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Abstract

Despite their complexity, biological systems are able to endure huge parameter fluctuations and survive in the most diverse environmental
conditions. Mathematical tools from graph theory and systems and control theory are naturally well-suited to understand the functioning
of biological systems and reveal that their tremendous robustness is often rooted in their peculiar interconnection structure. This survey
considers a wide class of ordinary-differential-equation biological models, including chemical reaction networks, and provides an overview
of structural approaches proposed in the literature to assess whether a system structure enjoys fundamental qualitative properties, yielding
specific types of dynamic or steady-state behaviours, regardless of the precise parameter values.
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1 Why structural analysis?

How can living systems robustly preserve some fundamen-
tal properties that are crucial for survival, even though they
are inherently affected by variations and fluctuations in their
environment? And how can the systems and control com-
munity help unveil the secrets of nature’s robustness?
Systems biology [5] is a relatively recent field that adopts
an interdisciplinary, systems-level approach to study prob-
lems in biology and in the life sciences. It promotes holistic
and quantitative methods that strongly rely on mathematical
models of biological systems to predict possible dynamic
outcomes, to understand the effect of perturbations and the
sensitivity to key parameters, to help explain experimental
results and formulate and test hypotheses on the underlying
biological mechanisms.
The growing interest of the control community in this area –
which is testified by several special issues of flagship jour-
nals, such as [137] [66] [4] [2] [32], and [211] with a partic-
ular focus on robustness – is not surprising. The concept of
feedback loop was a pervasive principle of nature even be-
fore becoming a pillar of control theory and an essential en-
abling technology in engineering [69] [82]. The astounding
complexity of biological functions at all spatial scales, from
biomolecular pathways to entire organisms and to ecosys-
tems, relies on myriads of coexisting and entangled feedback
loops, which govern both dynamic and steady-state features
of biological phenomena. This makes a control-theoretic ap-
proach particularly well-suited to help formulate, investi-
gate and solve relevant problems in systems biology. In fact,
methods from systems and control theory have been success-

fully applied to biological problems in the literature, to help
gain insight into the design principles that enable complex
biological phenomena, and to assess their inherent proper-
ties [188] [93] [165] [127].
The intrinsic features of biological systems pose some
crucial challenges. In fact, even though systems biology
aims for a quantitative understanding of natural phenomena
(through the use of mathematical models, as opposed to
the qualitative, verbal descriptions in traditional biology),
biological models unavoidably suffer from huge uncertainty
and variability in their parameters, whose values are hard to
estimate based on very noisy measurements and are anyway
subject to continuous variations and fluctuations; as an ex-
ample, the circadian rhythms that affect our body functions
make several vital parameters vary over a period of about 24
hours. On the other hand, biological systems keep reliably
performing their specific task, notwithstanding the large en-
vironmental variations and perturbations: hence, there must
be something in their “wiring” that inherently guarantees the
astounding robustness so widely observed in nature. Several
examples of intrinsic robustness in biological systems have
been provided starting with [39] [7]. Biological robustness
has been discussed from a diversity of viewpoints [140]
[158] [145] [138], analysing the trade-off between robust-
ness and fragility [183], and identifying possible paradigms
and mechanisms that allow for the extraordinary robustness
of living processes [207]. These observations suggest that
it must be possible to make sound qualitative predictions
even in the absence of quantitative information.
Only deterministic biological models based on ordinary dif-
ferential equations will be considered in this survey: they are
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often adopted as the natural modelling choice when the in-
volved species are abundant and do not experience stochastic
fluctuations (for biochemical reactions, this amounts to as-
suming a perfectly stirred, isothermal reaction environment
and high species concentrations). Conversely, for biochem-
ical networks where each species has a low copy number,
stochastic models are preferred [13] [52]. However, also de-
terministic models inevitably include uncertain or unknown
parameters that account for the complexity and variability
of biological environments.
With a reasonably accurate knowledge of the parameter val-
ues, one could predict the behaviour of a biological system
through extensive numerical simulations, even though such
an approach would not yield any increased understanding
of the underlying mechanisms and principles. The absence
of quantitative information calls for theoretical approaches
that are suitably tailored to draw reliable conclusions on the
system properties and expected behaviours even in the pres-
ence of huge uncertainties. We wish to predict or rule out
possible dynamic behaviours based on a qualitative model,
without having a precise knowledge of the parameter values
and even of the functional expressions that describe the in-
teractions among key players in the system, or their internal
dynamics.
A wide body of literature in the control community revolves
around dealing with uncertainty and assessing robustness
[40]: over the years, extremely powerful theoretical tools
have been proposed that can now be employed to analyse
the dynamic and steady-state behaviour of the systems we
encounter in nature, and to mathematically explain their re-
markable stability and robustness properties.
A property is robust for a family of systems with uncertain
parameters, along with given bounds, if the property holds
for all the elements of the family, with the parameters picked
within the given bounds. Often, a stronger notion emerges
in a biological context. Some pivotal properties of biolog-
ical systems are more than robust: not only they hold for
all the parameter choices taken within a huge set, but they
hold for all possible (i.e., physically meaningful) choices of
the parameters. We call structural a property that is indepen-
dent of the parameter values and holds for a whole family
of systems defined without resorting to any arbitrary param-
eter bound. Note that we will typically consider parameters
to be positive; this “qualitative” bound is not an arbitrary
requirement that we impose on the parameters, but a simple
consequence of their physical meaning.
As an example, the linear dynamical system associated with
the equation a2ÿ(t)+ a1ẏ(t)+ a0y(t) = 0 is asymptotically
stable for all possible choices of a2, a1, a0 > 0. Hence,
asymptotic stability is a structural property for second or-
der linear differential equations with positive coefficients.
However, for third order differential equations with positive
coefficients, asymptotic stability is no longer a structural
property. Assuming suitable bounds 0 < a−k ≤ ak ≤ a+k on
the coefficients, we can assess whether the system is stable
for all possible choices of the constant coefficients within
these bounds; if the answer is positive, asymptotic stabil-

ity is a robust property (given the bounds). The difference
between robust and structural properties is more formally
discussed in Section 1.1.
Clearly, asking for a property to be structural is a very
demanding requirement; nevertheless, many biological sys-
tems do enjoy some properties in view of their structure
only, namely, exclusively in view of the topology of the in-
teractions among the system components.
The goal of structural analysis is to provide methods and
approaches to assess whether a property is structurally ver-
ified by a family of systems. The answer can only be yes or
no: if it is yes, then the analysis provides a very powerful in-
sight into the system and certifies its remarkable parameter-
free robustness; if it is no, then this does not prevent some
elements of the family from enjoying the property.
In the latter case, robustness analysis is precious to assess
whether the property is verified for some parameter bounds,
and the degree of robustness can be quantified. Therefore,
the qualitative (parameter-free) methods stemming from a
structural analysis framework are not opposed, but comple-
mentary to quantitative (numerical) approaches to establish
parametric robustness, such as the early work [149] [197]
[139] [181] [179] [198] [204] [64] up to the more recent
[118]; see also the thorough overview in [200].
Structural approaches to the analysis of biochemical reac-
tion networks date back to the pioneering work by Horn
and Jackson in the early Seventies [122] [123] [124] and
later by Reder [172] and Feinberg [95] [96] [97] [98]; along
a similar timeline, qualitative approaches started to impose
themselves in the field of ecology (see the discussion and
the references in [77]). Interest started to arise again at the
beginning of the new century. Notably, [196] points out how
dynamic function is determined by metabolic network struc-
ture and [180] discusses structural sources of robustness.
This survey is specifically focused on the structural analysis
of biological systems. The literature that explores in general
the synergy between control theory and biology is too vast
to be explored here; let us just recall, besides the special
issues mentioned above, the surveys [188] [93] [206] [35],
the books [165] [191] [127] [131] [69] [82] and the recent
CDC tutorial session [51].
Also, due to space limits, we cannot deal with important top-
ics such as synthetic biology [141] [81] [125], whose aims
are the design of biomolecular controllers and the synthesis
of biomolecular systems de novo, as well as system iden-
tification [162] [163] and model order reduction [99] [171]
[178] methods specifically tailored to biological systems.
In Section 2, we introduce the considered mathematical
framework, which embraces a broad class of biological mod-
els, including (bio)chemical reaction networks, activation-
inhibition networks, and models for ecology and epidemics.
As stressed above, we only consider ODE models and we
refer the reader to the ample available literature for differ-
ent types of models, such as stochastic [13] [52], piecewise
affine [162], Boolean [60] [175] models, and Petri nets [17]
[16].
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Section 3 formally introduces the concept of structure. It
discusses how a system structure can be visualised through
graphs and block diagrams and how a system can be mathe-
matically decomposed to suitably split the unknown param-
eters and the system structure.
Then, we survey methods to structurally assess crucial prop-
erties for biological and ecological systems. We consider
positivity and boundedness in Section 4 and the existence
and the number of steady states in Section 5, along with
their stability properties in Section 6. Section 7 provides
tools to structurally assess how a system reacts to persistent
perturbations; besides input-output influences, fundamental
concepts are discussed such as perfect adaptation, sensitiv-
ity analysis, ultrasensitive behaviours and scale invariance.
Section 8 is devoted to the analysis of signed feedback loops
in complex networks and reviews structural graph-based ap-
proaches to predict the onset of oscillations as opposed to the
emergence of multiple stable equilibria, thus characterising
biological oscillators, biological bistable systems and their
connection with pattern formation. The structural analysis
of large networks is discussed in Section 9, including the
fundamental concept of recurring network motifs, methods
to simplify the analysis by separating time-scales with a sin-
gular perturbation approach and by decomposing a network
into an aggregate of monotone subsystems, and retroactiv-
ity phenomena arising when multiple components are in-
terconnected. Finally, Section 10 provides some examples
of biological insight that can be achieved through structural
analysis and stresses the relevance of structural approaches
to help validate or falsify biological models.
The concluding discussion in Section 11 points to future
challenges in the field.

1.1 Structural and robust properties

The distinction between robust and structural properties is
subtle, but fundamental. We can define them as follows.
Definition 1 [43] Given a family of systems F and a rel-
evant property P , the property P is robustly satisfied (in
short, robust) if any element of F enjoys the property. The
property P is structurally satisfied (in short, structural) if, in
addition, the family F is specified qualitatively by a struc-
ture, without resorting to numerical bounds.
Arbitrary numerical bounds are ruled out, but non-negativity
of some quantities (≥ 0) can still characterise a structure if it
is a requirement due to the physical nature of the considered
systems, as it often happens in biology.
Example 1 (Robust or structural?) Let us exemplify the
concepts of robust and structural properties. Given the pos-
itive parameters a, b, c, d, e, f and g, consider the two
simple families of linear systems specified by the matrices

A1 =


− f a b

c −g 0

d 0 −e

 and A2 =


0 a b

−c 0 0

−d 0 −e

 .

All matrices A1 with 0 ≤ a,b,c,d ≤ 1 and 2 ≤ e, f ,g ≤ 3
are robustly Hurwitz (because of diagonal dominance). For
other bounds, this may not be the case. Conversely, all ma-
trices A2 are structurally Hurwitz (cf. [88, Example 2, p.
239]). Hence, for a linear system governed by a matrix of
the form A1, stability requires that the diagonal terms, as-
sociated with the species self-dissipation, are large enough;
while, for a linear system governed by a matrix of the form
A2, the presence of dissipation in the third variable ensures
unconditional stability, regardless of parameter values: all
the systems associated with this structure are stable.
A structure is the qualitative (parameter-free) description of
a whole family of systems, while a specific realisation is
obtained for a fixed choice of the involved quantities and
parameter values. As we will discuss in Section 3, a struc-
ture can be effectively visualised as a graph formed by a set
of nodes, typically representing dynamic variables or sub-
systems, and by arcs (or hyper-arcs), which represent the
interactions among two (or more) nodes. Given a system
structure, structural analysis aims at establishing whether a
property of interest (typically related to an expected qualita-
tive behaviour, such as stability, multi-stability, or sustained
oscillations) is:
• inherent in the structure: the property necessarily holds,

regardless of the parameter values;
• compatible but not inherent in the structure: the prop-

erty holds, not structurally, but for some choice of the
parameters, and then we can seek the (largest) param-
eter bounds for which the property holds robustly;
• incompatible with the structure: no matter how the pa-

rameters are chosen, the property cannot hold.
Assessing structural and robust properties is particularly rel-
evant for biological systems, which are able to preserve some
properties that are crucial for survival in spite of huge vari-
ations and environmental fluctuations.

