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Abstract—We give a sufficient and a necessary condition for
the topology-independent robust stability of networked systems
formed by uncertain MIMO systems. Both conditions involve
constants associated with the nominal node dynamics and arc
interconnection matrices, the uncertainty bounds, and the maxi-
mum connectivity degree of the network; they are scalable (they
can be checked locally), independent of the network topology and
even of the number of nodes and arcs, and hold for networks of
heterogeneous MIMO systems and interconnection matrices, with
heterogeneous uncertainties. The dual cases of 1-norm and ∞-
norm bounds are considered. In both cases, if the systems at the
nodes are diagonal, we get a necessary and sufficient condition.
We apply our results to the topology-independent robust stability
analysis of a case-study from cancer biology.

Index Terms—Network analysis and control, Stability of linear
systems, Uncertain systems

I. INTRODUCTION AND PRELIMINARIES

NETWORKS of dynamical systems, arising in multi-agent
control [1], [2] and estimation [3], [4], and in the analysis

of multi-compartment natural systems in biology, pharmacoki-
netics and epidemiology [5], [6], [7], [8], can be effectively
analysed by studying the properties of the subsystems and of
the interconnection graph. A widely studied problem is the
stability of the whole dynamic network, given the stability of
the subsystems, also in the presence of uncertainties.

In the frequency domain, robust stability conditions for in-
terconnections of either SISO (single-input and single-output)
or MIMO (multiple-input and multiple-output) linear systems
were provided in [9], [10], [11], [12], [13] adopting Nyquist-
type approaches and in [7], [8], [14], [15] using the gener-
alised frequency variable framework; also, based on Integral
Quadratic Constraints, [16], [17] provided scalable conditions
that can be tested locally and used for control design [18].
Frequency-domain conditions for topology-independent robust
stability were derived in [19], [20] for nominally homogeneous
SISO systems and in [21] for homogeneous MIMO systems.

We consider the state-space representation of networked
systems formed by uncertain MIMO systems interconnected
through a directed graph with unknown topology. The network
nodes are associated with heterogeneous MIMO systems,
each with its own nominal state, input and output matrices
belonging to a given set, and subject to bounded uncertainties.
We give a sufficient and a necessary condition for topology-
independent stability, robust with respect to the uncertainty in
the dynamics and in the network topology, based on minimal
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information about the heterogeneous uncertain node systems:
• α: spectral abscissa (i.e., maximum real part of the eigen-
values) of the nominal state matrices;
• µB , µC : bounds on the nominal input and output matrices;
• ξA, ξB , ξC : uncertainty bounds for state, input and output
matrices;

about the heterogeneous interconnection matrices:
• µG: bound on the nominal interconnection matrices;
• ξG: uncertainty bound for the interconnection matrices;

and about the network:
• D∗: maximum connectivity degree;

the sufficient condition also requires the condition number
χ2 of some eigenmatrix of the nominal state matrices.

Then, all the networked systems in the family are stable if
α+χ2

[
ξA+ D∗(µB +ξB)(µG+ξG)(µC +ξC)

]
< 0 and only

if α+
[
ξA + D∗(µB + ξB)(µG + ξG)(µC + ξC)

]
< 0.

Two dual scenarios are addressed: with 1-norm bounds,
both conditions hold with D∗ = Dout, the maximum outward
connectivity degree; with ∞-norm bounds, they hold with
D∗ = Din, the maximum inward connectivity degree.

In both cases, the gap between the sufficient and the neces-
sary condition reveals the fundamental role of χ2 in topology-
independent stability. If the systems at the nodes are diagonal,
then χ2 = 1 and the two inequalities become identical,
yielding a necessary and sufficient condition for topology-
independent robust stability. We also show how the minimum
χ2 can be computed, given the nominal state matrices at the
nodes, to have the tightest possible gap.

The obtained conditions are conservative, but also scalable
and easy to check locally: they apply even when the topology
is unknown, independent of the number of nodes and arcs in
the network, since they only rely on the maximum connectivity
degree. Nodes and arcs can be added or removed in real time,
in a plug-and-play fashion [22], [23], without compromising
stability as long as the maximum connectivity degree remains
the same. The nominal systems, the interconnection matrices
and all the uncertainties can be heterogeneous, and even the
number of states, inputs and outputs need not be the same, so
the conditions are extremely general and can be applied to a
very large class of networked systems.

