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A threshold mechanism ensures 
minimum‑path flow in lightning 
discharge
Franco Blanchini1, Daniele Casagrande2, Filippo Fabiani3, Giulia Giordano4*, David Palma2 & 
Raffaele Pesenti5

A well‑known property of linear resistive electrical networks is that the current distribution 
minimizes the total dissipated power. When the circuit includes resistors with nonlinear monotonic 
characteristic, the current distribution minimizes in general a different functional. We show that, if 
the nonlinear characteristic is a threshold‑like function and the current generator is concentrated in 
a single point, as in the case of lightning or dielectric discharge, then the current flow is concentrated 
along a single path, which is a minimum path to the ground with respect to the threshold. We also 
propose a dynamic model that explains and qualitatively reproduces the lightning transient behavior: 
initial generation of several plasma branches and subsequent dismissal of all branches but the one 
reaching the ground first, which is the optimal one.

In lightning or gas electrical discharge, the current flow is essentially concentrated along a single path. Under 
very slow motion it can be seen that lightning starts by generating several branches and then develops by dis-
missing all of them but a single one, along which the energy is  discharged1. This phenomenon has been deeply 
investigated. Several types of lightning are known, which are carefully described, e.g.,  in2,3. As far as the numerical 
modeling of the phenomenon is concerned, computational models for lightning simulation have been proposed 
 in4–7, while the fractal nature of lightning discharge has been investigated  in8–11. Detailed surveys on the subject 
are also available; see, e.g.12,13.

Here, we do not investigate the whole phenomenon in its complexity. We rather focus on a specific ques-
tion about path formation in lightning discharge: we are interested in the initial phase of the process, when the 
lightning path is formed. Also, we consider the ideal case in which the lightning source is a single point and the 
final destination is a zero-potential ground. This type of lightning, classified as Category 1 Lightning, “is the 
most common cloud-to-ground lightning. It accounts for over 90% of the worldwide cloud-to-ground flashes”3. 
Cloud-to-ground lightning begins with an initial breakdown and the consequent creation of a ionized channel, 
the stepped leader, which generates several branches. Once the stepped leader is close to the ground, it may be 
approached by channels originating from the ground, the connecting leaders. When the stepped leader finally 
connects the ground to the cloud, the return stroke is triggered, which is a ground-potential upward  wave2,3,14. 
After the return stroke reaches back the cloud, the main branch reaching the ground is crossed by a long-duration 
discharging current: the continuing currents. In the meanwhile, the secondary branches originally established by 
the stepped leader are depleted: the continuing currents flow along the main path  only2.

Why is the lightning current eventually concentrated along a single path? Does this path enjoy any optimal-
ity property?

To mathematically address these questions, we consider an idealized model based on the assumption that 
lightning is mainly due to a dielectric breakdown of the air (gas in the case of discharges). The current–voltage 
diagram of a gas is characterized by two regions: for all the voltage values belonging to a symmetric interval 
around the origin, the current is very low (high resistivity); for voltage values outside this interval, the cur-
rent becomes very large (low resistivity). The voltage value corresponding to the ends of the interval is called 
breakdown threshold. Then, we consider an ideal characteristic with conductivity approaching infinity when the 
electric field is larger than a  threshold5,15.
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Lightning path can be interpreted as the solution of an optimization problem over a network. To formu-
late the problem, we consider a graph describing an electrical network, where capacitances and resistors with 
possibly nonlinear characteristic are associated with the links. The grid model we use is akin to that proposed 
 in5, Eq. 5, which is the discretized version of nonlinear field  equations5,15. We show that the steady-state solution 
minimizes a convex functional that, in the special case of linear resistors, turns out to be the total dissipated 
power. Conversely, if the resistor characteristic is a threshold-like function, the steady-state solution becomes 
the minimum path, where each current link is weighted by its local threshold voltage; hence, the optimal path 
is the “minimum-threshold path”. Our main result is supported by a theorem and reinforced by simulations of 
randomly generated graphs with random threshold values, showing that the transient behavior of the model can 
faithfully reproduce the qualitative lightning evolution (see “Methods”).

Results
How does lightning optimize its path? To build a model, we consider the electrical grid network in Fig. 1, with a 
capacitive and a possibly nonlinear resistive effect between adjacent terminals. Ground terminals are connected 
among them with zero resistance (ideal conductor ground) and the ground potential is v = 0 . The network 
is associated with a graph where the n+ 1 nodes represent the terminals and the links represent the electric 
impedances. In particular, node n corresponds to the zero-potential ground, while at the source node 0 a cur-
rent generator is applied, with its other terminal grounded, inducing an input current d that enters the network.