2 Biological models and their representation

Many different types of models are adopted in systems bi-
ology, and including a reasonable description of all of them
is far beyond the scope of this survey. Models adopted to
describe natural phenomena include, beside those based on
Ordinary Differential Equations (ODEs) that will be consid-
ered here, Partial Differential Equations (PDEs), Chemical
Master Equations, Graphs, Boolean Networks, Petri Nets,
Hybrid Systems and Statistical Models. Excellent books and
surveys discuss different biological models, including [80]
[88] [5] [191] [62] [69] [203] [53] [82] [142].
When studying dynamical biological systems, models based
on ODEs are particularly popular. They can quite faithfully
represent the evolution of natural systems 1 and they are
supported by a solid and well-established theory and by ef-
ficient tools. Moreover, they can be effectively analysed not
only via simulations, but also via theoretical investigation,

1 For biomolecular systems and gene regulatory networks, ODE
models are suitable under the assumption of high copy numbers.
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and their analysis can enable the control and the optimisa-
tion of biological systems in synthetic biology.
In this survey, we consider ODE models and we focus
on a general unifying framework that embraces chemi-
cal reaction networks, as well as biological models at all
scales: biomolecular, ecological, epidemiological models.
The broad class of models we consider can be written in
the general form

ẋ(t) = Sg(x(t))+g0, (1)

where x(t) ∈ Rn is the state describing e.g. (bio)chemical
species concentrations, or population density; S ∈ Rn×m is
the (equivalent) stoichiometric matrix representing the in-
teraction structure; g : Rn→Rm is a vector of reaction rate,
or growth rate, functions; and g0 ∈ Rn is a constant supply
term representing the effect of the external environment.

2.1 Chemical reaction networks

In chemical reaction networks, CRNs, whose theory is thor-
oughly surveyed in [19] [98], the concentrations of chem-
ical species (state variables) vary over time due to the oc-
curring chemical reactions (flows), according to the reac-
tion stoichiometry and mass balance rules. In these systems,
S ∈ Zn×m. Typical examples of reactions are

pA+qB
gab−−⇀ rC+ sD and pA+qB

gab−−⇀↽−−
gcd

rC+ sD,

meaning that p molecules of A and q of B (reagents) bind
to form r molecules of C and s molecules of D (products)
in an irreversible (left) or reversible (right) way; p, q, r
and s are stoichiometric coefficients. In the reversible case,
the products C and D can bind to form again the reagents.
Species concentrations are denoted using the corresponding
lowercase letters.
The reaction rate functions gab(a,b) and gcd(c,d), repre-
senting the speed at which the reactions occur, depend on
the concentration of the involved reagents. They are mono-
tonic functions of their arguments and take non-negative
values. Under the semi-empirical law of mass action, reac-
tion rates have the polynomial form gab(a,b) = kabapbq and
gcd = kcdcrds, where the positive constants kab and kcd de-
pend in principle on several factors, including the temper-
ature. Homogeneity is also crucial: isotropic concentration
profiles in the reaction environment must be assumed, i.e.,
well stirred reactors [98].
More in general, a chemical reaction network [19] [98] is a
set of chemical reactions

n

∑
i=1

θ jiXi
g j−⇀

n

∑
i=1

λ jiXi, j = 1, . . . ,m,

each transforming the reagents, appearing on the left with
stoichiometric coefficients θ ji, into the products, appearing
on the right with stoichiometric coefficients λ ji. Each reac-
tion speed g j(·)≥ 0 is a monotonic function of the reagent

concentrations. The entries of the stoichiometric matrix S
are defined as Si j = λ ji− θ ji and the differential equation
ruling the evolution of the species concentration xi is

ẋi(t) = ∑
j∈Ji

Si jg j(x)+ [g0]i, (2)

where g j represent incoming or outgoing flows due to chem-
ical reactions that produce or use xi and Ji is the set of reac-
tions that either produce or consume xi. The overall model
takes the matrix-vector form (1).
All functions g j appearing with a negative Si j must include
xi as an argument and it must be g j(xi, . . .) = 0 if xi = 0;
this ensures positivity, as we will discuss in Section 4.
A function g j can have an arbitrary number of variables;
under mass-action kinetics, the reaction pA+qB+rC

gabc−−⇀D
would have the rate gabc(a,b,c) = kabcapbqcr, with kabc > 0.
Example 2 (A metabolic network.) The reaction network
presented in [62, p. 106] involves four species A, B, C, D
and the reactions

/0
a0−⇀ A, A+C

gac−−⇀ B+D, D
gd−⇀C, B

gb−⇀ /0,

which correspond to the following flows: flow a0, from the
external environment, produces species A; species A inter-
acts with C to produce species B and D, with reaction speed
gac; species D produces C at rate gd; finally, B degrades at
rate gb (which can be seen as a flow to the external envi-
ronment). The corresponding differential equations are

ȧ =−gac(a,c)+a0, ḃ = gac(a,c)−gb(b),

ċ =−gac(a,c)+gd(d), ḋ = gac(a,c)−gd(d).

and can be rewritten in the form (1) as follows
ȧ

ḃ

ċ

ḋ


︸ ︷︷ ︸

ẋ

=


−1 0 0

1 −1 0

−1 0 1

1 0 −1


︸ ︷︷ ︸

S


gac(a,c)

gb(b)

gd(d)


︸ ︷︷ ︸

g(x)

+


a0

0

0

0


︸ ︷︷ ︸

g0

.

In general, the state x(t) evolves in the stoichiometric com-
patibility class, an affine manifold depending on the initial
conditions:

S (x0) =
{

x = x0 +Ra[S̃], x≥ 0
}
, (3)

where Ra[S̃] is the range space of S̃ = [S g0]. The dimension
of S (x0) is the rank of S̃. Note that, if there exists an equi-
librium point x̄ such that Sg(x̄)+g0 = 0, then Ra[S̃] = Ra[S].
In Example 2, the dimension of S (x0) is 3, because
[0 0 1 1]> belongs to ker[S̃>]. As a consequence, ċ+ ḋ = 0,
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hence, for any initial condition a(0), b(0), c(0) and d(0), the
quantity c(t)+ d(t) = c(0)+ d(0) = κ is constant. Taking
d = κ− c and removing the equation of ḋ, we get

ȧ

ḃ

ċ

=


−1 0 0

1 −1 0

−1 0 1




gac(a,c)

gb(b)

gd(κ− c)

+


a0

0

0

 . (4)

We consider reaction functions that satisfy general assump-
tions, according to the following definition.
Definition 2 A smooth function g : Rn

+ → R+ is a proper
reaction function if g(x) is monotonic in each variable x j.
A proper reaction function is not necessarily bounded:
Michaelis-Menten and Hill kinetics [5] lead to bounded
functions, such as g(x,y) = κ

xy
1+αxy , while mass-action

kinetics [98] lead to unbounded functions g(x,y) = κxy.

2.2 Activation-inhibition networks

An important sub-class of models describes systems where
an arbitrary number of elements or species interact by either
activating or inhibiting one another. Among these we find
gene regulatory networks, which describe how the activity
of genes is promoted or repressed to regulate the amount of
their expressed proteins.
Denoting by xi the amount of active species i, its time evo-
lution is described by the equation [5] [62] [43]

ẋi(t) =−µixi(t)+ ∑
j∈Ji

fi j(x j(t))+ ∑
k∈Ki

gik(xk(t))+ui, (5)

where −µixi represents self-degradation, Ji and Ki are the
sets of species that respectively activate and inhibit xi, the
increasing positive functions fi j(x j) represent the activation
effect of x j on xi, while the decreasing positive functions
gik(xk) represent the inhibition effect of xk on xi, and ui is
an external input. Sometimes interactions can involve mul-
tiple variables; hence, in general, interaction functions can
have multiple arguments, and can be increasing in some ar-
guments and decreasing in others, e.g. x/α

1+y/β
. To account for

the (steep) nonlinearity of the phenomenon, activation and
inhibition functions are typically sigmoidal functions.
Definition 3 A smooth function f (x), x ≥ 0, is an (in-
creasing) sigmoid if: f (0) = 0, f is strictly increasing
and bounded, and its derivative f ′ is unimodal, namely it
has a single isolated maximum point. A smooth function
g(x), x ≥ 0, is a (decreasing) complementary sigmoid if
g(0)−g(x) is a sigmoid.
Common sigmoidal functions are Hill functions [62] [5]

f (x) = α
(x/β )p

1+(x/β )p , g(x) = γ
1

1+(x/δ )p , (6)

and Michaelis-Menten functions, where p = 1. For large p,
the functions in (6) tend to a threshold: if p→∞, both func-

tions locally converge to a step function with discontinuity
in β and in δ , respectively.
Example 3 (Incoherent Feedforward Loop.) The system
of equations [5]

ȧ =−µaa+u

ḃ =−µbb+ fc(c)+ fa(a)
ċ =−µcc+ga(a)

describes the regulatory interactions among genes A, B and
C: A activates B and inhibits C, while C activates B, and u
is an external activation signal for A. The variables a, b and
c can be seen as the concentration of the proteins expressed
by the corresponding gene; then, as discussed in [62], the
above equations are the reduced-order model, based on a
time-scale separation argument (see Section 9.2), of a more
complex system involving gene-RNA-protein dynamics.
Also more sophisticated activation or inhibition functions
are possible, such as the co-regulator functions hOR(x,y) =
h(xp + yq) and hAND(x,y) = h(xpyq), where h is a step-like
function which can be either activating ( f ) or inhibiting (g);
for p and q sufficiently large, these functions converge to
OR or AND functions. See [5, Appendix B] or [62, Section
3.3.2] for further details.
It is worth stressing that any linear time-invariant system
(possibly uncertain) whose state matrix has sign determined
entries (as well as any nonlinear system with a sign-definite
Jacobian) can be seen as an activation-inhibition network.
Activation-inhibition networks representing biochemical
phenomena conceptually differ from CRNs: the latter are
mechanistic models, based on established chemical laws,
while the former are phenomenological models, aimed at
reproducing empirical observations by considering inter-
actions that only implicitly account for the true physical
mechanisms.

2.3 Population dynamics: ecosystems and epidemiology

The control-theoretic approach we consider in this survey
fits very well in many other biological contexts. In fact,
models representing population dynamics in ecosystems, as
well as the spreading of diseases, can be typically written as
an ODE system having the form (1) and often “behave as a
CRN” [94]. We propose here a couple of examples.
Example 4 (Prey and predator dynamics.) Consider the
“chemical reactions” A

κa−⇀ 2A, A+B
κab−−⇀ 2B, B

κb−⇀ /0, where
A produces itself (auto-catalysis); whenever A and B col-
lide, A becomes B (conversion); B disappears (degradation).
Under the law of mass action, we get the equations of the
celebrated Lotka-Volterra prey-predator system:

ȧ = κaa−κabab,

ḃ =−κbb+κbaab,

where κab = κba can be ensured, without restriction, by scal-
ing the variables as â =

√
κba/κaba and b̂ =

√
κab/κbab.
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Example 5 (Epidemics.) Another famous “chemical reac-
tion network” is the SIR epidemiological model

ẋS =−βxSxI + γxR

ẋI = βxSxI−νxI

ẋR = νxI− γxR

where, in a population with n = xS +xR +xI individuals ex-
posed to a disease, xS denotes the number of individuals
susceptible to become ill, xI denotes the number of ill in-
dividuals and xR the number of recovered individuals; β , γ

and ν are positive constants. Since ṅ = 0, n is a constant:
no birth rate or death rate is considered. Although concep-
tually different, the dynamics are akin to those of the CRN

S+ I
β−⇀ 2I, R

γ−⇀ S, I ν−⇀ R

where, denoting by xA the concentration of species A, the
state evolves in the affine variety xS+xR+xI = n = constant
(stoichiometric compatibility class). An analogous analysis
applies to any compartmental model for epidemiology [53].
Although it cannot be argued that any model of natural sys-
tem can be written as a chemical reaction network, or as an
activation-inhibition network, models of natural phenomena
often share common features that make them fit within the
class of systems in (1):
• they are positive systems (the variables take non-

negative values);
• they obey physical laws such as mass conservation;
• the interaction functions are typically monotone;
• the interaction pattern (structure) is effectively repre-

sented by a graph.

3 Capture the structure

The structure of a system is the topology (qualitative pat-
tern) of the interactions among the system variables, along
with qualitative information about the nature of such inter-
actions (such as monotonicity). Powerful tools to visualise
a structure are graphs and block diagrams, as well as signed
matrices whose sign pattern is not affected by parameter un-
certainty or variability.

3.1 Graphs and block diagrams

Graphs are a universal tool to describe a structure: they are
perfectly suited to visualise the complex interplay of many
entangled interactions, such as those found in biological sys-
tems, and can facilitate the analysis and the explanation of
the underlying mechanisms.
Graphs are widely used across disciplines, but can have dif-
ferent meanings in different contexts. In this survey, we al-
ways associate the nodes of a graph either with individual
state variables, which represent the amount of a species, or
with subsystems (i.e., subsets of state variables). However,
depending on what the arcs represent, we consider two dif-
ferent types of graphs:
• in flow graphs, arcs are associated with reactions and

represent the flow of a species that moves from one
node to the other, because it is transformed into a dif-
ferent species;

• in signal graphs, arcs are associated with inhibiting
or activating interactions, which do not (necessarily)
correspond to flows or reactions.

