p)

is unitary and satisfies Proposition 2, hence the system is

structurally stable, because it admits a piecewise-linear in

rates Lyapunov function. ⋄
Future research directions are aimed at investigating how

the relation between primal and dual chemical reaction

networks reflects on the structure of other types of graph

representations, such as the Species-Reaction Graph [16],

and at exploiting dual networks to assess properties other

than stability.
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