As shown in Fig. 1, each link is assumed to be the parallel connection of a capacitor and a possibly nonlin-
ear resistor. Injecting a current d in a node of the network leads, after a transient, to a steady state in which the 
currents flow only through the resistors. If these are linear, the steady-state solution corresponds to the current 
distribution that minimizes the total dissipated  power16:

where Rk is the resistance value associated with link k and ı̄k is the steady-state current flowing through it.
In this minimum power configuration, steady-state currents are scattered all over the network (as in Fig. 2a). 

In phenomena such as lightning, the situation is completely  different2,3: after a transient, lightning “chooses” a 
single path (as in Fig. 2b). Why and how is this single path chosen?

In our model, denoting by vh and vj the potentials at the extreme nodes of link k, the resistance obeys the 
nonlinear law

where Vk is the value of the threshold. We name such a threshold value local dielectric rigidity of link k. This value 
is defined as the minimum potential difference between two adjacent nodes (namely, two nodes connected by a 
link) necessary to induce a current flow.

If the nonlinear law approaches the ideal limit characteristic, as depicted in Fig. 3a (see also the inverse 
characteristics in Fig. 3b), then we have the following results (derived in “Methods”).

• The steady-state current distribution minimizes the cost function J th =
∑

k Vk|ik|.
• Considering the family P of all possible paths connecting the source node 0 to the ground node n, the whole 

injected current d flows along the path P∗ ∈ P that minimizes the associated total power, as follows: 

(1)Ptot =
∑

k

Rk ı̄
2
k → min,

Rth
k =

{

(vh − vj)/ik = ∞, if |vh − vj| < Vk ,
(vh − vj)/ik = 0, if |vh − vj| ≥ Vk ,

ground v=0

d

j

ik

h

Figure 1.  Electrical grid model. The electrical grid model with capacitances and possibly nonlinear resistors 
connecting adjacent terminals. In the graph representation, each terminal is associated with a node and each 
electric component with a link.
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 where k ∈ P denotes that path P crosses link k.
• In the transient, the injected current starts flowing along several “tentative” branches. When one of these 

branches—corresponding to the minimum-threshold path—first connects to the ground (in general with 
the aid of a connecting leader), all the others branches are depleted, as shown in Fig. 4, obtained through 
simulations that faithfully reproduce this behavior.

Discussion
The analysis of a grid circuit with capacitors and resistors having nonlinear characteristics unravels why flow 
phenomena such as lightning tend to concentrate the whole current flow along a single path, despite the avail-
ability of several admissible routes: this phenomenon is due to the threshold mechanism associated with the 
dielectric rigidity. In fact, for a nonlinear resistive network model, the solution of the flow equations minimizes 
a convex functional. In the special case of linear resistance, this functional is the dissipated power. In the case 
of threshold-like nonlinear characteristics, we have proven that the minimized functional is the sum of the cur-
rents along the links, weighted by the link threshold; hence, all the current eventually flows through the global 
minimum path if the links connecting the grid nodes are weighed by their local dielectric rigidity. In real situa-
tions, the dielectric rigidity can vary randomly and drastically in space, being a function of the local humidity, 
temperature, pressure and pollution. This explains the seemingly random path of lightning: such a randomness 
is due to the gas current condition, because the lightning actually searches the optimal path.

The threshold model, including capacitive effects among nodes, faithfully describes also the transient and 
our simulations reproduce the behavior described  in2 and analyzed  in5,15.

Our model does not take into account inductive effects, considered by some authors in the return stroke 
 analysis2, pp. 169–170, but this does not invalidate our results because: (1) the minimum path analysis is carried 
out at steady state, v̇ = 0 , when the inductances are equivalent to shortcuts; (2) the return stroke starts when the 
stepped leader has reached the ground, hence the path has been already “decided”.

Our analysis reveals that lightning is one of the many phenomena in nature where a spontaneous optimiza-
tion appears to take  place17–19, leading to the most efficient path  choice20. In our lightning discharge model, the 

J
path
h =d

∑

k∈P

Vk → min

s.t. P ∈ P

+
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+ + + +
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+
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Figure 2.  Electrical current distribution at steady state. The current is scattered in the case of linear resistances 
(a) and concentrated along a single path in the case of threshold characteristics (b), when the current flows 
along the path that minimizes the sum of the dielectric rigidities of its links. Yellow (resp. blue) means presence 
(resp. absence) of flowing current.
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Figure 3.  Nonlinear current–voltage and voltage–current characteristics. We denote by v voltage and by i 
current. Red: a generic threshold-like current–voltage characteristic φ , with threshold V (a) and its inverse φ−1 
(b). Blue: the ideal, sharp threshold characteristics, which can be seen as the limit of a sequence of sharper and 
sharper threshold-like functions φ (a) and φ−1 (b).
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resulting steady-state current flow is globally optimal, even though the current flow is locally determined on the 
basis of the impedance characteristic of each single link.