In our figures, arcs representing flows have open pointed ar-
row heads, while arcs representing signals have either closed
and filled pointed arrow heads (activations) or hammer heads
(inhibitions).
In a flow graph, an arc from A to B indicates the presence
of a flow that decreases the amount of A and proportion-
ally increases the amount of B (corresponding to the mono-
molecular reaction A

ga−⇀ B). Conversely, in a signal graph,
an arc from A to B represents the activation of B due to A,
which leads to an increase in the amount of B and leaves the
amount of A unchanged. If B is a protein activated by A, the
activating arc corresponds in general to a chain of chemical
reactions with several intermediate steps, hence the arcs in
signal graphs do not represent single reactions.
Chemical reaction networks of the form (1) are associated
with a flow graph, which is in a one-to-one correspondence
with the stoichiometric matrix S, hence it captures the sys-
tem structure. Clearly some assumptions on the involved
functions gi are needed. The metabolic network in Example
2, for instance, is associated with the flow graph in Fig. 1,
where each arc represents one of the occurring reactions.

A

C D

B
a0

gac

gb

gd

Figure 1. Flow graph corresponding to the metabolic network in
Example 2. Arcs are associated with chemical reactions.

Activation-inhibition networks are instead associated with a
signal graph, which is in a one-to-one correspondence with
the sign pattern of the system Jacobian matrix, hence it cap-
tures again the system structure. For instance, the incoherent
feedforward loop in Example 3 corresponds to the signal
graph in Fig. 2. The arcs represent the activations fa and fc,
and the inhibition ga. Note that the self-degradation terms
are not drawn in Fig. 2, but they would be represented as
the self-loop in Fig. 3, right. In fact, self-degradation of a

A C B
u

fa

fcga

Figure 2. Signal graph corresponding to the incoherent feedforward
loop in Example 3. Arcs are associated with activating (pointed
head) or inhibiting (hammer head) interactions.
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AA

Figure 3. Self-degradation: a leak in a flow graph (left) and an
inhibitory self-loop in a signal graph (right).

species corresponds to a leak towards the external environ-
ment, if seen as a flow (Fig. 3, left), and to an inhibitory
self-loop, if seen as a signal (Fig. 3, right).
Block diagrams, a standard representation of interconnected
systems for control engineers, are not commonly encoun-
tered in mathematical biology. In recent years they have
started to appear, most probably due to the strong inter-
actions between the two communities (see e.g. [69] [81]
[165]). Block diagrams can be seen as signal graphs where
the nodes are subsystems rather than individual variables.
Several additional types of graphs can be considered for the
analysis of biochemical networks. Of considerable interest
is the species-reaction graph [73] [24], which includes two
types of nodes, one associated with species and one with
reactions. The graph is bipartite: the arcs can only connect
a reaction node to a species node, or vice versa.

3.2 The concept of structure

A family of systems is characterised by a structure if
• all the elements of the family are represented by the

same (flow or signal) graph;
• the involved functions satisfy common qualitative as-

sumptions.
For CRNs (1), the structure is defined by the matrix S, the
sparsity pattern of vector g0, and proper assumptions on g.
For instance, the system in Example 2, associated with the
graph in Fig. 1, represents a structure if we assume that all
functions are smooth, defined for nonnegative values, non-
decreasing in each argument, and positive if and only if all
arguments are positive (e.g., g(a,c) is zero only if either a or
c are zero, and positive otherwise). A sub-family is obtained
if we additionally assume that the reaction rate functions are
polynomial (mass action kinetics).

A

C

B A

C

B

Figure 4. Signal graphs of the repressilator (left) and promotilator
(right) structures in Example 6; self-loops are omitted.

Example 6 (Repressilator and Promotilator.) Consider
the system family (5) where each node has a self-degradation
term; each interaction function is sigmoidal (e.g. Hill-type);
the interaction graph is assigned. For instance, the structure
visualised by the signal graph in Fig. 4, left, corresponds to
a simplified version (based on time-scale separation) of the
well-known repressilator model [90], a chain where each
node inhibits the next (see [82], [5] for details). The dual

promotilator structure [92], shown in Fig. 4, right, is a chain
where each node activates the next. Denoting by g decreas-
ing (inhibitory) functions and by f increasing (activating)
functions, and including self-degradation for each species,
the two structures correspond to the dynamical systems:

ȧ = −µaa+gc(c),

ḃ = −µbb+ga(a)

ċ = −µcc+gb(b)


ȧ = −µaa+ fc(c)

ḃ = −µbb+ fa(a)

ċ = −µcc+ fb(b)

We will analyse both systems in Examples 10 and 16.

3.3 BDC and EDF decompositions

A system structure can be described resorting to the BDC
decomposition [44] [109]. For any CRN of the form (1),
or any activation-inhibition network with equations (5), the
system Jacobian can be written as the positive linear com-
bination of rank-one matrices:

Jx(x) =
q

∑
k=1

Dk(x)Jk = BD(x)C.

The rank-one matrices Jk = BkC>k are often marginally sta-
ble, namely C>k Bk < 0. Matrices B and C are not square in
general. For a system (1), B is a matrix formed by possibly
repeated columns of S, D a diagonal matrix whose diagonal
elements Dk are the absolute values of all the partial deriva-
tives of g(x), while C is a matrix whose kth row has a nonzero
entry equal to 1 or −1, depending on the sign of the deriva-
tive, in the position j if Dk is a derivative with respect to x j
(see Example 7 and [109] for details). In the particular case
of activation-inhibition networks, the Jacobian has a known
sign pattern: then, the diagonal entries of D are the absolute
values of the matrix entries, Dk = |Jih|, and the columns of
B and rows of C identify their position in the Jacobian.
The linearised system has the form

ż(t) = BDCz(t), (7)

where z(t) = x(t)− x̄ and x̄ is any steady state such that
Sg(x̄)+ g0 = 0. The nonlinear system can be equivalently
rewritten as

ż(t) = BD(z(t))Cz(t), (8)
as can be proven by taking into account the formula [136]

f (z+ x̄) = f (x̄)+
[∫ 1

0
J(x̄+σz)dσ

]
z,

where J = ∂ f
∂x . The same decomposition applies to the rate

representation of CRNs [8] [9] [45]. Given the steady-state
value x̄ such that 0= Sg(x̄)+g0, define r̄ = g(x̄) and consider
as a state variable the rate vector

r(t) .
= g(x(t))−g(x̄) = g(x(t))− r̄.
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Then

ṙ(t) =
∂g
∂x

ẋ =
∂g
∂x

(Sg(t)+g0) =
∂g
∂x

Sr(t). (9)

Reasoning as before, we can write the system Jacobian as

Jr(r) = ED(x)F (10)

and system (9) can be rewritten as ṙ(t) = ED(x(t))Fr(t),
where D is the same matrix as before, matrix F is formed by
possibly repeated rows of S, and the kth column of E has a
single nonzero entry, in the position j, corresponding to the
sign of the derivative Dk = ∂gh/∂xi with r j = gh(x)−gh(x̄).
A Jacobian of the form (10) is achieved also if we con-
sider the equations in reaction coordinates [24]. Assuming
g0 = 0 for brevity and denoting w(t) =

∫ t
0 g(x(σ))dσ , the

reaction system is ẇ(t) = g(x(t)). Then, replacing x(t) =
x0 +S

∫ t
0 g(x(σ))dσ = x0 +Sw(t) yields

ẇ(t) = g(x0 +Sw(t)) (11)

(see [24] for details), whose Jacobian has the form (10).
Example 7 (Structural decompositions.) For the metabolic
network in Example 2 in its reduced form (4), we have the
decomposition BDC =


−1 −1 0 0

1 1 −1 0

−1 −1 0 1




∣∣∣ ∂gac
∂a

∣∣∣ 0 0 0

0
∣∣∣ ∂gac

∂c

∣∣∣ 0 0

0 0
∣∣∣ ∂gb

∂b

∣∣∣ 0

0 0 0
∣∣∣ ∂gd

∂c

∣∣∣




1 0 0

0 0 1

0 1 0

0 0 −1


in species concentration coordinates, while in reaction rate
coordinates we have EDF =


1 1 0 0

0 0 1 0

0 0 0 −1




∣∣∣ ∂gac
∂a

∣∣∣ 0 0 0

0
∣∣∣ ∂gac

∂c

∣∣∣ 0 0

0 0
∣∣∣ ∂gb

∂b

∣∣∣ 0

0 0 0
∣∣∣ ∂gd

∂c

∣∣∣




−1 0 0

−1 0 1

1 −1 0

−1 0 1


Systems admitting these decompositions are a vast class,
including (bio)chemical reaction networks, gene regulatory
networks, ecological and epidemiological models. As we
will see later on, in Sections 6 and 7, these decompositions
can nicely capture a system structure, thus enabling struc-
tural analysis results.

4 Positivity and boundedness

For biological systems, positivity is an expected feature. The
concentration of biochemical species, such as mRNA or pro-
teins, and the population density are nonnegative variables.
This must be intrinsic in the model and the nonnegativity of

the variables must be structurally preserved by the system
evolution; otherwise, the model is unsuitable.
Definition 4 A system with state vector x(t) is positive if
x(t0)≥ 0 (componentwise) implies x(t)≥ 0 for all t > t0.
We can easily assess whether a system is positive thanks to
a well-known property that follows by Nagumo’s theorem
(see Theorem 1).
Proposition 1 The dynamical system

ẋ(t) = f (x(t)), (12)

with f regular enough to ensure existence and uniqueness
of the solution, is positive if, when xi = 0 (the ith component
of x is zero), then ẋi = fi(x)≥ 0.
If the condition holds for any system in a family, regardless
of parameter values, then positivity is structural.
Examples of structurally positive systems are the biochem-
ical networks in the class (1), ẋ = Sg(x)+g0, under the fol-
lowing qualitative assumptions: g0 must be a nonnegative
vector and, if Si j < 0, then the positive reaction function g j,
the jth component of vector g, must be increasing in xi and
be 0 as xi = 0. Indeed, if the positive and increasing reaction
function gk appears with a minus sign in the equation of xi,
then it must be a function of xi (in fact, Xi must be one of the
reagents, and the reaction rate depends on its concentration)
and the reaction must stop occurring when xi = 0.
For a linear system, ẋ = Ax, positivity is equivalent to A
being a Metzler matrix (namely, Ai j ≥ 0 for i 6= j). The
linearisation of a nonlinear positive system is not necessarily
positive, since the Jacobian is not Metzler in general; this is
not surprising, since the linearisation is referred to a steady
state and is just valid locally.
A property that is related to positivity, but stronger, is persis-
tence: a CRN is persistent if, for positive initial conditions,
no solution approaches the boundary of the positive orthant
[17] [18].
Biological systems are not only positive but also, often,
bounded: in spite of possibly wide fluctuations, both the con-
centrations of biomolecular species within a living cell and
the density of biological species in a natural environment
cannot exceed finite thresholds, respectively due to degra-
dation, dilution or secretion, and due to death rate and finite
carrying capacity of the ecosystem. However, boundedness
of the system evolution is harder to check, since no simple
general conditions like the one in Proposition 1 are available.
Definition 5 System (12) is bounded if, for all N > 0, there
exists M > 0 such that ‖x(0)‖ ≤ N implies ‖x(t)‖ ≤M, for
t ≥ 0.
For positive systems this means that, for any initial state
x(0) ≥ 0, there exists a positive constant ζ such that 0 ≤
xi(t)≤ ζ for all t ≥ 0. Even though the value of the constant
ζ depends on the parameters, the existence of the bound can
be a structural property.
Boundedness of the solution is clearly ensured if the stoi-
chiometric compatibility class (3) is a bounded set for any
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nonnegative initial condition x0. This is the case of conser-
vative networks [19]. A CRN (1) is conservative if g0 = 0
and there exists a positive vector ν such that

ν
>S = 0.