Notation and Preliminaries. A directed graph with N
nodes and M arcs is represented by the pair G = {N ,A},
where N = {1, . . . , N} is the node set and A ⊂ N ×N is
the arc set, with |A| = M , where (i, j) ∈ A denotes an arc
that leaves node i and enters node j. Each node i ∈ N has
an outward (resp. inward) connectivity degree δout

i (resp. δin
i ),

defined as the number of arcs that leave (resp. enter) the node.
The maximum outward (resp. inward) connectivity degree is
Dout = maxi∈N δout

i (resp. Din = maxi∈N δin
i ).



We denote by σ(A) the spectrum of a square matrix A
and by Kp(A) = ‖A‖p‖A−1‖p its condition number, where
‖A‖p = supv 6=0 ‖Av‖p/‖v‖p denotes any matrix p-norm.

Theorem 1 (Bauer-Fike Theorem [24]). Consider matri-
ces A, B ∈ Rn×n, with A diagonalisable: V −1AV =
diag{λ1, . . . , λn} for some V ∈ Cn×n and λ1, . . . , λn ∈ C.
For every (complex) eigenvalue ρ of A + B, there exists an
index k ∈ {1, 2, . . . n} such that |ρ− λk| ≤ Kp(V )‖B‖p.

Lemma 1. Consider three matrices X̃ , X̄ , δX ∈ Rn×n such
that X̃ = X̄ + δX and let Z ∈ Cn×n be an eigenmatrix that
diagonalises X̄ . Given the scalars % = maxλ∈σ(X̄){Re(λ)}
and κ ≥ Kp(Z)‖δX‖p, matrix X̃ is Hurwitz stable if

%+ κ < 0. (1)

Proof: Let D(x, r) denote the closed disk with center
x ∈ C and radius r. By Theorem 1, all the eigenvalues
of X̃ are located in the set Υ =

⋃
λ∈σ(X̄)D(λ, κ). Since

maxϕ∈Υ{Re(ϕ)} = maxλ∈σ(X̄){Re(λ)}+ κ = %+ κ, all the
eigenvalues of X̃ have negative real part if %+ κ < 0.

Since κ ≥ 0, condition (1) requires % < 0, i.e. Hurwitz
stability of the nominal X̄ .

Denote by ⊗ the Kronecker product. We focus on the
1-norm, ‖X‖1 = max1≤j≤m

∑n
i=1 |Xij |, and the ∞-norm,

‖X‖∞ = max1≤i≤n
∑m
j=1 |Xij |, of a matrix X ∈ Cn×m.

Theorem 2 (Properties of 1-norm and ∞-norm [25]).
Given complex matrices A and B of compatible dimensions,
‖AB‖∗ ≤ ‖A‖∗‖B‖∗ and ‖A⊗B‖∗ = ‖A‖∗‖B‖∗, where the
subscript ∗ denotes either always 1 or always ∞.

Lemma 2 (Norm of block-diagonal matrices). The complex
block-diagonal matrix X = diag(Xk)Kk=1 has norm ‖X‖∗ =
maxk=1,...,K{‖Xk‖∗}, where the subscript ∗ denotes either
always 1 or always ∞.

II. TOPOLOGY-INDEPENDENT ROBUST STABILITY

We consider a family N of uncertain networked systems.
The generic system in the family (cf. Figure 1) has an
underlying graph structure G = {N ,A}, where each node in
N is associated with an uncertain MIMO system and each arc
in A, labelled with an integer number in the set {1, . . . ,M},
is associated with an uncertain interconnection matrix. Each
node of G is associated with a linear MIMO system of the
form

ẋ(i) = Aix
(i) +Biu

(i), y(i) = Cix
(i), i ∈ N ,

where the system matrices are the sum of a nominal and an
uncertain part: Ai = Āi + Âi, Bi = B̄i + B̂i, Ci = C̄i + Ĉi.
The overall dynamics for the disconnected node systems is

ẋ = Ax+Bu, y = Cx, (2)

where x = [x(1)> . . . x(N)>]>, u = [u(1)> . . . u(N)>]>, y =

[y(1)> . . . y(N)>]>, A = diag(Ai)i∈N , B = diag(Bi)i∈N ,
C = diag(Ci)i∈N . Splitting nominal and uncertain parts,
A = Ā + Â, where Ā = diag(Āi)i∈N , Â = diag(Âi)i∈N ;
B = B̄ + B̂, where B̄ = diag(B̄i)i∈N , B̂ = diag(B̂i)i∈N ;
C = C̄ + Ĉ, where C̄ = diag(C̄i)i∈N , Ĉ = diag(Ĉi)i∈N .
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Fig. 1: Example of an uncertain networked system in the family N , with
N = 6 node systems, M = 8 arcs and incidence matrix H .