Methods
The network is modeled as a grid graph with n+ 1 nodes and m links (more details on our model and our 
assumptions are in the SI Sect. 1.1). Node 0 represents the node where a current d is injected. The kth electric 
component is associated with link k connecting nodes h and j. Its impedance is given by the parallel connection 
of a capacitance and a possibly nonlinear resistor (cf. Fig. 1), so that the current ik flowing through the compo-
nent can be written as

where vh and vj are the potentials at the terminals h and j, while φk(·) is the resistor current–voltage characteristic 
function and Ck is the capacitance.

Function φk(·) is any odd increasing locally Lipschitz, or twice differentiable, function (the case in which 
φk(·) is non-decreasing only is considered in the SI Sect. 1.1). In the case of a linear resistor, φk = (vh − vj)/Rk . 
We are interested in threshold-like characteristic functions whose value is close to zero in an interval [−Vk ,Vk] 
and becomes very large if the voltage crosses the threshold value Vk . In Fig. 3, the generic function φ is depicted 
(red curve, a) along with its inverse function φ−1 (red curve, b).

Following the description of Category 1 Lightning  in2,3, we distinguish two phases.

• First, the stepped leader “seeks the path to the ground”: the current is relatively low and the capacitance effect 
dominates, leading to a fast variation of the potentials at the nodes, in the transient evolution of the model.

• Then, once the stepped leader has connected the cloud to the ground, dielectric breakdown is fully developed 
and the long-duration discharging current is triggered. We analyze this phase assuming steady-state condi-
tions.

The initial branching phase is by far shorter than the second phase. Indeed, only by means of special very fast 
video equipment the first stage can be observed, while the second one can be captured by the human eye as we 
commonly experience. During the second phase, the current actually varies with time but its variation rate is 
extremely low with respect to the first phase and then we can approximate this state as a steady state.

In both phases, we show that the presence of a threshold mechanism is crucial to enable the observed behav-
ior: it explains both the transient evolution of the phenomenon and the achievement of a minimum-path steady-
state configuration.

We analyze by simulations the initial transient (first phase), during which the path is “decided” and the cur-
rents converge to a steady-state distribution.

Let us initially show that in the second phase the system is in a steady-state, i.e., terminal potentials satisfy 
the condition v̇h = 0 . In this state, the non-null currents define a single flow along the minimum path in terms 
of dielectric rigidity.

Steady‑state analysis: the chosen path is the minimum path. We start by showing that a threshold 
mechanism yields steady-state minimum-path flow.

We consider the functional

(2)ik = φk
(

vh − vj
)

+
d

dt

[

Ck(vh − vj)
]

,

Figure 4.  The lightning transient phases. Several branches are initially generated by the stepped leader (a); the 
stepped leader meets a connecting leader and the cloud is connected with the ground (b); only the main branch 
persists, corresponding to the optimal path w.r.t. Jpathh  (c); the optimal path is crossed by the long-duration 
current, steady state (d). The color map goes from blue (no current) and light blue (low intensity current) to 
yellow (high intensity current).
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where the index k refers to the links (see SI Sect. 1.1 for details). As a first result we have the following proposi-
tion, proven in the SI Sect. 1.3.

Proposition 1 Given the injected current d, at steady state ( ̇vh = 0 ) the current distribution in the network mini-
mizes the functional given by (3). If the φk are strictly increasing, the optimal current distribution is unique.

Note that dimensionally J(ik) is a power, since φ−1
k (I) is the potential difference between two nodes connected 

by a link, as a function of the link current I, while the differential dI has the dimension of a current. Consistently, 
in the special case of linear resistances Rk , namely when I = φk(v) = v/Rk and φ−1

k (I) = RkI , the function in 
(3) corresponds (up to the factor 1/2) to the total dissipated-power distribution in (1), which is the  minimal16, 
Application 1.8, Page 15.

Here we are interested in the case in which the resistor characteristic is threshold-like. The ideal threshold 
function corresponding to a dielectric rigidity value Vk is (see Fig. 3a, blue)

This ideal characteristics is physically unfeasible and will not be used for our simulations. However, the cor-
responding optimization problem is still well defined. Indeed, the “inverse function” of φth

k  (see Fig. 3b, blue) is

and for this choice the functional in (3) becomes

The following proposition holds and is proven in the SI Sect. 1.4.

Proposition 2 Given the injected current d, the admissible (compatible with Kirchhoff’s laws) distribution of the 
steady-state link currents ı̄ thk  , k = 0, . . . ,m− 1 , which minimizes functional (6), corresponds to all the current 
flowing from the source node to the ground along a minimum-threshold path, namely a path P∗ ∈ P (where P is 
the family of paths from the source node to the ground) that minimizes the cost

which is the sum of all dielectric rigidities of the links along the path.