This condition implies that ν>ẋ = 0, hence ν>x(t) = ν>x0
is constant. Since x is a nonnegative vector and all the entries
of ν are positive, this implies boundedness. The condition
is structural, since it only depends on matrix S. It is quite a
strong condition, which rules out incoming flows in the net-
work. Typically, a conservative network does not exchange
mass with the external environment [19].
The condition is interestingly satisfied by the networks
where all species can be present either in the active A
or the inactive A∗ form, so that the overall concentration
a∗+a is constant (see e.g. [148] [108]). Mass conservation
laws are present in the futile cycle motif (also known as
substrate or enzymatic cycle), which is widespread in cel-
lular signalling pathways, metabolic control, cell division,
apoptosis and cell-cycle control [205]. An example is given
by the phosphorylation-dephosphorylation cycle reactions,
S1 +E −⇀↽−C1 −⇀ S2 +E and S2 +F −⇀↽−C2 −⇀ S1 +F , where

S1 is the base substrate, E is the enzyme kinase that adds
a phosphate group to S1, thus producing S2 (phosphoryla-
tion), while F is a phosphatase enzyme that removes the
phosphate group from S2, thus yielding S1 again (dephos-
phorylation); C1 and C2 are intermediate complexes. Here
we can identify three conservation laws: s1 + c1 + s2 + c2,
e+ c1 and f + c2 are constant quantities. A double futile
cycle underlies the well-studied MAPK pathway [126],
MAPK −⇀↽−MAPK-P−⇀↽−MAPK-PP, where each -P suffix de-

notes one added phosphate group. Each reversible reaction
would be more accurately described as an enzymatic reac-
tion of the form M1 +E1 −⇀↽− M1 ·E1 −⇀ M2 +E1; anyway,

the total amount of MAPK in its three states (unphosphory-
lated, phosphorylated, and doubly phosphorylated, possibly
including intermediate complexes) is constant.
Also biological models out of a biomolecular context satisfy
the “mass balance” property: e.g., in the SIR model in Ex-
ample 5, the total number of individuals xS(t)+xI(t)+xR(t)
is constant, which is appropriate for a non-fatal disease.
Besides structural conditions based on the presence of con-
servation laws, structural algorithms have been proposed to
assess the boundedness of CRNs. In [16], chemical networks
are analysed as continuous-time Petri nets and, to investigate
boundedness, a structural algorithm creates several compat-
ibility scenarios, as exemplified next.
Example 8 (Boundedness analysis.) Consider the chemi-
cal reaction network associated with the graph in Fig. 5,

ȧ =−gab(a,b)+a0

ḃ =−gab(a,b)−gb(b)+b0

where a0 and b0 are positive constants, while gab(a,b) and

A

B

a0

gab

gb
b0

Figure 5. The flow graph representing the two-species network
structure of Example 8.

gb(b) are increasing and positively radially unbounded 2

reaction functions. Denoting by b+ > 0 the value such that
gb(b+) = b0, we have that, for all b > b+,

ḃ =−gab(a,b)−gb(b)+b0 ≤−gb(b)+b0 < 0,

which implies asymptotic boundedness of b: b ≤ b+. For
variable a, we have two possible cases.
1) If b is bounded away from 0, namely for some t0 > 0 we
have b(t)≥ b− > 0 for t ∈ [t0,∞), then for t > t0

ȧ =−gab(a,b)+a0 <−gab(a,b−)+a0 < 0

for all a > a+, where a+ solves gab(a+,b−)+a0 = 0, hence
a is also asymptotically bounded: a≤ a+.
2) If conversely b can approach 0, hence so does gab(a,b),
then ȧ approaches a0 > 0, therefore variable a may diverge.
For this illustrative example, the analysis is actually sim-
pler because the system is monotone, hence the theory in
[119, 20] can be applied. Note that b0 > a0 is a crucial
requirement for boundedness. In fact, if a0 > b0, the trajec-
tory diverges, since ȧ− ḃ = a0−b0 +gb(b)≥ a0−b0; then
a(t)−b(t)→+∞, hence a(t)→+∞. Conversely, a0 < b0 is
equivalent to the existence of a positive equilibrium (see Ex-
ample 14), whose global stability can be inferred from the
existence of a polyhedral Lyapunov function and the non-
singularity of the Jacobian [47].
Other interesting tools to establish boundedness of dynami-
cal systems, including biological models, are based on Lya-
punov or Lyapunov-like functions and positively invariant
sets (see [136] and [42]).
Definition 6 Given a system ẋ= f (x), under the assumption
of existence and uniqueness of the solution,
• a set S is positively invariant for the system if x(t0) ∈

S implies x(t) ∈S for all t > t0;
• a locally Lipschitz function V (x) is a Lyapunov-like

function if it is non-increasing along the system trajec-
tory;

• a Lyapunov-like function is a Lyapunov function if it is
positive definite with respect to some point x̄: V (x̄) = 0,
and V (x)> 0 for all x 6= x̄.

Function V (x) needs to be locally Lipschitz to enable con-
sidering its directional derivative.

2 Function f (x1, . . . ,xn) is positively radially unbounded if, for
each k ∈ {1, . . . ,n}, when all variables xi > 0, i 6= k, are held
constant, limxk→∞ f (x1, . . . ,xn) = +∞.
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Lyapunov-like functions and invariant sets are strongly re-
lated: the level set {V (x)≤ κ} is positively invariant as long
as V (x) is a Lyapunov-like function.
Sets of interest are associated with several smooth functions
hi, i = 1, . . . ,m. We define practical set a set having the
form S = {x : hi(x)≤ 0, i = 1, . . . ,m}, such that its interior
is int{S } = {x : hi(x) < 0, i = 1, . . . ,m}, its boundary is
∂S = {x : hi(x) = 0, for some i} and the gradient ∇hi(x)
on the boundary satisfies: hi(x) = 0 ⇒ ∇hi(x) 6= 0.
Theorem 1 (Nagumo, 1942.) Under regularity assump-
tions for f , the practical set S is positively invariant for the
system ẋ = f (x) if and only if, for every x ∈ ∂S , we have

∇hi(x)> f (x)≤ 0 for all i : hi(x) = 0.

The positivity condition in Proposition 1 is the application
of Nagumo’s theorem to the positive orthant xi ≥ 0.
Activation-inhibition networks (5) are an important class of
systems with structurally bounded solutions, provided that
all equations ẋi include a self-degradation linear term −µixi
and that all interaction functions fi j and gik are bounded
(e.g. Michaelis-Menten and Hill functions); special cases of
interest are the repressilator and the promotilator models in
Example 6. In general, consider equation (5) and the simplex

S = {x : xi ≥ 0,
n

∑
i=1

xi ≤ κ}, (13)

for some constant κ > 0. Then, Nagumo’s condition applied
to the points in the upper bound ∑

n
i=1 xi = κ is

d
dt

n

∑
i=1

ẋi(t) =−
n

∑
i=1

µixi +∑
i, j

fi j(x j)+∑
i,k

gik(xk)+
n

∑
i=1

ui

≤−min
i
{µi}

n

∑
i=1

xi +K =−min
i
{µi}κ +K ≤ 0,

where K = maxx ∑i, j fi j(x j)+∑i,k gik(xk)+∑
n
i=1 ui, and

is verified for κ ≥ K/mini{µi}. The existence of such a
bound is structural, although the value of κ is parameter-
dependent. Nagumo’s condition applied to the boundary xi =
0 is satisfied since the system is structurally positive.
The solution of a chemical reaction network (1) is struc-
turally bounded when each variable self-degrades and all the
entries of the vector function g are bounded. In this case,
we can write the system as ẋ = −Mx+ Sg(x)+ g0, where
M is a diagonal matrix with positive diagonal entries µi and
[Sg(x)+g0]i ≤K. Then, ẋi = [Sg(x)+g0]i−µixi ≤K−µixi,
hence xi ≤ κi = K/µi. Again, albeit the value of κi de-
pends on the parameters, the existence of the bound is struc-
tural. Being the system also structurally positive, its evolu-
tion is structurally bounded in the simplicial set (13), with
κ = ∑

n
i=1 κi.

Example 9 (Enzymatic network.) Consider the enzymatic

network model [148]

ẋi = ∑
j

αi j(1− xi)

(1− xi)+ γi j
x j−∑

k

βikxi

δik + xi
xk, (14)

where the positive terms correspond to activations and the
negative terms to inhibitions, and all concentrations are nor-
malised to 1. Then, for any possible choice of the positive
parameter values αi j, βik, γi j and δik, the solution x(t) is
bounded in the positive unit box B = {x : 0 ≤ xi ≤ 1}: the
system is positive (if xi = 0, ẋi ≥ 0) and, if xi = 1, ẋi ≤ 0.
See [1] and [43] for specific applications of set-invariance
and Lyapunov approaches to biological systems.
General algorithmic methods to establish boundedness based
on Lyapunov and Lyapunov-like functions have been pro-
posed in [44] [47]; the method relies on embedding the sys-
tem trajectories in a positive linear differential inclusion, an
approach previously proposed in [23].
For the particular case of chemical networks endowed with
mass action kinetics, the connection between weak re-
versibility (a key concept in chemical reaction theory, see
Section 6 and [98]) and boundedness are studied in [12].
Proving boundedness of the system solutions in a compact
and convex set is particularly important, because it guaran-
tees the existence of a steady state, as we discuss next.

5 Steady-state analysis

Assessing the existence of steady states, their number and
their stability is the starting point when studying all dynami-
cal systems, including biological models. Given the dynam-
ical system ẋ = f (x), a steady state is a vector x̄ such that
f (x̄) = 0. A fundamental result about the existence of steady
states is proven in [195] (see also [173]).
Proposition 2 If, for all initial conditions, the solutions of
the system ẋ = f (x) are ultimately bounded in a compact
and convex set X (i.e., for all x(0) there exists T (x(0)) such
that x(t) ∈X for t ≥ T (x(0))), then the system admits a
steady state in X .
The same result holds if we assume that X is positively in-
variant: then, the following result is a standard consequence
of the Brouwer fixed point theorem (see [42] for details and
references).
Proposition 3 If the compact and convex set X is positively
invariant for the system ẋ = f (x), then the system admits a
steady state in X .
Hence, whenever we can guarantee ultimate boundedness in
a compact and convex set X , or ensure its invariance, then
we have at least a steady state; and, as mentioned above,
boundedness can be structurally assessed. The next step is
to have information about the number of the steady states
and about their (local) stability.
Concerning the uniqueness of steady states, the following
structural result is given in [135, 212].
Proposition 4 Given the system ẋ = f (x), with f smooth,
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assume that the convex and compact set X has a non-empty
interior and is positively invariant for the system, with no
steady states on the boundary. Also, assume that the Jaco-
bian is structurally nonsingular within the set: detJ(x̄) 6= 0
for all x̄ ∈X . Then, if a steady state exists, it is unique.
Example 10 (Repressilator and Promotilator, equilibria.)
Consider the systems in Example 6, for which the (compact
and convex) simplex S in (13) is positively invariant. Then,
a steady state exists. For the repressilator, this steady state is
also unique since the Jacobian is structurally nonsingular;
this is however not true for the promotilator.
Topological degree theory [120] [147] gives interesting in-
sight into the relation between multiple steady states.
Proposition 5 Given the smooth function f , assume that the
convex and compact set X has a non-empty interior and
is positively invariant for the system ẋ = f (x). If the system
admits m ≥ 1 steady states x̄k that are all internal (not on
the boundary of X ) and non-degenerate (the Jacobian at
the steady state is non-singular, detJ(x̄k) 6= 0), then

Index =
m

∑
k=1

sign [det(−J(x̄k))] = 1.
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Figure 6. Intersection between xp

1+xp +ν (blue) and µx (red).

Degenerate steady states can exist, although they typically
correspond to a zero-measure set in the parameter space. For
instance, given µ,ν ≥ 0 and p ∈ N, the scalar system

ẋ =−µx+
xp

1+ xp +ν

admits a degenerate steady state when the line µx is tangent
to the sigmoid xp

1+xp + ν (dashed red line in Fig. 6); for a
given p, the associated set of parameters is a curve in the
µ-ν space. For ν = 0, there is a steady state x̄ = 0; then,
if we take p = 1, we may have two non-degenerate steady
states and an Index equal to 0, which however is not in
contradiction with Proposition 5, since x̄ is on the boundary.
Also the logistic model of population growth

ṅ = rn
(

1− n
K

)
,

where n is the number of individuals, r > 0 is the growth rate
and K is the carrying capacity of the ecosystem, admits two
steady-states in any invariant interval [0,M], with M > K:

n̄ = 0 with det(−Jn̄) =−r < 0 and n̄ = K with det(−Jn̄) =
r > 0, so that the Index is 0. Yet, also in this case Proposition
5 does not apply because the steady state n̄ = 0 is on the
boundary of the interval.
Example 11 (Competing populations.) Consider a model
of two populations in competition, e.g., for shared nutrient
resources [53, p. 166],

ẋ = x(λ −ax−by)+σ

ẏ = y(µ− cx−dy)+ν

where we have added the positive input terms σ and ν . We
can structurally rule out steady states on the boundary of
the positive orthant (for which x̄ = 0 or ȳ = 0). The system
structurally admits at least one positive steady state, as can
be inferred from the boundedness of the solutions: given the
set X = {(x,y) ≥ 0 : x2 + y2 ≤ κ}, Nagumo’s condition is
satisfied for κ > 0 large enough. Without restrictions, we
assume that the variables are normalised so that the positive
steady state corresponds to (1,1), hence (λ−a−b)+σ = 0
and (µ− c−d)+ν = 0. The Jacobian at this point is

J =

[
−(a+σ) −b

−c −(d +ν)

]

and, for large b and c, det(−J)< 0. In view of Proposition
5, this implies the existence of other two (positive) steady
states at which det(−J) is positive.
Several papers in the literature have considered the steady-
state analysis of chemical reaction networks with mass-
action kinetics, starting with Feinberg’s work [95] [96] [97].
Conditions for the existence and uniqueness of steady states
are given by the deficiency-one theorem [95]; the deficiency
of a CRN, as discussed in the next chapter, is an integer non-
negative quantity that can be computed exclusively based on
the network structure. [72] and [73] investigated whether a
network can admit multiple steady states, providing struc-
tural and graphical results: [72] provides conditions to struc-
turally rule out the existence of multiple steady states, in
terms of the expansion of the determinant of the network
Jacobian, while [73] provides conditions for the presence of
multiple steady states based on the analysis of the cycles in
the species-reaction graph. Structural conditions for injec-
tivity and existence of multiple equilibria are in [37], [38].
[168] proposed the so-called circuit breaking algorithm for
steady-state analysis, which operates on the graph topology
associated with the biological system. A robustness analy-
sis of steady states was proposed in [56] within a qualitative
framework. A nice survey about assessing the multistation-
arity of CRNs is provided in [132]; see also the book [98]
for a thorough exposition.