The node systems are connected through the incidence ma-
trix H ∈ {−1, 0, 1}N×M of G, defined as Hih = 1 if the arc
h ∈ A enters node i ∈ N ; Hih = −1 if the arc h leaves node
i; and Hih = 0 otherwise. In particular, we define matrices
P = max{H, 0} and R = −min{H, 0} elementwise, so
that Pih = 1 if arc h enters node i and Rih = 1 if arc h
leaves node i. These scalar matrix entries match nodes and
arcs according to the interconnection topology. We denote by
Gh the interconnection matrix, of the proper size, associated
with arc h, which is the sum of a nominal and an uncertain
part: Gh = Ḡh + Ĝh. Then, the input to node i ∈ N is

u(i) =

M∑
h=1

PihGh

( N∑
j=1

Rjhy
(j)
)
,

where just one of the scalars Rjh, with j = 1, . . . , N , is
nonzero and selects the node output “feeding” arc h.

Let G = diag(Gh)h∈A . Assume that all the nodes have
the same number of inputs and outputs (this simplifies the
notation, but is not necessary for the results to hold, as
discussed in Section III). Then, compactly,

u = (P ⊗ Ip)G(R> ⊗ Iq)y, (3)

where p is the number of inputs and q is the number of outputs
of each node.

Merging (2) and (3) gives the networked system

ẋ =
[
A+B(P ⊗ Ip)G(R> ⊗ Iq)C

]
x
.
= Ãx. (4)

The elements of the networked system family N can be
associated with different graphs, having a different number of
nodes and arcs, as long as the connectivity degree is bounded.

Assumption 1. For each system in the family N , the maxi-
mum outward (resp. inward) connectivity degree of the under-
lying graph is at most Dout (resp. Din).

Assumption 2. For each system in the family N , all node
systems (Ai, Bi, Ci), for i ∈ N , are such that Ai = Āi + Âi,
Bi = B̄i + B̂i, Ci = C̄i + Ĉi, where, denoting with ∗ either
always 1 or always ∞,
• maxλ∈σ(Āi){Re(λ)} ≤ α, for a given α < 0;
• ‖Wi‖∗ ≤ χ and ‖W−1

i ‖∗ ≤ χ, for a given χ ≥ 1, where
Wi is some eigenmatrix that diagonalises Āi;
• ‖B̄i‖∗ ≤ µB and ‖C̄i‖∗ ≤ µC , for given µB , µC > 0;
• ‖Âi‖∗ ≤ ξA, ‖B̂i‖∗ ≤ ξB and ‖Ĉi‖∗ ≤ ξC , for given ξA,
ξB , ξC ≥ 0.

Assumption 2 implies K∗(Wi) = ‖Wi‖∗‖W−1
i ‖∗ ≤ χ2.



Assumption 3. For each system in the family N , all intercon-
nection matrices Gh, for h ∈ A, are such that Gh = Ḡh+Ĝh,
with ‖Ḡh‖∗ ≤ µG and ‖Ĝh‖∗ ≤ ξG, for given µG, ξG ≥ 0,
where the subscript ∗ denotes either always 1 or always ∞.

We are then ready to state our main results for the case of
uncertain networked systems with 1-norm bounds; the proofs
are given in Section III.