Functional (6) is not strictly convex, hence uniqueness is not ensured (see the SI Sects. 1.1 and 1.4 for further 
details). However, the uniqueness assumption is generically satisfied; in fact, if the dielectric rigidities are ran-
domly generated, the probability of finding two or more minimum paths with the same rigidity is zero, hence 
the minimum path is unique almost surely, i.e., in practice, we can assume that it is unique.

The next step is to show that the closer a characteristic function (red in Fig. 3) is to the ideal threshold φth
k (v) 

(blue in Fig. 3), the closer the current distribution is to the minimum-path distribution. Given a sequence of 
characteristics φr

k(v) , r = 1, 2, . . . which “converge to the ideal one” and are physically feasible, so that the corre-
sponding steady-state solutions are uniquely defined, these steady-state solutions converge to the minimum-path 
distribution. This property is formalized in the following theorem.

Theorem 1 Consider a sequence of characteristics {φr
k}r∈N such that, for all r, the corresponding steady-state cur-

rent distributions ı̄ rk in the links are uniquely defined. Assume that the threshold-like characteristics converge to 
the ideal one

Moreover, assume that the minimum path in terms of sum of dielectric rigidities is unique. Then the link current 
distributions ı̄ rk converge to ı̄ thk ,

namely, the current distributions converge to the one with the whole current d flowing along the minimum path.

Functions φth
k  are an idealized version of the gas dielectric characteristics in which the admittance is virtually 

zero for small voltage values and very large if the voltage is larger than the threshold value known as dielectric 

(3)J(i)
.
=

∑

k

fk(ik)
.
=

∑

k

∫ ik

0
φ−1
k (I)dI ,

(4)φth
k (v) =

{

0 if |v| ≤ Vk ,
+∞ if v > Vk ,
−∞ if v < −Vk .

(5)gthk (ik) =

{

any value in [−Vk ,Vk] if ik = 0,
+Vk if ik > 0,
−Vk if ik < 0.

(6)J th(i)
.
=

∑

k

Vk|ik|.

Jpath(P) = d
∑

k∈P

Vk , P ∈ P,

φr
k(v) → φth

k (v), as r → ∞.

ı̄
r
k → ı̄

th
k as r → ∞,
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rigidity. In practice, true characteristics can be reasonably  approximated5,15 by a continuous curve that drastically 
increases after the threshold. The meaning of the theorem is that, if these characteristics are sharp and close to 
φth
k  , then the current tends to flow along the minimum path. The result does not rely on any specific characteristic 

model: only the property of the characteristics becoming “close to the ideal” is essential.
In the model, we consider cell-to-cell capacities, but other capacities, such as capacities with respect to the 

ground, can be considered and the analysis remains valid, since at steady state the current through the capacities 
is zero. It is also fundamental to remark that the result is topology-independent: we could consider any network 
topology, not necessarily a grid. Also, we could consider conductive elements on the ground; in this case the 
lightning may find the minimum cost path as the one that connects the source to the grounded object. Some 
examples are in Fig. 5.

Transient analysis: seeking the minimum path. We show here that a threshold mechanism also 
explains the lightning transient behavior, which can be described by the dynamic model (see the SI Sects. 1.1 
and 1.2 for details)

where C is the diagonal matrix including on the diagonal the capacitance at each link and d̄ is a vector with a 
single nonzero entry, the first, equal to d, while vectors v and φ stack the node quantities vk and φk . Matrix B 
is the generalized incidence matrix of the graph, formally defined in the SI Sect. 1.1. The rows of matrix B are 
associated with the graph nodes; each column corresponds to an oriented link and has a 1 entry in the position 
of the origin node and a −1 entry in the position of the destination node, while all other entries are 0. Since we 
assume the existence of links from the external environment, B is full-rank and so BCB⊤ is non-singular. The 
value of the product BCB⊤ is independent of the orientation chosen for the grid links, which can be consequently 
chosen randomly.

This system asymptotically converges to the steady-state condition v̇(t) = 0 , which leads to the condition 
Bφ

(

B⊤v(t)
)

= d̄ corresponding to the constraint of the optimization problem considered in the steady-state 
analysis. A detailed stability analysis is in the SI Sect. 1.2.

The transient analysis has been carried out via simulation, using a standard ODE solver. In particular, to 
numerically demonstrate the dynamic behavior of the system, we have performed many simulations for differ-
ent values of the dielectric rigidity. Videos are available to display some particularly significant cases (see the 
Supplementary Material Movies S1–S6 for details).

The characteristic function φk(vk) can be any locally Lipschitz or continuously differentiable function that 
is non-decreasing and has a very high slope after the threshold. For simulations purposes, we have adopted the 
piecewise-linear threshold-like functions

(shown in Fig. 6a), all with the same plasma conductivity r = 800 , whereas Vk has been randomly chosen for 
each link in the interval Vk ∈ [0.5− δ/2, 0.5+ δ/2] with uniform distribution. The variability of the dielectric 
rigidity is described by δ , while ǫ is a very small number representing the negligible conductivity under the 
threshold Vk (we have set ǫ = 10−5).