6 Stability and instability

Listing stability as a property that is worth investigating for
biological and biochemical models may be frowned upon
because, in most cases, biologists know very well that the
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system they are studying is stable; hence, a mathematical
proof may seem of no use. However, some fundamental
considerations motivate (structural) stability analysis.
• Mathematical tools are applied to the study of a model,

not of the real system. Hence, checking whether some
fundamental system properties do hold for its mathe-
matical representation is crucial for model falsification.

• Identifying the mechanisms that ensure stability reveals
the sources of the expected “good behaviour” and casts
new light on the clever tricks adopted by nature.

• Most importantly, structural stability analysis allows us
to establish that not only a specific system (with as-
signed parameter values) but a whole family of systems
is stable/unstable.

Assessing the stability of a steady state without knowing
the system parameters is very challenging, but possible in
particular cases and for particular classes of systems. Here
is an example of structural stability analysis, which relies
on parameter-free arguments.
Example 12 (Negative and Positive Loop.) Let us com-
pare two simple planar systems{

ȧ = −µaa+gb(b)+νa

ḃ = −µbb+ fa(a)+νb

{
ȧ = −µaa+ fb(b)+νa

ḃ = −µbb+ fa(a)+νb

where the functions fa and fb are increasing sigmoids and
the function gb is a decreasing complementary sigmoid. The
structures of the two systems are represented in Fig. 7: the
first system is a negative (activation-inhibition) loop, while
the second is a positive (mutual activation) loop.
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Figure 7. Negative loop (left) and positive loop (right): signal
graph structure (bottom) and nullclines (top).

The first system admits a single steady state (Fig. 7 left). The
Jacobian has the sign pattern sign[Jneg] =

[− −
+ −
]
, hence Jneg

is structurally Hurwitz. Global stability of the unique steady
state can be proved based on the Poincaré-Bendixson theo-
rem (see e.g. [136]). The second system may have one or
more steady states, depending on the parameters. The Jaco-
bian has the sign pattern sign[Jpos] =

[− +
+ −
]

and is Hurwitz
if and only if det[−Jpos] = det[Jpos]> 0. Changing the value

of νa (as in Fig. 7 right) leads to different scenarios.
I) For small values of νa, there is a single steady state L, with
low values of both a and b, which is stable (det[−Jpos]> 0).
II) For intermediate values of νa, there are three steady
states, L, U and H, with small, intermediate and large val-
ues of both a and b. L is stable (det[−Jpos] > 0), U is un-
stable (det[−Jpos]< 0) , H is stable (det[−Jpos]> 0), hence
we have bistability.
III) For large values values of νa, there is a single steady
state with large values of both a and b, which is stable
(det[−Jpos]> 0).
If, in the positive loop system, we replace functions fb and
fa by decreasing sigmoidal functions gb and ga, we get a
toggle-switch system (see e.g. [105] [191, Chapter 6] [104]),
whose Jacobian has the sign pattern sign[Jts] =

[− −
− −
]
, and

can be analysed with a similar approach.
The example highlights the following general principles:
• any system that can be modelled as a negative self-

loop, or as the negative loop of two nodes (without
delays) is structurally stable – however, this is not true
for negative loops of more than two nodes;
• a system that can be modelled as the positive loop of

two nodes may be either monostable (with a single
steady state, which is stable) or multistable, typically
bistable with two stable steady states and one unstable
steady state (the latter is in general hard to observe).

The presence of a negative self-loop on each node (i.e., neg-
ativity of all the diagonal entries of the Jacobian) is crucial
for structural stability. Consider for instance the structure of
the substrate-depletion motif in [191, Chapter 6]. The sys-
tem (along with its Jacobian) is{

ȧ = a0− fab(a,b)

ḃ = fab(a,b)− fb(b)
[Jsd ] =

[
−α −β

α β − γ

]
,

where functions fab and fb are monotonically increasing in
each argument; it is BDC-decomposable, with α = ∂ fab/∂a,
β = ∂ fab/∂b and γ = ∂ fb/∂b. A negative loop is present, but
the entry [Jsd ]2,2 can be positive. The system admits a unique
equilibrium, computed by solving ȧ+ ḃ = a0− fb(b) = 0
to find b̄, and then a0− fab(a, b̄) = 0 to find ā, and might
exhibit persistent oscillations, since the linearised system has
complex eigenvalues with positive real part if β−γ−α ≥ 0.
A large body of literature attempts to establish the struc-
tural stability of classes of systems, in particular CRNs [19]
[67] [98] [158], by assessing the qualitative stability of their
structures. Pioneering work in the context of CRNs governed
by mass action kinetics includes [122] [123] [124].
Perhaps the most famous result is the deficiency-zero theo-
rem, which we informally summarise here. We first provide
some definitions [98].
Complex: integer combination of chemical species corre-
sponding to either reactants or products of a reaction; the
network in Fig. 8 has c = 5 complexes: A, 2B, A+C, D and
B+E. Two complexes are connected if they are reactant and

12



Figure 8. Example of a weakly reversible network with five com-
plexes and two linkage classes, from [98].

product in the same reaction (directed harpoon arc in Fig. 8).
Linkage class: equivalence class of complexes that are con-
nected by the reactions through undirected paths (following
the reaction arrows in either direction); the network in Fig.
8 has `= 2 linkages classes: {A,2B}, {A+C,D,B+E}.
Network rank: it is r = rank(S).
A CRN is weakly reversible if all the complexes in each
linkage class are connected through directed paths: for any
pair of complexes, i and j, there is a “path” of reactions that
leads from i to j, following the arrows only in the direction
in which they point. For instance, in the network in Fig. 8,
D is connected to B+E by the reaction with rate φ , while
B+E is connected to D by the reactions with rate ε and
γ; the overall network is weakly reversible. If we remove
the reaction with rate ε , the network is no longer weakly
reversible because no directed path leads from B+E to the
other complexes in the same linkage class. Conversely, the
network is reversible if all reactions are reversible.
For weakly reversible networks, the deficiency is defined as

d = c− r− `.

The general definition requires decomposing the stoichio-
metric matrix as S = NM, where N ∈ Zn×c has in position
(i,k) the stoichiometric coefficient of species i in complex k,
while M ∈ {−1,0,1}c×m is the complex-reaction incidence
matrix, whose (k, j) entry is −1 if complex k is the reagent
in reaction j, 1 if it is the product, and 0 otherwise. Then,
the deficiency is d = dim(ker(N)∩Ra(M)). See [19] [98]
for details. It can be shown that d ≥ 0. If d = 0, the net-
work has zero deficiency and the following celebrated result
applies [95] [96] [97] [98].
Theorem 2 (Deficiency-Zero Theorem.) Given a weakly
reversible chemical reaction network with mass-action ki-
netics, assume that its deficiency is 0. Then, there is a unique
steady state in each stoichiometric compatibility class, which
is (locally) asymptotically stable.
This is a structural result: it holds independent of the pa-
rameter values. It is proven by adopting the entropy

H(x) = ∑
i

xi log
(

xi

x̄i

)
− xi + x̄i

as a Lyapunov function. This Lyapunov-entropy approach
works, also in the absence of the zero deficiency property,

for the class of closed reversible networks as long as these
admit a steady state that is also a thermodynamic equilibrium
(at which each reaction has the same rate as its inverse;
see [19]). Several results along these lines were proposed
later [59] [11] [159] [117] [177] [134]. An extension of the
deficiency-zero theorem to more general reaction kinetics of
the form κθa(a)pθb(b)q was proposed in [186].
We stress that the deficiency-zero theorem is about local
asymptotic stability. Although the result has been shown
to hold globally, within the stoichiometric compatibility
class, for significant subclasses of systems, it is still unclear
whether this is true in general; this open problem is known
as the Global Attractor Conjecture (see [98, Section 7.8]
and the references therein).
A different approach to investigate structural local stability
is based on D-stability analysis [67].
Definition 7 A Lyapunov stable matrix M (marginal stabil-
ity is admitted) is weakly D-stable if, for all diagonal ma-
trices D with positive diagonal entries, matrix MD is also
Lyapunov stable. A Hurwitz matrix M is D-stable if, for all
such matrices D, MD is Hurwitz.
As shown in [67] for CRNs, D-stability is fundamental for
the analysis of the structural stability of steady states. We
illustrate the results by adopting the BDC-decomposition
described in Section 3.3. The Jacobian can be structurally
written as BDC; now let M =CB. Then BDC and MD=CBD
have the same non-zero eigenvalues. In fact, consider two
matrices P and Q, with PQ and QP square: then, if λ 6= 0
is such that PQv = λv for some v 6= 0, we can pre-multiply
by Q and set w = Qv (w 6= 0) to get QPw = λw. Hence,
assessing weak or Hurwitz structural stability of BDC can
be cast as a D-stability problem. Sufficient conditions for
D-stability are summarised next.
Proposition 6 Let M be Hurwitz (or Lyapunov stable). Then
M is D-stable if it satisfies any of the following conditions:
i) it is symmetric; ii) it is Metzler; iii) it admits a diagonal
Lyapunov matrix Π � 0, such that ΠM +M>Π � 0; iv) it
is row or column diagonally dominant; v) it is triangular;
vi) there exists an invertible diagonal matrix T such that
T−1MT satisfies one of the previous conditions.
A necessary condition is the following: matrix M is (weakly)
D-stable only if all the principal minors of −M are non-
negative. No necessary and sufficient conditions are known.
A survey on this topic can be found in [110].
A special case of structural stability analysis is qualitative
stability or sign-stability. Consider a matrix A with sign-
definite entries (e.g., the matrices in Example 1), so that
sign[Ai j] ∈ {+,−,0}. Then, under which conditions on the
sign pattern can we conclude that A is Hurwitz, regardless of
the numerical values of the entries? This problem has been
deeply investigated; see e.g. [88, Section 6.5] and the refer-
ences therein. First, a necessary condition is that the diag-
onal entries are non-positive; biologically, a positive entry
can be interpreted as auto-catalysis, which can destabilise
the system if it is too strong. Since the trace of a matrix is
the sum of the eigenvalues, if we have a positive entry that
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can be arbitrarily large, then we can have a positive trace,
hence at least one eigenvalue must have a positive real part.
An important result is the following. Consider the directed
graph associated with the sign-definite matrix A∈Rn×n. The
graph has n nodes and, if ai j 6= 0, an arc goes from node j
to node i: it is an activation arc (pointed head) if ai j > 0 and
an inhibition arc (hammer head) if ai j < 0. This graph may
have cycles, namely, sequences of nodes connected by arcs
(which must be crossed in the direction in which they point)
where the first and the last node of the sequence coincide. A
cycle is positive (negative) if the number of inhibition arcs
that are crossed is even (odd). The following theorem holds.
Theorem 3 ([166]) Let A be a square matrix of size n whose
diagonal entries are all negative. Then, A is sign-stable if
and only if, in the associated graph, every cycle of length 2
is non-positive and there are no cycles of length 3 or more.
Example 13 (Activation-Inhibition Chain.) The sign pat-
tern in Fig. 9 corresponds to a tridiagonal structure where
each node inhibits the following and activates the previous
one. There are no cycles of length greater than 2 and all
the cycles (A−B−A and B−C−B) are negative. This is a
sign-stable system. Adding the dashed arc in the figure, thus
replacing the [0] in position (1,3) with a +, destroys sign-
stability: if the new entry a13 > 0 is taken large enough, the
determinant det[−A] becomes negative, which means that
the system is unstable.

A

C

B

sign[A] =


− + [0]

− − +

0 − −


Figure 9. Tridiagonal structure: graph and sign matrix.