Theorem 3 (Sufficient condition for topology-independent
robust stability). Consider the family of networked systems
N , under Assumptions 1, 2 and 3 with 1-norm bounds. Then,
all systems in N are stable if

α+ χ2
[
ξA + Dout(µB + ξB)(µG + ξG)(µC + ξC)

]
< 0. (5)

Theorem 4 (Necessary condition for topology-independent
robust stability). Consider the family of networked systems
N , under Assumptions 1, 2 and 3 with 1-norm bounds. A
necessary condition for all systems in N to be stable is

α+
[
ξA + Dout(µB + ξB)(µG + ξG)(µC + ξC)

]
< 0. (6)

By duality, our main results still hold if the 1-norm is
replaced by the ∞-norm, and Dout is replaced by Din. Since
the proofs are essentially unchanged, we just report the results.

Proposition 1 (Dual of Theorem 3). Consider the family of
networked systems N , under Assumptions 1, 2 and 3 with
∞-norm bounds. Then, all systems in N are stable if

α+ χ2
[
ξA + Din(µB + ξB)(µG + ξG)(µC + ξC)

]
< 0. (7)

Proposition 2 (Dual of Theorem 4). Consider the family of
networked systems N , under Assumptions 1, 2 and 3 with∞-
norm bounds. Then, a necessary condition for all systems in
N to be stable is that

α+
[
ξA + Din(µB + ξB)(µG + ξG)(µC + ξC)

]
< 0. (8)

For diagonal systems, the topology-independent robust sta-
bility condition becomes necessary and sufficient.

Proposition 3 (Diagonal systems). Consider the family of
networked systems N , under Assumptions 1, 2 and 3 with 1-
norm (resp. ∞-norm) bounds. Assume that, for each element
of the family, all the systems at the nodes have a diagonal
state matrix Ai. Then, all systems in N are stable if and only
if inequality (5) (resp. (7)) holds.

Proof: For diagonal systems, χ2 = 1. Then, the result
directly follows from Theorems 3 and 4 in the 1-norm case,
and from Propositions 1 and 2 in the ∞-norm case.

Our results highlight the crucial role of the condition num-
ber χ2 for topology-independent stability: for non-diagonal
systems, it leads to a gap between the sufficient and the
necessary condition, thus introducing conservativeness. To
have the tightest gap, we wish to compute the minimum value
of χ2. Consider the nominal matrix Ā corresponding to the
system associated with a single node; being diagonalisable, it
has distinct eigenvectors. Then, the columns of its eigenmatrix
W can be scaled independently with the positive diagonal
matrix D = diag(Di) and we can find

(χ2)opt = min
D∈diag(Di),Di>0

‖WD‖∗‖D−1W−1‖∗ (9)

where the subscript ∗ denotes either always 1 or always ∞.
This optimisation problem has a neat solution.

Proposition 4 (Minimum χ2). The optimal (χ2)opt in (9)
is obtained when D is such that: all columns of W̃ = DW
have unitary 1-norm, with 1-norm bounds; all rows of W̃−1 =
D−1W−1 have unitary 1-norm, with ∞-norm bounds.

Proof: Set U = W−1 and denote by Wj the jth column
of W , by Ui the ith row of U . Then, ‖WD‖1‖D−1U‖1 =

maxj Dj‖Wj‖1 maxh
∑
i
|Uih|
Di

= maxj
1
zj

maxh ν
>
h z, where

the last equality follows by assuming without restriction that
‖Wj‖1 = 1 (which can be obtained via pre-scaling) and
denoting by z the vector with ith component zi = 1/Di and
by νh the vector with ith component |Uih|. In the dual case, as-
suming ‖Uh‖1 = 1 without restriction, ‖WD‖∞‖D−1U‖∞ =

maxi
∑
j |Wij |Dj maxh

‖Uh‖1
Dh

= maxi ν
>
i zmaxh

1
zh

, where
vector z has ith component zi = Di and vector νi has jth
component |Wij |.

Then the function to be minimised can be written in the form
φ(z) = maxj

{
1
zj

}
maxh

{
ν>h z

}
, where νh are non-negative

vectors and z > 0 componentwise. Since φ is positively
homogeneous of order 0 (i.e., φ(λz) = φ(z) for any λ > 0),
we can find its minimum assuming the additional constraint

max
j

{
1

zj

}
= 1. (10)

Indeed, if zopt > 0 is a minimum, then we can take the
maximum 1/zopt

i∗ = maxj 1/zopt
j and set λ .