Other “sharp” characteristic functions would produce the same behavior. We also simulated the system with 
the polynomial φk(vk) = (vk/Vk)

2r+1 (shown in Fig. 6b), which yields comparable results for large enough r, as 
expected. Yet, the non-Lipschitz nature of the polynomial function is numerically challenging and requires large 
computational times and specialized integration routines for stiff systems.

(7)BCB⊤v̇(t) = −Bφ
(

B⊤v(t)
)

+ d̄,

(8)φk(vk) =

{

ǫvk if |vk| ≤ Vk ,
r(vk − Vk)+ Vkǫ if vk > Vk ,
r(vk + Vk)− Vkǫ if vk < −Vk ,

ground

A

B

sourced

grounded
  object

a b

Figure 5.  Different geometries. The model can consider, with no essential changes, different geometries. For 
instance, in the case of a grounded conductive object, the cells corresponding to the object are connected by 
very small resistance and very large capacitance values: in the left panel, lightning would choose to reach either 
the ground directly (path A) or the grounded object (path B) depending on which is the minimum-threshold 
path, essentially considering the grounded object a zero cost portion of the path (a). Also voltage generators 
instead of current generators can be considered, without any substantial change, provided that an input 
resistance is present (b).
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In all our numerical experiments, the capacitances have been taken all equal. We have set Ck = 1 for all k, 
without restriction, since changing the capacitance value is equivalent to scaling time, hence the steady-state 
value is unaffected. Fig. 4 reports four instants of the simulation with δ = 0.7 (see Supplementary Material Movie 
S5). It can be seen that, for larger variability of the dielectric rigidity, i.e. larger δ , the initial branching activity 
is more intense. However, the asymptotic behavior is qualitatively the same regardless of the value of δ , with 
no exception: a single branch survives, which is numerically verified to be the minimum path in terms of total 
dielectric rigidity, as expected.

To corroborate the theory, a large number of random paths from the source to the ground have been gen-
erated on the same graph. Once again, simulation results confirm the prediction that the path chosen by the 
current in the simulation is always the minimum cost path. Each of the random paths is generated as follows. 
While traversing the nodes from the top starting point to the ground level, at each node, the current flows to 
the downward vertical node with probability p, or deviates respectively to the left node or to the right node with 
probability (1− p)/2 . Fig. 7 illustrates the results obtained from the generation of 105 random paths using a 
deviation probability p = 0.95 . Precisely, in Fig. 7a we compare the metric values of the 200 least costly paths, 
where the minimum-cost path corresponds to the one chosen by the current, whilst in Fig. 7b we report the 
distribution of the costs of all the 105 randomly generated paths.

Decentralization, topology‑independence and limitations. Remarkably, the steady-state current 
flow in our lightning discharge model is globally optimal, even though the current flow is locally determined 
on the basis of the impedance characteristic of each single link. In the context of distributed flow control in 
 networks21, this kind of mechanism is called network-decentralized22–24, and localized strategies have been shown 
to lead to a globally optimal  behavior25–31. In the considered network-decentralized control strategy, each link 
locally decides how much current flows through it. This approach is completely different from Dijkstra’s decen-

vv
V V

VV

uu

ba

Figure 6.  The characteristics used in simulation. The piecewise-linear in (8) (a) and the polynomial (vk/Vk)
2r+1 

(b). There is no essential difference in the final results of the simulations. For large enough values of r, the 
current follows the shortest path.
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tralized minimum-path algorithm, which is based on decentralized dynamic programming  techniques32,33 and 
in which the routing decision is made at the nodes: each node locally decides to which of the outgoing links an 
incoming unit of flow must be redirected. In our setup, a “link decision” is made: each admittance can be inter-
preted as an agent that locally decides how much current is allowed to flow.

Our results are independent of the topology of the network, which does not necessarily need to be a grid 
graph with square cells: other topologies would lead to a minimum path solution.

However, we stress that our model is far from capturing all the complex aspects of lightning. Its validity is 
limited to the beginning of the phenomenon, until the return stroke is triggered, because in this initial stage the 
path is chosen. After the stepped leader has reached the ground, the current follows the “chosen minimum path” 
until the end, as it is experimentally well documented (and confirmed by our simulations), because this path 
becomes a ionized channel with low resistance. So our model and simulations are not expected to be a faithful 
quantitative reproduction of the whole lightning process (including discharge endurance, power dissipation and 
so on), but their significance is limited to the first part. Yet, the qualitative behavior, with the discharge following 
the minimum path, has been always confirmed with no exception.