Sign-stability is seldom found in practice because it requires
strong conditions. Still, this type of analysis can reveal that
the stability of some structures, such as arbitrarily long tridi-
agonal chains with forward activations and backward inhi-
bitions, is remarkably robust.
Several techniques have been put forth to assess the struc-
tural stability of biochemical networks. Local stability can
be investigated by means of parameter-dependent Lyapunov
functions [67]; in fact, A = BDC is Hurwitz for all diagonal
D� 0 if and only if the parametric Lyapunov equation

P(D)BDC+[BDC]>P(D)+ I = 0

has a solution P(D) � 0 for all D. For fixed D, the entries
of P are the solutions of a linear equation. Then, the entries
of P(D) are rational functions of D, Pi j = νi j(D)/µ(D),
with νi j and µ polynomials. On the other hand, P(D) can
be scaled as P(D) := P(D)µ(D). Hence, does there exist a
polynomial matrix P(D), positive definite, which yields a
parameter dependent Lyapunov function? As shown in [46],

this problem can be solved by means of SOS programming,
based on the methods proposed in [65].
Other recent approaches deal with global structural stability.
If the network (1) has a steady state, is it globally stable?
This question can be answered based on piecewise-linear
[44] [47] and piecewise-linear-in-rate [8] [9] [10] Lyapunov
functions. These polyhedral functions generalise those first
adopted in [150] for compartmental systems [129].
A piecewise-linear Lyapunov function [155] [54] is a posi-
tive definite function of the form V (x) = ‖Gx‖∞, where G is
a matrix with full column rank. A piecewise-linear-in-rate
Lyapunov function can be seen as a piecewise-linear Lya-
punov function for the rate equations (9) or (11).
Example 14 (Stability analysis.) Consider Example 8 and
assume that b0 > a0. If gab and gb are increasing and ra-
dially unbounded, then a steady state exists: in fact, the
equality −gb(b̄)+ b0− a0 = 0 determines b̄ > 0, and then
−gab(ā, b̄)+ ga = 0 defines ā > 0. We can then define z =
[a− ā,b− b̄]> and write ż = BD(z)Cz with

BDC =

[
−1 −1 0

−1 −1 −1

]
D


1 0

0 1

0 1

=

[
−D1 −D2

−D1 −(D2 +D3)

]
.

Since BDC is column diagonally dominant, it admits ‖x‖1
as a Lyapunov function, which proves global stability and
convergence to the equilibrium. Considering the system
in rate coordinates and piecewise-linear-in-rate Lyapunov
functions [8] [9] leads to a matrix that is row-diagonally
dominant, hence ‖x‖∞ works as a Lyapunov function.
Example 15 (Stability analysis of a metabolic network.)
The computational procedure in [44] reveals that the
metabolic network system in Example 2 admits a piecewise
linear Lyapunov function with

G =


1 0 0 1 −1 0

0 1 0 1 0 1

0 0 1 0 1 1


>

and a piecewise-linear-in-rate Lyapunov function with G =
I.
There are several examples of systems that admit a
piecewise-linear-in-rate Lyapunov function but not a
piecewise-linear Lyapunov function, or vice versa [45];
hence, these two classes of Lyapunov functions complement
each other. Lyapunov-based approaches to assess global
stability have been discussed in [170]. Passivity-based crite-
ria for stability have been put forth in [31] for biochemical
systems.
Finally, if we relax our requirement of structural investiga-
tion and we perform a robust stability analysis with (arbi-
trarily large) bounds

D−i ≤ Di ≤ D+
i , (15)
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then a computable sufficient condition for the Hurwitz sta-
bility of BDC under (15) is provided by the zero exclusion
and the mapping theorems (see [40] for details).
Theorem 4 (Zero Exclusion Theorem.) Consider D =
[D1 . . .Dn], where the parameters Di are subject to (15).
Matrix A(D), whose entries are continuous functions of D,
is Hurwitz stable if and only if A(D̂) is Hurwitz for some
D̂, and for all ω ≥ 0 the value set

Vω = {z ∈ C : z = det[ jωI−A(D)], Di as in (15)}

does not include the origin.
The shape of the value set can be very hard to assess, but
the following theorem comes to help for matrices such that
det[ jωI−A(D)] is a multilinear function of the parameters
Di, which includes all BDC-decomposable matrices.
Theorem 5 (Mapping Theorem.) Given the uncertain ma-
trix A(D) with det[ jωI−A(D)] multilinear in the Dk’s, the
convex hull of the value set conv[Vω ] at the frequency ω is
exactly the convex hull of the points det[ jωI−A(D̂k)], where
D̂k are the vertices of the hyper-rectangle (15).
Hence, the set conv[Vω ] can be drawn very easily, and a
sufficient computable condition for robust stability is that it
never includes the origin.
Non-minimum phase. Natural systems may well show un-
stable behaviours. Can they show a non-minimum phase be-
haviour? A very simple example of possibly non-minimum-
phase system is the incoherent feedforward loop [209] (cf.
Fig. 2). If we linearise the system at a steady state, the trans-
fer function from u to b is

F(s) =
µ

s+α
− ν

(s+β )(s+ γ)
.

Consider the step response f−1(t) of this system, i.e., the
inverse Laplace transform of F(s)/s. The initial value theo-
rem reveals that the derivative at zero is f ′−1(0) = µ/α > 0,
hence the step response is initially positive. According to
the final value theorem, the steady-state value is f−1(∞) =
µ/α−ν/(βγ)

.
= f ∞
−1. If f ∞

−1 < 0, we have the standard non-
minimum-phase behaviour; as can be seen by computing the
numerator of the transfer function, this condition implies the
presence of a (one) positive zero. Non-minimum phase sys-
tems are observed in the presence of autocatalytic networks
[156] [183] or in transcription-translation systems with re-
source competition [209].

7 Reaction to persistent perturbations

How a biological or ecological system reacts to external
stimuli is of essential importance in the study of natural
phenomena. For instance, in nature we commonly observe
the phenomenon of adaptation, which is the ability of a sta-
ble system to compensate a persistent perturbation and re-
cover, after a transient, the configuration it had before the
injection of the perturbation [5] [148] [91]. The pre-stimulus
steady-state values and output values can be restored either

approximately or exactly (asymptotically), and in the lat-
ter case the property is denoted as perfect adaptation. This
phenomenon has been observed and intensively studied in
bacterial chemotaxis [39] [194] [7] [210] [68] and yeast
osmoregulation [157]. In particular, the bacterium E. coli
adapts its switching frequency between the running and the
tumbling state, as a function of nutrient (chemoattractant)
concentration. This behaviour creates a random walk aimed
at maximising food intake; a specific analysis of the random
walk of bacteria has been proposed in [34].
Adaptation obeys the internal model principle [187]. In
terms of transfer function, perfect adaptation clearly requires
the presence of a zero at the origin of the complex plane
[87]; a negative zero close to the origin yields adaptation,
although non-perfect. Also the presence of an integrator in
a negative feedback loop ensures perfect adaptation [210]
[91] [57]. Several mechanism have been studied in the liter-
ature to provide perfect adaptation, such as the recent [29]
and [28], with emphasis on the robustness of the property.
A general structural condition widely applicable to nonlinear
systems can be derived as follows. Assume that the stable
system with scalar input u and scalar output y,

ẋ(t) = f (x(t),u(t)), y(t) = g(x(t)), (16)

has a steady state x̄, corresponding to the constant input ū,
and output ȳ = g(x̄). The perturbed input ū→ ū+δu (with
δu not too large, not to compromise stability) yields the
new output ȳ→ ȳ+δy. We seek conditions under which the
steady-state output remains unchanged, i.e. δy = 0. Equiva-
lently, the implicitly defined function

y = φ(u) : 0 = f (x,u), y = g(x)

is constant, namely φ ′(u) = 0. By applying the theorem of
the derivative of an implicit function, it must be

d
du

φ(u) =−∂g(x)
∂x

[
∂ f (x,u)

∂x

]−1
∂ f (x,u)

∂u
= 0,

which is equivalent to the transfer function of the linearised
system having a zero at the origin. If this condition is satis-
fied at the steady state, then adaptation is a local property;
if dφ(u)/du is identically zero, the property is global. The
equality can be satisfied just for some choices of the param-
eter values, but for some classes of systems it is structural,
because it exclusively relies on the structure, or even on the
sign pattern, of the Jacobians of f and g.
Structural steady-state analysis can predict perfect adapta-
tion as a special case. The more general question is: if a
persistent (step) positive input δu is applied to the system,
how does the steady state output δy behave? A structural
answer can be

δy
δu

=
d

du
φ(u) ∈ {+,−,0,?},
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meaning that δy can be either structurally positive, struc-
turally negative or structurally zero (regardless of parameter
values), or indeterminate (its sign depends on the parame-
ters). This type of analysis has deep roots in ecology [77]
[78] where the main concern is to robustly predict the ef-
fects of perturbing agents in ecosystem communities. This
problem has been reconsidered later in [190] and [109].
For single-input single-output systems admitting a BDC-
decomposition (7) of the form

ż = BDCz+Eu, y = Hz,

consider the expression

∆(D) = det

−BDC −E

H 0


and let D be the set of all binary-valued diagonal D matrices,
with Dii ∈ {0,1}. Then:
i) δy

δu =+ iff ∆(I)> 0 and ∆(D̂)≥ 0 for all D̂ ∈D ;
ii) δy

δu =− iff ∆(I)< 0 and ∆(D̂)≤ 0 for all D̂ ∈D ;
iii) δy

δu = 0 iff ∆(D̂) = 0 for all D̂ ∈D ;
iv) δy

δu =? otherwise.
The outcomes with this vertex approach are fully consistent
with those obtained with the approach in [190].
The structural influence matrix can be built by taking E and
H with a single nonzero entry, say the jth and the ith respec-
tively, and considering all possible (i, j) pairs: it shows the
effect of all possible input perturbations, acting on one of
the state equations, on the steady state of all possible state
variables taken as outputs [109]. Non-trivial biological sys-
tems can have a surprisingly small fraction of indeterminate
entries; see for instance the influence matrix of the EnvZ-
OmpR osmoregulation system in E. coli studied in [180],
which is reported in Fig. 10.

Figure 10. Structural influence matrix: entry (1,2) is the structural
sign of the steady-state variation in the concentration of species A
ensuing a positive input perturbation acting on species B.

A step input can be seen as a special case of the frequency
signal cos(ωt) at frequency 0. So, it is natural to extend the
analysis to the behaviour of a system subject to a periodic
input. This problem has been considered in [128], where the
frequency response is shown to offer an insight into bio-
logical processes, such as tryptophan biosynthesis and bac-
terial chemotaxis regulation. In [174], structural frequency

analysis for nonlinear transcriptional systems is based on
contraction theory. Periodic inputs have been investigated in
[71] [104] and in [169], which resorts to oscillatory inputs
to differentiate between adaptive topologies.
Sensitivity analysis. Biological systems often show very lit-
tle changes in their (qualitative) behaviour, in spite of strong
variations in relevant parameters (e.g. temperature or key
species concentrations). Sensitivity analysis aims at quanti-
fying the sensitivity to parameter variations, which explains
when and why this strong resilience is possible. Low sen-
sitivity is an essential aspect of robustness [179]; however,
having low sensitivity is not always desirable: we wish to
have systems that are insensitive against undesired distur-
bances, but also – if we need to govern them – very sensitive
with respect to the control input! A structural approach to
sensitivity analysis has been proposed in [154] [103] [55],
while a frequency approach is suggested in [128]. Sensitiv-
ity analysis typically aims at spotting the presence/absence
of sensitivity or quantifying the variations [55], rather than
determining their sign as in the analysis in [190] and [109].
It is worth stressing that the approach discussed above to
compute structural input-output influences can be used also
to structurally analyse the sensitivity to parameter variations:
it suffices to choose u as the parameter of interest.

A

B

E

Figure 11. Simplified enzymatic reaction, typical of cell sig-
nalling (such as the MapK cascade): the variable e, with equation
ė =−γe+u, affects the flow in the a-b subsystem (with equations
ȧ =−αea+βb, ḃ =+αea−βb) without being affected [108].

Ultrasensitivity. Ultrasensitive systems have a steep steady-
state characteristic, so that, in certain conditions, a small
variation of the system input causes a huge output variation
[111] [112] [126] (see [100] [101] [102] for a recent sur-
vey). This is common in biology, especially for phenomena
involving a high degree of cooperativity, which leads to sys-
tems with a Hill-type characteristic as in (6). As shown in
[111] [112], this type of characteristic is typically achieved,
for instance, when connecting in series several structures as
in Fig. 11, where the chemical reactions are E +A α−⇀ E +B

and B
β−⇀ A. If the system in Fig. 11 is the first element

of a series, then the steady-state characteristic from e to b
is b = αµe/(αe+ β ) = f0(e), where µ = a+ b is a con-
stant. If we connect this first module with new ones of the
same type, with inputs bk (k = 1,2, . . . ,n− 1) and char-
acteristic bk+1 = αkµkbk/(αkbk +βk) = fk(βk), the overall
characteristic, which is the composition of such functions,
bn = fn ◦ fn−1 ◦· · ·◦ f1 ◦ f0(e), tends to an ultrasensitive step-
like function (for a suitable choice of the parameters). Ul-
trasensitivity can have a fundamental effect in loops and bi-
ological signalling pathways [100] [101] [102]. In fact, an
ultrasensitive module can ensure very low sensitivity (hence,
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very high robustness). For instance, the equation

ẋ =−µx+u+ψ(x),

where ψ(x) is a decreasing Hill-type function ψ(x)= 1/(1+
xp) showing an abrupt drop at x = 1 (it tends to a step in the
limit p→ ∞), shows a very small sensitivity of the steady
state with respect to variations of µ and of u, at least in a
proper range of state values. This property can be verified
by means of the implicit derivative theorem.
Scale invariance. Given a stable dynamical system of the
form (16), assume that the input changes from u = u0 > 0,
corresponding to a steady state x0, to u = u1, corresponding
to a new steady state x1. Let y(t) be the output during the
transient. Then, perform the same experiment with scaled
input values: pu0 becomes pu1. If the output evolution y(t)
is the same as in the previous case, the system is scale
invariant [182] [184]. In simple words, the output depends
on the relative change (the ratio) and not on the difference of
the input values. Scale invariance entails adaptation, but not
all adaptive systems are scale invariant. This phenomenon
has been shown to be important in cell sensory systems,
enzymatic networks and bacterial chemotaxis. The reader is
referred to [184] [182] for an in-depth discussion.