= 1/zopt
i∗ ≥ 1/zopt

j

for all j. Now, λzopt produces the same minimum value, since
φ(λzopt) = φ(zopt), and satisfies (10). Therefore, the additional
constraint does not change the result. The surface in (10) can
be split into n faces: Fi = {z : zi = 1, zj ≥ 1, j 6= i}, for
i = 1, . . . , n. So we need to consider n problems of the form
minz maxh

{
ν>h z

}
with constraints zi = 1 for i = 1, . . . , n

and zj ≥ 1 for j = 1, . . . , n, j 6= i, which can be converted
into linear programs. Since all the components of νh are non-
negative, the minimum of the ith problem with zi = 1 is
immediately achieved by choosing the smallest possible value
for all other components: zj = 1 for all j 6= i. Hence the
initial pre-scaling, with ‖Wj‖1 = 1 in the 1-norm case and
‖Uh‖1 = 1 in the ∞-norm case, was already optimal.

III. PROOFS OF THE MAIN RESULTS

Proof of Theorem 3: We assume for simplicity that all
the nodes have the same number of inputs, p, and outputs,
q; the general case is discussed in Section III. To assess
stability of the networked system (4), we rewrite matrix Ã
as the sum of three matrices: Ã = Ā + δA1 + δA2, where
δA1 = Â represents the uncertainty in the state dynamics and
δA2 = B(P ⊗ Ip)G(R> ⊗ Iq)C includes the uncertainty due
to the input and output matrices and to the interconnection.
Thanks to its particular block-diagonal structure, the nominal
matrix Ā can be diagonalised as Ā = W−1ΛW , where
Λ = diag(Λi)i∈N has on the diagonal the blocks Λi =
diag(λ)λ∈σ(Āi) including the eigenvalues of the individual
systems at the nodes, while W = diag(Wi)i∈N has on the
diagonal the eigenmatrices Wi of Āi that satisfy ‖Wi‖1 ≤ χ
and ‖W−1

i ‖1 ≤ χ as per Assumption 2 with 1-norm bounds.



The stability of Ã can be checked by applying Lemma 1
with X̃ = Ã, X̄ = Ā, δX = δA1 + δA2, Z = W , % = α, and
κ = χ2

[
ξA + Dout(µB + ξB)(µG + ξG)(µC + ξC)

]
. In fact,

since maxλ∈σ(Ā){Re(λ)} ≤ α, which is negative in view of
Assumption 2, the nominal state matrices are Hurwitz stable.
To make sure that the assumptions of Lemma 1 are all satisfied,
we must show that

K1(W )‖δA1 + δA2‖1 ≤ κ, (11)

with κ = χ2
[
ξA+Dout(µB+ξB)(µG+ξG)(µC+ξC)

]
. We have

K1(W ) ≤ χ2 in view of Lemma 2, while ‖δA1 + δA2‖1 ≤
‖δA1‖1 + ‖δA2‖1 can be upper bounded by exploiting The-
orem 2 and, in view of the block structure of matrix δA1,
Lemma 2: ‖δA1‖1 = ‖Â‖1 = maxi∈N{‖Âi‖1} ≤ ξA and
‖δA2‖1 ≤ ‖(P ⊗ Ip)‖1‖(R> ⊗ Iq)‖1‖B‖1‖G‖1‖C‖1 ≤
Dout(µB + ξB)(µG + ξG)(µC + ξC), where the last inequality
holds because

‖(P ⊗ Ip)‖1‖(R> ⊗ Iq)‖1 = ‖P‖1‖R>‖1 ≤ Dout (12)

and ‖B‖1 = ‖B̄+B̂‖1 ≤ ‖B̄‖1+‖B̂‖1 = maxi∈N{‖B̄i‖1}+
maxi∈N{‖B̂i‖1} ≤ µB + ξB , ‖G‖1 = ‖Ḡ + Ĝ‖1 ≤ ‖Ḡ‖1 +
‖Ĝ‖1 = maxh∈A{‖Ḡh‖1} + maxh∈A{‖Ĝh‖1} ≤ µG + ξG,
‖C‖1 = ‖C̄ + Ĉ‖1 ≤ ‖C̄‖1 + ‖Ĉ‖1 = maxi∈N{‖C̄i‖1} +
maxi∈N{‖Ĉi‖1} ≤ µC + ξC . Since inequality (11) is proven,
Lemma 1 can be applied and guarantees that matrix Ã in (4)
is Hurwitz stable if the sufficient condition (5) is satisfied.