Note that we consider a constant injected current (the source turns on instantaneously at the initial time) as 
an assumption in our optimality theorem. If we consider an initially varying current, this can of course change 
the transient, but it does not change the choice of the final path, as long as the supplied current converges to a 
constant final value. To support this reasoning, we compared two simulations: in the first one a constant current 
source has been provided, whilst in the other one an increasing monotonic ramp up to the same current value 
has been supplied. The video obtained by these simulations (see the Supplementary Material Movie S7) reveals 
two different transients, which however both lead to the same final current path.

Finally, our model does not consider other aspects such as the ground currents, which are not relevant to the 
path choice. We have considered the so-called Category 1 Lightning, cloud-to-ground, which is the most com-
mon type of lightning; however, the model can be adapted to any type of lightning of gas discharge.
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1 Supplementary Information

1.1 Network model and assumptions

The electrical network is associated with a graph G = (N ,L), where L = {0, . . . ,m − 1} is

the set of the m links, each modeling an electric component, and N = {0, . . . , n} is the set of

the n + 1 nodes, each modeling a terminal where some components join. In particular, node

n corresponds to the zero-potential ground, while at node 0 a current (or voltage) generator is

applied, with its other terminal grounded, inducing an input current d that enters the network.

Consider the k-th electric component of the network, associated with the graph link k ∈ L,

k = (h, j), which connects node h to node j: its impedance is given by the parallel connection

of a capacitance and a possibly nonlinear resistor, so that the current ik flowing through the

component can be written as ik = φk

(
vh− vj

)
+ d

dt

[
Ck(vh− vj)

]
(corresponding to the admit-

tance equation (2) in the main paper), where vh and vj are the potentials at the terminals h and

j, while φk(·) is the resistor current-voltage characteristic function and Ck is the capacitance.
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We consider the generalized node-link incidence matrix of the graph G, which is the matrix

B ∈ {−1, 0, 1}n×m obtained by assigning an arbitrary direction to each link k = (h, j) of

G and setting a 1 entry in position h (source node) and a −1 entry in position j (destination

node), and zero elsewhere, in the corresponding k-th column of B, and then removing the

row corresponding to node n. In particular, the m columns of B are associated with the links

representing the electric components and its n rows are associated with the nodes representing

terminals. Links coming from the external environment (associated for instance with an injected

current) have a single nonzero entry, equal to −1, corresponding to their destination node and

links going to the external environment have a single nonzero entry, equal to 1, corresponding

to their source node: in our model, the connections to the external environment are the (zero-

potential) ground and the source of supplied power. The following assumption holds, because

we have considered the ground zero-potential node as an external node.

Assumption 1 The network graph G is connected internally and connected to the external en-

vironment. As a consequence, matrix B has full row rank.

Links are associated with the currents i0, . . . , im−1 flowing through the individual electrical

components, which we group in the vector i ∈ Rm; nodes are associated with terminal potentials

v0, . . . , vn−1, grouped in the vector v ∈ Rn. Then,

ik = φk

(
B>k v

)
+ CkB

>
k v̇ , (S.1)

where Bk is the k-th column of B and B>k its transpose, while the current balance at the node h

is

Bhi− dh = 0 , (S.2)

where Bh is the h-th row of B and dh is the h-th element of the vector of externally supplied

current.
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Merging equations (S.1) and (S.2) yields the dynamics of the overall circuit G, in terms of

potentials and currents, which is described by the discretized space model [1, 2] with equations

0 = Bi(t)− d̄, i(t) = φ
(
B>v(t)

)
+ CB>v̇(t) , (S.3)

where C = diag{C0, C1, . . . , Cm−1} is a diagonal matrix whose diagonal elements are the

capacities Ck, i = [i0, i1, . . . , im−1]
> is the vector whose components are the currents along the

links of G, d̄ = [d, 0, . . . , 0]> ∈ Rn is the input current vector, v = [v0, v1, . . . , vn−1]
> is the

vector whose components are the potentials at the nodes of G, v̇ is the time derivative of vector

v and φ(·) = [φ0(·), φ1(·), . . . , φm−1(·)]> is the vector of the characteristic functions.

The following general assumption is considered.

Assumption 2 Each characteristic function φk : R→ R is a possibly nonlinear odd monoton-

ically increasing function and locally Lipschitz.

This assumption can be weakened by requiring φk to be monotonically non-decreasing only.

The shape of a generic characteristic function satisfying Assumption 2 is shown in red in

Fig. 3 in the main paper. The assumption implies that, for each link k ∈ L, φk is invertible.

Then, for each k, the function

fk : y 7→
∫ y

0

gk(s)ds , (S.4)

where gk
.
= φ−1k is the (monotonically increasing) inverse function of φk, is well defined in

(−∞,+∞).

Functions fk are continuously differentiable. In addition, they are strictly convex, since their

derivative gk is an increasing function almost everywhere (f ′′k = g′k > 0 almost everywhere; in

fact, g′k may be not defined in some isolated points, e.g. in s = 0 for gk(s) = s1/3).