8 Signed feedback loops: oscillators and switches

Natural functions heavily rely on regulatory feedback loops,
which are fundamental for the robustness of biological
mechanisms. However, identifying the relevant loops that
give rise to a specific function, in models that typically
involve a huge number of interacting species, is often chal-
lenging: graphical representations of the interactions and
pathways occurring within the simplest living cell make
this astounding complexity self-evident. The following di-
chotomy is normally encountered when tackling the loop
analysis of biological systems.
• Complete models of biological phenomena are often

too complex to be studied analytically. Resorting to
brute-force numerical simulations does not provide any
insight into the functional mechanisms underlying the
observed behaviours, and requires an accurate knowl-
edge of parameter values, which are hardly available.

• A simple model that captures the essence of a mech-
anism is typically amenable for analysis, yet it can be
criticised for not being a faithful representation.

Considering everything means explaining nothing: therefore,
in general we must select just the subset of a complex sys-
tem that is relevant to give rise to a specific phenomenon.
Consider for instance [3, Fig. 13-20], which visualises very
effectively that glycolysis and citric acid cycle are a small
fraction of the reactions occuring in a cell and the related
pathway can be easily isolated. Simplification and selection
of the relevant elements to explain a mechanism can be per-
formed either based on experience and knowledge of the
biological phenomenon, possibly supported by experiments,
or based on mathematical tools relying on time-scale sepa-
ration and aggregation, which we will discuss in Section 9.

Once the essential mechanisms involved in a phenomenon
have been captured in a block diagram or interaction graph,
important insight can be obtained through their structural
analysis. Interactions in biological signal graphs are signed,
since they can be either inhibitory or activating. Then, the
presence of negative and/or positive cycles can be crucial
to explain fundamental dynamic behaviours. As mentioned
before Theorem 3, a directed cycle in a signed graph is
positive if it includes an even number of inhibitory (negative)
arcs, negative if it includes an odd number of inhibitory
arcs. In Fig. 4, the repressilator has a single cycle that is
odd, while the promotilator has a single cycle that is even.
We focus on cycles of length ≥ 2, while self-loops are here
assumed to be negative.
Negative and positive cycles are related to the capacity of a
dynamical system to exhibit multistationarity or oscillations,
two types of behaviours that are frequently encountered in
nature. Cells must often change very rapidly the “operating
point” by switching between different cellular “states”: this
governs cell fate (life cycle, cell division, apoptosis) and
cell differentiation [208]. On the other hand, cells also show
behaviours characterised by rhythms and periodicity, gener-
ally orchestrated by internal biochemical clocks [113]; many
cyclic behaviours are fundamental also at the organism level
(e.g. heartbeat, sleep phases, circadian rhythms, menstrual
cycle, seasonal changes in coat/plumage of some animals).
The presence of positive or negative cycles in the Jacobian
graph is a widely accepted method to explain multistation-
arity and oscillations in molecular/chemical systems [202].
Some of the first mathematical conjectures in this area were
formulated by Thomas [201]: given a Jacobian graph, a neg-
ative cycle is a necessary condition for stable periodic be-
haviour, while a positive cycle is a necessary condition for
multistationarity. These conjectures were proved in [114]
[185] [27]; see also [133]. Graphic conditions for multista-
tionarity have been given in [193]. Graph-based conditions
associated with the presence of Hopf or pitchfork instabil-
ity have been studied in the context of mass-action kinet-
ics [72], and in generalised biological models [167], using
species-reaction graphs [73] [85] [153] [144], multigraphs
[152], and algebraic geometry [73] [84]. A structural clas-
sification of systems into (strong or weak) candidate oscil-
lators or candidate multistable systems has been suggested
in [48]. The basic principle established in the literature is:
• positive loops are necessary for multistability;
• negative loops are necessary for oscillations.

For example, given a dynamical system with an underlying
graph structure, associated with the sign pattern of the Jaco-
bian matrix, assume that its solutions are globally bounded
within a compact and convex positively invariant set, with
non-empty interior, and there are no equilibria on the bound-
ary. Consider two possible sign patterns for the Jacobian:

sign[Jo] =


− + 0 0

0 − 0 +

− − − 0

0 0 + −

 , sign[Jb] =


− + 0 0

0 − 0 −

− − − 0

0 0 + −

 . (17)
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The Jacobian graph associated with Jo has only negative
cycles, while that associated with Jb has only positive cycles
(in addition to negative self-loops). Now, consider the case
in which these Jacobians, for some values of the parameters,
are marginally stable with either: i) one real eigenvalue (in
general associated with a pitchfork bifurcation) or ii) two
imaginary eigenvalues (in general associated with a Hopf
bifurcation), while all the remaining eigenvalues have neg-
ative real part. Are both of these cases possible for each of
the considered systems?
The answer is no. Since Jo has only negative cycles, then
det[−Jo] 6= 0 [166] (det[−Jo] > 0 structurally), hence case
i) is ruled out. There are two imaginary eigenvalues and
the linearised system exhibits sustained oscillations. More-
over, in view of Proposition 5, there cannot be other steady
states. Conversely, Jb has only positive cycles, hence it is
similar to a Metzler matrix through a change in the sign
of some state variables (in particular, Ĵb = T−1JT is Met-
zler, with T = diag{1,1,−1,−1}); cf. Section 9.3. A Met-
zler matrix has a real dominant eigenvalue, so the marginally
stable eigenvalue must be 0, which rules out case ii), and
det[−Jb(x̄)] = 0. If, for proper parameter variations, it hap-
pens that det[−Jb(x̄)] < 0, then, in view of Proposition 5,
other steady states (typically 2) must appear, which are sta-
ble under proper conditions.
Example 16 (Repressilator and Promotilator, dynamics.)
The Jacobians of the repressilator and the promotilator
systems, in Examples 6 and 10, are

JR =


−µa 0 g′c
g′a −µb 0

0 g′b −µc

 , JT =


−µa 0 f ′c

f ′a −µb 0

0 f ′b −µc

 .
The repressilator has a single negative loop and it admits
a single steady state that can either be stable or, in case of
transition to instability, exhibit imaginary eigenvalues; zero
eigenvalues can be ruled out since the determinant is non-
singular, because g′∗ < 0 (cf. Propositions 4 and 5).
The promotilator has a single positive loop and can have
one or more steady states. The characteristic polynomial is

det[sI− JT ] = (s+µa)(s+µb)(s+µc)− f ′a f ′b f ′c.

Via the standard Routh-Hurwitz table, one can prove that
stability holds if and only if det[−JT ] = µaµbµc− f ′a f ′b f ′c > 0.
In view of Proposition 5, in the case of a single steady
state we have stability. Conversely, if there are three isolated
positive steady states (the interesting case of bi-stability),
det[−JT ] must be negative at one (unstable) steady state and
positive at the other two (stable) steady states. Structurally,
this means that the instability of an equilibrium implies the
stability of other two.
The existence of positive (negative) cycles is a necessary
condition for multistability (oscillations), but it is not suffi-
cient. Paradoxically, in some cases the presence of positive

cycles favours the onset of oscillations; in particular, auto-
catalytic reactions (positive self-loops, which we have dis-
regarded so far) are well-known to have a destabilising ef-
fect that can lead to sustained oscillations, of course in the
presence of at least one negative loop [94].
Bistability and patterns. Bistability is related to many im-
portant biological processes and governs cell fate decision
[208] [89] [74] [213]. It has been structurally identified in
the regulatory network of the galactose metabolic pathway
in yeast [70], and it is associated with pattern formation
[94] [30] [121]; structural graph-based conditions have been
given in [152], while an approach based on input-to-state
stability is proposed in [61].
Oscillations. Oscillatory behaviours are also fundamental
in nature [94] [202]. An inner biological clock is needed,
e.g., to regulate metabolism and physiological functions ac-
cording to circadian rhythms [86]; the 2017 Nobel prize in
physiology/medicine was awarded jointly to Jeffrey C. Hall,
Michael Rosbash and Michael W. Young for discovering the
molecular mechanism underlying circadian rhythms, which
is (not surprisingly) based on a negative feedback loop with
delay. Also pattern generation in vertebrate embryonic de-
velopment is ruled by the so-called segmentation clock [63].
Oscillations have been mathematically investigated in gene
networks [106] and qualitative approaches to assess the po-
tential for periodic behaviours have been proposed in [15]
and [76].
Oscillators and synchronisation. Oscillators are funda-
mental devices in many biological processes. In nature
there are several examples of systems formed by several
oscillators that need to be synchronised [36]. The research
about oscillator syncronisation has an old history, starting
with Kuramoto’s model [143]. Given N (almost) identi-
cal oscillators that are interconnected through a network,
do their outputs converge to the same, possibly periodic,
function? General conditions have been given in [146] for
linear uncertain systems and in [176] for nonlinear coupled
systems; the reader is referred to [62, Chapter 8] for further
details and references.

9 Structural analysis of large networks

Biological phenomena typically arise from the entangled in-
terplay of myriads of interacting elements (biomolecules,
cells, individuals), while the methods we have discussed so
far can be more easily applied to small systems. In this sec-
tion, we discuss approaches to deal with the structural anal-
ysis of large and complex systems, either by identifying re-
current structural motifs in huge networks, or by simplifying
systems via singular perturbation arguments or via the de-
composition into subsystems with specific structural prop-
erties. For model order reduction approaches, the reader is
referred e.g. to [171] [178].

9.1 Network motifs

As nicely described in [5], a network motif is a pattern that
is recurring in a network: in biological networks, some par-
ticular motifs have been shown to be significantly more fre-
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quent than in randomly generated networks, which testifies
the importance of their role. In particular, [5] shows that the
feedforward loop (cf. Example 3 and Fig. 2) is a recurring
three-node pattern in most biological networks: it consists
of three nodes A, B and C, where A is controlled by an exter-
nal input u and sends inputs hba(a) and hca(a) to both B and
C, while B send an input hcb(b) to C, and C is the output.
There are eight possible structures depending on the choice
of the negative or positive sign of the h functions (corre-
sponding to inhibition or activation). These structures may
have different logic functions. For instance, the configura-
tion in Example 3 (Fig. 2) yields a system that shows adap-
tation: the initial activation of the third node due to the first
is subsequently compensated by the delayed inhibition com-
ing through the second node. Also the two-node negative
and positive feedback loops in Fig. 7 can be regarded as pil-
lar motifs in biological systems. Network motifs have been
studied by several authors, also in combination with dy-
namic properties [164]. Beside the pioneering work [6] [5],
the reader is referred to [82] and to the recent survey [199].

9.2 Time-scale separation

In modelling biological systems we must take into account
the time-scale on which a certain phenomenon occurs [5]
[82]. Population dynamics can evolve on a scale of years
(mammals) or the scale of minutes (bacteria). Chemical re-
actions can take fractions of seconds up to many hours.
A peculiar fact in biology is that even interacting compo-
nents forming a complex system may evolve on completely
different time-scales. This simple observation is of extraor-
dinary importance in model simplification as well as in qual-
itative explanation of essential properties (see e.g. [60]).
Multimolecular reactions can be always expressed as a cas-
cade of bimolecular reactions. For instance, 2A+B ⇀C can
be decomposed as

A+B
α−⇀↽−
β

X , X +A
γ−⇀C.

Such a decomposition is justified, since trimolecular reac-
tions are considered unlikely to happen and no reactions con-
currently involving more than three molecules have yet been
observed; therefore an overall reaction is more plausibly
modeled by a chain of bimolecular steps (see, for instance,
[88, Section 7.4]). However, since the reversible reaction is
much faster, then, with mass-action kinetics, αab−βx≈ 0.
Under this singular perturbation [136] [82] approximation,
the production of C becomes

ċ = γxa =
γα

β
a2b = kaba2b,

which is the accepted formula for trimolecular reactions.
Another important case is the enzymatic reaction

E +S
α−⇀↽−
β

X
γ−⇀ E +P,

where X = [ES] is an intermediate complex, E an enzyme,
S the substrate, P the product. Again, we can apply a sin-
gular perturbation argument because the reversible reaction
is much faster, hence we can consider the steady state rela-
tion αes = βx. Then, since e+ x = e0 is constant, we have
αe0s = βx+αxs and we can derive the approximate pro-
duction rate of p:

ṗ = γx =
γe0s

β/α + s
=

Vmaxs
KD + s

,

with Vmax = γe0 and KD = β/α , which explains the widely
accepted Michaelis-Menten expression for the reaction rate.
The effect of excluding or explicitly including intermediate
species in CRN models is discussed in [99].