A remark on generality: All our results hold unchanged
if, for the generic networked system in the family N with
N nodes, the number of inputs and outputs of the nodes
are (p1, . . . , pN ) and (q1, . . . , qN ) respectively. Then, the
expression in (3) can be replaced by u = PGRy and the
networked system in (4) by ẋ = [A+BPGRC]x, where the
matrices P and R are built as follows. The block matrix in
the position (i, j) of P is the square scaled identity matrix
PijIpi if Pij = 1, while if Pij = 0 it is a rectangular matrix
of zeros of the appropriate size. For R, the block matrix in
position (i, j) is RjiIqj if Rji = 1, while it is a rectangular
zero matrix if Rji = 0.

Example 1. Consider a network composed of 3 nodes, with
p1 = 2, p2 = 3, p3 = 2 inputs and q1 = 1, q2 = 2, q3 = 1
outputs. Let the incidence matrix be

H =

−1 0 1 1
1 −1 0 −1
0 1 −1 0

 ,

that is, the network has 4 arcs with matrices G1 ∈ R3×1,
G2 ∈ R2×2, G3 ∈ R2×1, and G4 ∈ R2×2. Then

P =

0 0 1 1
1 0 0 0
0 1 0 0

 , P =



0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0


.

Since ‖P‖1 = 1 and ‖R‖1 ≤ Dout, replacing (P ⊗Ip) with
P and (R> ⊗ Iq) with R in (12) does not affect the result.

Therefore, Theorem 3 holds even when the nodes have
different number of states, inputs and outputs.

Proof of Theorem 4: If condition (6) is violated, hence

α+
(
ξA + Dout(µB + ξB)(µG + ξG)(µC + ξC)

)
≥ 0, (13)

then there exists an unstable system structure in the family
N . We show that this structure is associated with a circulant
matrix, for which the following result [26, Sec. 3.1] holds.

Theorem 5 (Spectrum of a circulant matrix.). The eigen-
values of a circulant matrix C ∈ Rn×n with coefficients
{c0, c1, . . . , cn−1},

C =


c0 c1 . . . cn−1

cn−1 c0 . . . cn−2

...
...

. . .
...

c1 c2 . . . c0

 ,

are

ψm =

n−1∑
k=0

ckρ
k
m, (14)

where ρm = exp(−2πim
n ), m ∈ {0, . . . , n− 1}.

Without loss of generality, since the networked systems in
the family N can have node systems of any size, we consider
a networked system where each node is the same scalar system
ẋ(i) = ax(i) + bu(i), y(i) = cx(i), i ∈ N , and all the arcs are
associated with the same interconnection scalar g. Assume that
Dout arcs leave each node to reach the previous Dout nodes:
there is an arc leaving node i to node (i − k + N) mod N
(with the understanding that node 0 corresponds to node N )
for i ∈ N and k = 1, . . . ,Dout.

The networked system has the following state matrix:
Ã = aIN + (bIN )(P )(gIM )(R>)(cIN ) = aIN + bgcPR>,
where [PR>]ij = 1 if there is an arc going from node j
to i, [PR>]ij = 0 otherwise. For this graph structure, Ã
is a circulant matrix satisfying Theorem 5, where c0 = a,
ck = bgc for k = 1, . . . ,Dout and the other coefficients are
zero. Then, equation (14) with m = 0 gives ψ0 =

∑n−1
k=0 ck =

a+ Doutbgc = α+ ξA + Dout(µB + ξB)(µG + ξG)(µC + ξC),
where the last equality is obtained by splitting the nominal and
the uncertain part in a = α+ ξA, b = µB + ξB , c = µC + ξC ,
and g = µG + ξG. By inequality (13) the eigenvalue ψ0 of
matrix Ã is nonnegative, therefore the networked system is
unstable. Since this system belongs to the family N , this
proves the necessity of condition (6).