If we assume that φk is non-decreasing only, then we have convexity but not strict convexity

of fk.
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1.2 The dynamic model

We report here the stability analysis of the complete model (S.3), which we can rewrite in the

equivalent form

v̇(t) = −[BCB>]−1
[
Bφ
(
B>v(t)

)
− d̄
]
.

The stability of this type of systems has been studied in the literature [3, 4]. Consider the

steady-state vector v̄, such that

0 = [BCB>]−1
[
Bφ
(
B>v̄

)
− d̄
]
,

and denote by x the shifted variable defined as x(t) = v(t)− v̄, whose time variation is

ẋ(t) = [BCB>]−1B
[
φ
(
B>(x(t) + v̄)

)
− φ
(
B>v̄

)]
.

Since φ is a vector of strictly increasing functions, we can write

φ
(
B>(x+ v̄)

)
− φ
(
B>v̄

)
= ∆(v(x))B>x(t) ,

where ∆(v) is a diagonal matrix of strictly positive continuous functions [5] (see also [4, 6]).

Hence

ẋ = −[BCB>]−1B∆(v(x))B>x .

Consider the positive definite Lyapunov function candidate V (x) = 1
2
x>BCB>x, which is the

energy stored in the capacitors. Its derivative is negative definite:

V̇ (x) = x>BCB>ẋ = −x>B∆(v)B>x < 0

as x 6= 0. This ensures asymptotic stability of the steady-state solution.
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1.3 Proof of Proposition 1

We have to prove that the steady-state current distribution in the network induced by a constant

current injection d̄, achieved when v̇ = 0, namely when

Bφ
(
B>v

)
− d̄ = 0 , (S.5)

is indeed the current that solves the optimization problem

J(i0, . . . , im−1)
.
=

m−1∑
k=0

fk(ik)→ min (S.6)

s.t. Bi = d̄ , (S.7)

where (S.7) is the flow constraint imposed by Kirchhoff’s current law [7].

In view of the assumptions on φk, the function fk defined in (S.4) is continuously differ-

entiable with increasing derivative, hence strictly convex. Therefore, the optimization prob-

lem (S.6)-(S.7) is strictly convex and has a unique solution, achieved by applying the first order

Karush-Kuhn-Tucker conditions to the Lagrangian function
m−1∑
k=0

fk(ik) + λ>[Bi− d̄] ,

where λ ∈ Rn is the vector of Lagrangian multipliers. The derivative with respect to i must be

zero, hence we get

∇f(i) + λ>B = 0 . (S.8)

Now, the first derivative of the elements of f is f ′k = gk, which is invertible with inverse φk. As

a consequence, ik = φk

(
B>k λ

)
, hence

i = φ
(
B>λ

)
. (S.9)

The solution of the optimization problem is therefore the unique solution of the system (S.5),

Bφ
(
B>λ

)
− d̄ = 0. Interestingly, the Lagrange multiplier vector is the steady-state potential,

λ = v(∞).
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In the case of non-decreasing functions φk, we still have convexity but not strict convexity:

the result holds, but the minimizing distribution may be non-unique.

Finally note that, in the special case of linear resistances Rk, namely when ik = (vh −

vj)/Rk, the solution of the optimization problem provides (half) the minimum-dissipated-power

distribution, hence

J? =
Ptot

2
=

1

2

m−1∑
k=0

Rki
2
k ;

see for instance [7, Application 1.8, Page 15]. However, in the general case, each fk can be

different from the local dissipated power, which is 1
2
Pk = 1

2
ikφ
−1
k (ik). Hence, in the nonlinear

case, the minimized functional is not the dissipated power as in the case of linear resistances.

1.4 Proof of Proposition 2

We have to show that the limit optimization problem

J th(i)
.
=

m−1∑
k=0

f th
k (ik) =

m−1∑
k=0

Vk|ik| → min (S.10)

s.t. Bi = d̄ , (S.11)

associated with the limit characteristic φth
k (the limit of φr

k as r → ∞), admits as its optimal

solution the current distribution with all current d channeled along the shortest path.

Assume that the injected current is positive: d > 0 (the case d < 0 is identical). Let i∗

denote the current distribution solving the optimization problem (S.10)–(S.11). To keep the

proof simple we assume that all links in the network have been oriented in such a way that

ik ≥ 0. This is not a restriction since link orientation is arbitrary.

Now consider the modified problem
m−1∑
k=0

Vkik → min (S.12)

s.t. Bi = d̄ , (S.13)

i ≥ 0 , (S.14)
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where the absolute value has been removed and a positivity constraint has been added.

The solution i∗ of the previous problem is a feasible solution of the new problem, because

its elements are nonnegative by construction. It is also optimal for the new problem. Indeed, if

another solution ı̃ were found with a lower cost, this would be a feasible solution also for the

original problem (S.10)–(S.11) and would have a cost smaller than that of i∗.