κ

+ τ s1
F(s)+

d

yr

Figure 12. Reduce κ or increase τ?

Time-scale separation is fundamental to explain properties
such as negative loop stability. Consider the loop in Fig. 12,
where F(s) = q(s)/p(s) is a stable transfer function and,
without restriction, q(0)> 0 and p(0)> 0. If we can change
κ > 0 and τ > 0, which is the best strategy to ensure sta-
bility? If we take κ small enough, closed-loop stability is
preserved. Yet, the steady-state error due to a persistent dis-
turbance d may become very large. A different solution is
achieved by augmenting τ . This has no effect on the steady-
state error because, roughly, the steady-state error is achieved
for s = 0. On the other hand, the closed-loop poles are the
roots of

ψ(s,τ) = sp(s)+
1
τ
[p(s)+κq(s)] .

No matter how large κ is, a large enough τ guarantees Hur-
witz stability. Indeed, by continuity of the roots for 1/τ→ 0,
the roots converge to those of p(s)s, namely the (stable) roots
of p and 0. The root converging to 0 is a single real root,
which converges to 0 from the left. In fact, ψ(0,τ) = [p(0)+
κq(0)]/τ > 0 and ψ ′(0,τ) = p(0)+[p′(0)+κq′(0)]/τ > 0,
for τ > 0 large enough. The root that converges to zero is
therefore negative.
Hence, a dynamic element with a large time constant τ ,
compared to the time constants of the process F , ensures
stability and good rejection of persistent disturbances, at the
price of having an overall slower process. Inserting a single
slow element in a negative loop has a stabilising effect: this
is a well established principle [5, p. 100]. On the contrary, it
has been observed in [161] [50] that homogeneous time con-
stants, within the negative feedback loop of many dynamic
elements, may destroy stability and cause oscillations.
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9.3 Monotone systems and decompositions

Many biological systems have been shown to be monotone,
or composed of an aggregation of monotone subsystems. A
system

ẋ(t) = f (x(t),u(t)), y(t) = g(x(t))

is input-output monotone if, given xA(0)≥ xB(0) and uA(t)≥
uB(t), the corresponding state and output solutions satisfy
xA(t) ≥ xB(t) and yA(t) ≥ yB(t) (where all inequalities are
intended component-wise). The definition includes systems
with no input, ẋ(t) = f (x(t)), or with no output; in these
cases, the system is simply said monotone. Monotone sys-
tems [20] [22] [119] [189] are often found in biology and
chemistry, and also in thermal, fluid, electrical engineering.
A monotone system is characterised by its Jacobian matrix
being Metzler. Some systems that are not monotone can be-
come such after a change of variables in which just the sign
of some components is changed [189] [24]. For instance,
consider the signed Jacobian Jb in (17). A system with this
(non-Metzler) Jacobian is not monotone. If we change sign
to the third and fourth variables, x̂3 = −x3 and x̂4 = −x4,
then the Jacobian becomes Metzler. As observed before, the
graph associated with Jb has only positive cycles; changing
the signs of the variables (associated with the nodes) does
not alter the sign of the cycles. Indeed, for systems asso-
ciated with strongly connected graphs, a sign-change trans-
formation exists that renders the system monotone if and
only if the system has no negative cycles [189] or, equiv-
alently, if any pair of oriented paths connecting two nodes
have the same sign. For weakly connected graphs, the situ-
ation is more tricky: the condition is now that all oriented
paths connecting two nodes must have the same sign, which
is no longer equivalent to the absence of negative cycles.
For instance, the incoherent feedforward loop in Example 3
(Fig. 2) has no negative cycles (in fact, it is acyclic) and still
it is not monotone, as one can see from its Jacobian.
Monotone systems are also denoted as cooperative systems,
because all the variables cooperate. In the linear case, when
f = Ax+Bu and g =Cx, a system is monotone if and only if
it is positive, namely A is Metzler, and input-output mono-
tone if, moreover, B and C are nonnegative. In the nonlinear
case, a positive system can be non-monotone and vice versa.
For input-output monotone systems, if we apply a step in-
put starting from a steady state, the resulting output (as
well as the corresponding state variables) is strictly mono-
tonically increasing. Under stability assumptions, the order-
preserving behaviour of (input-output) monotone systems
makes their behaviour qualitatively similar to that of a first-
order system. Indeed, the Jacobian, being a Metzler matrix,
has a dominant real eigenvalue and the real mode associated
with it dominates the long term system response. Moreover,
monotone systems cannot exhibit chaotic behaviours or sta-
ble periodic orbits.
Monotone systems, besides having interest on their own, be-
come fundamental when they are considered as components

in larger systems [79] [192]: indeed, by approximating all
monotone subsystems as first-order elements, a high-order
model can be collapsed into the interconnection of few ag-
gregate nodes. The negative feedback of a monotone system
has been studied intensively [20] [22], to assess whether
it yields a stable negative loop or sustained oscillations. In
[21] [26], the positive feedback of monotone systems and
the possible generation of multi-stability is investigated. See
also the review in [189].
In the linear case, an input-output monotone system has a
positive impulse response (which is the derivative of the
step response). Hence, the family of systems having a posi-
tive impulse response generalises, in the linear case, mono-
tone systems. Also these can be used for aggregation, as in
[49], where it is shown that the same classification of [48]
holds true for aggregates of positive-impulse-response sys-
tems (which includes monotone systems as a special case).

9.4 Interconnecting components: retroactivity issues

A typical attempt in systems and synthetic biology is to es-
tablish similarities between electrical circuits and biological
signalling structures. The ultimate goal of synthetic biology,
then, would be the bottom-up design of standard circuits,
including components such as filters, amplifiers, oscillators
and switches, built of engineered biomolecules such as DNA,
RNA and proteins. Standard electric circuit theory enables to
generate more or less any type of functions and behaviours,
and electrical engineers know how to implement block di-
agrams, cascades, parallel, feedback of transfer functions.
The biological implementation, however, is made more diffi-
cult by the presence of strong retroactivity [83] [130] [151].
When one chemical component affects another, also the lat-
ter typically imposes its retroaction on the former. In elec-
trical circuits, this phenomenon is well understood. Assume
that two circuits, when disconnected, have transfer functions
y1 = F1(s)u1 and y2 = F2(s)u2, where u1,u2 are the input
voltages and y1,y2 are the output voltages. If we physically
connect them, so that u2 = y1, the transfer functions above
are no longer valid. The ideal goal

y2 = F2(s)u2 = F2(s)F1(s)u1

is (at least approximately) achieved if the input impedance
of the second circuit is very large, ideally infinite. How can
infinite impedance be achieved in a biological setting? As
neatly explained in [83] [151], a structural way is to consider
an “insulating” device as in Fig. 11, where the dynamics of
A and B do not produce any effect on E.

10 Structural biological insight and model falsification

Methods from structural analysis have effectively con-
tributed to a deeper understanding of biological phenomena,
which goes even beyond the explanation of their extraordi-
nary robustness.
Given a reliable model of a biological phenomenon, a struc-
tural insight allows to link peculiar behaviours to topologi-
cal features of the biological network, as discussed in [196]
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and [160] for metabolic networks. The sharp understanding
achieved by disentangling the system structure can not only
reveal how a biological system works [58], but also identify
suitable therapeutic targets to treat diseases [175].
Model validation, invalidation and comparison. Very im-
portantly, qualitative information achieved through struc-
tural analysis can also be used for model invalidation. Struc-
tural approaches can predict dynamic outcomes that are an
unavoidable consequence of the system structure, or rule out
behaviours that are not compatible with the system structure.
Then, a model can be falsified by comparing the expected
qualitative behaviours with experimental results: when a be-
haviour is inherent in the model structure, but is not ob-
served experimentally, or when a behaviour is incompatible
with the model structure, but is nevertheless observed in ex-
perimental traces, then we know that the proposed model
is structurally unsuitable for describing the phenomenon
and needs to be radically amended (no fine tuning of the
parameters will ever yield the experimentally observed be-
haviour). The question whether a given model is valid or
not, and which are the conditions for its validity, is partic-
ularly relevant in biology, since biological systems are very
hard to model due to their complexity and their seemingly
haphazard variability – and, of course, different models of
the same system can lead to different, often conflicting, con-
clusions [161]. Several authors have considered the problem
of model falsification in a biological context, including the
comparison between several “competing” alternative mod-
els, and suggested several techniques [14] [116] [41] [163]
[25]. Qualitative “dynamic phenotypes”, such as scale in-
variance, monotonicity and subharmonic oscillations, can be
seen as signatures for biological motifs and therefore used as
tools for model invalidation [51]. An example of model fal-
sification based on structural (non-)monotonicity arguments
is [33]. [169] shows that analysing the response to periodic
stimuli allows to discriminate between different architec-
tures for perfect adaptation based on incoherent feedforward
loops and on integral feedback. [107] provides a structural
comparison of two alternative models for protein-mediated
ceramide transfer at membrane contact sites in mammalian
cells. [115] discriminates between different types of cancer
resistance resulting in qualitatively different responses.
Structure-based design. In synthetic biology, guidelines
based on structural insight can be used to design de novo
biological circuits that are guaranteed to always exhibit the
desired qualitative behaviour (e.g., oscillatory or switching)
in view of their structure [75] [35] [81] [92] [125] [141]
[142]. On the other hand, looking at the structure helps us
unravel the design principles that nature adopts to guarantee
the extraordinary robustness and resilience of living organ-
isms, which we can then adopt to build engineering systems
that structurally share the same remarkable properties.

11 What next?

Physics, engineering, chemistry and computer science use
mathematics as their main language to formulate, analyse
and solve problems. It is widely believed that, in the future,
biology as well will be more and more deeply characterised

also by a quantitative, computational approach, so that bio-
logical laws will also be expressed in mathematical terms.
Mathematical approaches in biology are precious to com-
plement traditional biological knowledge and experimental
observations, in a virtuous circle. The use of mathematics
forces researchers to formulate problems with a precise and
quantifiable approach and allows models to be falsified by
comparing theoretical predictions with experimental data.
The analysis of simple models capturing the essence of a
phenomenon can provide a sharp insight into the underlying
design principles [5].
In particular, structural analysis can reveal qualitative prop-
erties of natural systems, without the need of quantitative in-
formation and of precise parameter values, which are always
hard to determine in a biological context. This investigation
also explains why specific structures are so frequently en-
countered in nature, selected by evolution, and can perform
their task with astounding robustness and efficiency in con-
stantly changing environmental conditions. Establishing that
a property holds for a given system even under huge para-
metric uncertainties is not the main achievement of struc-
tural analysis. Rather, this analysis is powerful because it
allows us to state that a property is necessarily ensured by
a certain structure, thus enabling not only the explanation
of observed phenomena, but also model falsification, when
structural predictions are compared to experimental results.
Also, the insight achieved through structural analysis can
be precious to design artificial biomolecular circuits that
are guaranteed to structurally exhibit the desired qualitative
function in spite of perturbations or changes in parameters.
Here, we have drawn the attention to structural approaches
for the analysis of biological systems. To keep this survey
within reasonable limits, we have only considered the struc-
tural analysis of some properties, including boundedness,
steady state analysis, stability and response to perturbations,
that are often regarded as the most important; other funda-
mental aspects considered in the literature have been briefly
touched upon.
We have made the effort to propose a unifying perspective,
to provide the reader with a general framework and tools
that can be applied to an extremely vast class of systems in
nature (as well as in engineering).
When adopting mathematical tools in biology, an important
challenge is to focus on the simplicity of the formulation and
the meaningfulness of the obtained message. This does not
mean that the mathematics involved has to be trivial. Actu-
ally, proofs can be – and typically are – very complex and
involved. Yet, the results need to simply provide biological
insight. An excellent example is the celebrated deficiency-
zero theorem, Theorem 2: it gives powerful structural sta-
bility conditions that only require computing the deficiency
of the chemical reaction network, easy to calculate given
the involved reactions. The theorem is insightful and easy
to state and apply, but its proof is not simple at all.
Many challenges related to structural analysis are still open.
In our opinion, the most important is the development of
novel mathematical tools, relying on dynamical systems and
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control methodologies, to expressly tackle and structurally
assess properties that are highly relevant and specific to bio-
logical systems. The close collaboration with biologists and
life scientists is fundamental to this aim, and we believe
that our community could give a precious contribution to
the understanding of biological phenomena not only through
the application of systems and control approaches, but also
through the creation of new biologically-driven theory.
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