IV. AN APPLICATION TO CANCER BIOLOGY

Consider a multi-compartment evolutionary model describ-
ing growth, mutation and metastasis of a heterogeneous tumor
cell population [27], where a set of mutant cell lines M can
spread in a set of body compartments J and the d available
drugs are differently effective against different mutants in
different compartments. The mutants can settle just in some
compartments: Mk denotes the set of mutants in compartment
k. Denoting by rki the growth rate of mutant i in compartment
k, qkji the mutation rate from mutant j to i in compartment k,
µcki the migration rate from compartment c to k of mutant i
(µcki = 0 if there is no migration path), φks,i the effect of drug
s on mutant i in compartment k, and `s the constant amount of
drug s, the concentration xki of mutant i ∈Mk in compartment
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We can see this model as a networked system with com-
partments (nodes), including a set of mutants, connected by
possible migration routes (arcs). Compartment k is associated
with the linear system ẋk = Akx

k + Bku
k, yk = xk, where

xk = (xki )i∈Mk
includes all mutant lines in compartment k

and uk = (uki )i∈Mk
, where uki is the sum of all cells of

mutant i migrating to compartment k. For the state matrix,
[Ak]ii = rkgq

k
gg −

∑
j∈Mk
g 6=j

qkgj −
∑
c∈J
c6=k

µkcg −
∑d
s=1 φ

k
s,g`s,

with g = Mk(i), while [Ak]ij = rkgq
k
fg , with g = Mk(i),

f = Mk(j). The nonzero entries of Bk are [Bk]ii = rkg ,
with g = Mk(i). The nonzero entries of the interconnection
matrix Gh, associated with the arc from compartment k to
compartment c, are [Gh]ij = µkcg if g = Mc(i) = Mk(j).

As in all biological systems, the parameter values are subject
to huge uncertainties. The network topology, and even the
number of affected compartments, are not known exactly.
However, if we assume that the overall networked system
belongs to the family N satisfying Assumptions 1, 2 and 3
with 1-norm bounds, with Dout = 3 (mutants in a compartment
can migrate to 3 other compartments at most), α = −25.0227,
χ = 1.2236, µB = 6.2, µC = 1, µG = 0.3, ξA = 8.5268,
ξB = 0.93, ξC = 0, ξG = 0.045, then condition (5) is satisfied:
α+χ2

[
ξA+Dout(µB+ξB)(µG+ξG)(µC+ξC)

]
= −1.2 < 0.

As long as the networked system belongs to this class,
stability is robustly guaranteed (namely, the adopted cancer
therapy successfully reduces the tumor size) for all topologies
with maximum degree 3, regardless of the number of nodes
(affected body compartments) and arcs (possible migration
paths), and even of the actual number of inputs, outputs and
states for each node (number of mutants in each compartment).

For comparative simulations, we consider J = {1, 2, 3, 4}
and M = {1, 2, 3} with M1 = {1, 2}, M2 = {2, 3}, M3 =
{1, 2, 3}, M4 = {1, 3}. We take the uncertain parameters in
the same intervals for all compartments: r1q11 ∈ [2.4, 3.3],
r2q12 ∈ [0.61, 0.82], r3q13 ∈ [0.76, 1], r1q21 ∈ [0.24, 0.33],
r2q22 ∈ [3.1, 4.1], r3q23 ∈ [1.1, 1.5], r1q31 ∈ [0.73, 0.98],
r2q32 ∈ [0.31, 0.41], r3q33 ∈ [3.8, 5.1], q11, q22, q33 ∈
[0.65, 0.78], q12, q13 ∈ [0.13, 0.16], q21, q32 ∈ [0.065, 0.078],
q23, q31 ∈ [0.2, 0.23], r1 ∈ [2.8, 5.2], r2 ∈ [3.5, 6.5],
r3 ∈ [4.3, 8.1], µ1 ∈ [0.19, 0.21], µ2 ∈ [0.29, 0.31], µ3 ∈
[0.099, 0.1], φ1,1 ∈ [0.3981, 0.4019], φ2,1 ∈ [0.497, 0.503],
φ1,2 ∈ [0.1592, 0.1608], φ2,2 ∈ [0.1988, 0.2012], φ1,3 ∈
[0.199, 0.201], φ2,3 ∈ [0.2485, 0.2515]. Figure 2 shows the
graph representation of the system with all the possible 12
mutation paths: each mutation path can be active or inactive
(hence µi = 0), leading to 4096 different graph topologies.

With 2 available drugs, we compare four different therapies:
T1 = {`1 = 1.957, `2 = 21.137}, T2 = {`1 = 2.571, `2 =
26.453}, T3 = {`1 = 3.531, `2 = 29.302}, T4 = {`1 =
11.76, `2 = 133.229}. Only with therapy T4 the uncertain
networked system satisfies the sufficient condition (5).

As shown in Table I, T1 stabilises the nominal disconnected
systems, but can fail in the presence of uncertainties and/or
interconnections; T2 guarantees robust stability of the discon-
nected systems, but can fail when the systems are intercon-

T1 T2 T3 T4

Case 1: disconnected, nominal S S S S
Case 2: disconnected, uncertain U S S S
Case 3: connected, nominal U U S S
Case 4: connected, uncertain U U U S

TABLE I: Effect of the therapies in different cases. S: stability is guaranteed
for all systems in the case. U: at least one system in the case is unstable.
Simulations with 150 random parameter variations for uncertain disconnected
systems and with all the 4096 possible interconnection topologies for con-
nected systems (each with 2 parameter variations in the uncertain case).

Fig. 2: Example of possible graph topology for multi-compartment cancer
evolution, with 4 nodes (body compartments) and 12 directed arcs (migration
paths); illustration of the mutation, migration and drug selection dynamics.

Fig. 3: Time evolution for the system cases and therapies in Table I.

Fig. 4: Eigenvalue distribution for the system cases and therapies in Table I.

nected; T3 guarantees stability also of all the interconnected
systems, but not robustly; finally, T4 guarantees topology-
independent robust stability, as expected. Figure 3, showing
the time evolution of the total number of cancer cells, and
Figure 4, showing the eigenvalue distribution, confirm that
only therapy T4 ensures stability for all network topologies
and all uncertainty realisations; for all other therapies, at least



one system realisation is unstable, meaning that the chosen
treatment fails and the tumor grows unbounded.

V. DISCUSSION AND OUTLOOK

We deal with the topology-independent robust stability anal-
ysis of uncertain networked systems with completely unknown
topology (but known maximum connectivity degree). Both the
necessary and the sufficient condition provided here are easy
to verify in a state-space framework and are fully scalable,
since they can be checked locally and do not depend on the
number of nodes and arcs. Both the systems at the nodes and
their uncertainties, as well as the uncertain interconnection
matrices at the arcs, can be heterogeneous, thus making these
conditions applicable to a general class of systems.

However, our results are conservative, because they cannot
exploit the knowledge of the physical structure of the uncer-
tainties in the system parameters and interconnections, and
tight norm bounds on the system matrices are hard to obtain.

Since we seek topology-independent results, another un-
avoidable source of conservativeness is that we cannot ex-
ploit the knowledge of the interconnection and its possibly
stabilising effects. Hence, requiring stability of the individual
subsystems is necessary for topology-independent stability:
the system with disconnected nodes is a possible topology.
The interconnection may compromise the stability of the
node systems (as shown in the case-study in Section IV).
The maximum connectivity degree naturally appears in our
conditions; intuitively, a smaller degree facilitates topology-
independent stability, because it limits the number of possible
topologies among which the worst case must be considered.

For given nominal systems and uncertainty bounds, condi-
tions (5) or (7) allow to find the maximum connectivity degree
ensuring topology-independent robust stability; the stability of
the networked system is robust to online modifications of the
network, in a plug-and-play framework [22], [23], provided
that the maximum connectivity degree is not exceeded.

Inequalities (5) and (7) can then be seen as a balance
between the stable systems at the nodes, on the one hand,
and the uncertainties and interconnections that can potentially
destabilise the overall system, on the other hand. The sufficient
condition may not be satisfied because the spectral abscissa α
of the nominal systems at the nodes is not negative enough to
counteract the possibly destabilising effect of interconnections
and uncertainties. Then, local controllers can be added to move
the eigenvalues further to the left of the complex plane, until
the sufficient condition is met. An interesting future direction
is to find the optimal local controller that minimises the left-
hand-side of (5) and (7) with respect to the spectral abscissa
α and the condition number χ2.

Linear systems have been considered in this paper. Future
work includes the extension to special classes of nonlinear
systems, such as input-affine systems and Lur’e systems. Also,
it will be interesting to merge the proposed robustness analysis
with network objectives, such as consensus or synchronisation.
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