Now note that, to solve (S.12)–(S.14), we can just take d = 1 and then scale the solution

(by the true value d > 0). The proof is concluded by noticing that (S.12)–(S.14) with d = 1

gives the minimum cost path [7], with optimal cost d
∑m−1

k=0 Vk and the whole flow through

the minimum cost path. An interpretation is that the solution minimizes the overall power,

measured as the product between the current flowing in a link and its dielectric rigidity.

1.5 Proof of Theorem 1

We have to prove that the steady-state solutions ir∗ associated with the characteristic functions

φr
k, which have been shown to be the minimizers of

J(i0, . . . , im−1)
.
=

m−1∑
k=0

f r
k (ik)→ min (S.15)

s.t. Bi = d̄ , (S.16)

converge to the solution of (S.10)–(S.11) if this is unique (equivalently, the minimum path is

unique).

Denote by Jr and J th the cost functionals of the considered optimization problems,

Jr(i) =
m−1∑
k=0

f r
k (i), J th(i) =

m−1∑
k=0

Vk |ik| .

Since grk is strictly increasing, f r
k is strictly convex and, in turn, also Jr is strictly convex. Hence,

the minimizer vector ir∗ of (S.6)-(S.7) is unique.

Let J th∗ = J th(i∗) be the optimal cost of the limit problem. For any y, f r
k (y) −→

r→∞
Vk |y|.

Then, Jr(i) −→
r→∞

J th(i) and, in particular, Jr(i∗) −→
r→∞

J th(i∗) = J th∗. This means that the
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sequence of optimal costs {Jr(ir∗)}r∈N is upper bounded by a sequence {Jr(i∗)}r∈N that con-

verges to J th∗ as

Jr(ir∗) ≤ Jr(i∗) −→
r→∞

J th∗ . (S.17)

Functionals Jr, for all r, as well as J th, are radially unbounded because they are the sum of

non-negative radially unbounded functions f r
k . Then, their optimal solutions i∗, respectively

ir∗ are finite. In view of (S.17) there exists J̄ > 0 for which these solutions ir∗ are inside the

compact set

Sr∗ = {u ∈ Rm : Jr∗(i) ≤ J̄} .

By construction Jr(i) converges to J th(i) =
∑
Vk|ik|, which is radially unbounded. Then, the

sequence of sets Sr∗ is uniformly bounded in a compact set S, hence all optimal solutions are

uniformly bounded: {ir∗}r∈N ∈ S.

We prove the convergence ir∗ −→
r→∞

i∗ by contradiction. We assume that ir∗ 6−→
r→∞

i∗. Negating

convergence to i∗ implies that there exist an open neighborhood, U ⊂ S , of i∗ and a sub-

sequence of ir∗ that is in the complement of U in S, namely in the compact set S \ U . In

turn, this sub-sequence confined in the compact set admits a sub-sub-sequence that converges

to some point i◦ ∈ S \ U . Hence there exist a sub-sequence {ir̃∗}r̃∈N of the original {ir∗}r∈N

that converges to some vector i◦ 6= i∗, being N = {N1, N2, . . . } an infinite ordered set of

increasing integers. All vectors ir̃∗ satisfy the constraint Bir̃∗ = d̄ as they are solutions to

problem (S.6)–(S.7).

Hence, also the limit vector i◦ does satisfy Bi◦ = d̄. Then, the proof can be concluded by

showing that

J th(i◦) ≤ J th∗ , (S.18)

which is a contradiction, because it would imply that either J th∗ is not the optimal as assumed,
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or (if equality holds) that the optimization problem (S.10) has two minimum points, i∗ and i◦,

against the uniqueness assumption.

To prove (S.18), the first step is to note that there exists a finite value g such that, for all k

and for all sufficiently large r, grk(ik) ≤ g for all ik such that i ∈ S , since grk(ik) −→
r→∞

Vk and S

is a compact set, and hence is bounded. As a consequence, for a sufficiently large r, Jr has a

uniformly bounded gradient since, for all y,

|∂Jr/∂ik| (y) = grk(y) ≤ max
ik:i∈S

{grk(ik)} ≤ g .

Hence, as Jr is convex for all r, there exists a constant L such that, for sufficiently large r and

for all p, q ∈ S,

|Jr(p)− Jr(q)| ≤ L‖p− q‖ .

Then, for r̃ ∈ N sufficiently large, the following inequalities hold:

J th(io) = J th(io)− J r̃(io) + J r̃(io)− J r̃(ir̃∗) + J r̃(ir̃∗)

≤ |J th(io)− J r̃(io)|︸ ︷︷ ︸
→0

+ |J r̃(io)− J r̃(ir̃∗)|︸ ︷︷ ︸
≤L‖uo−ur̃∗‖→0

+J r̃(ir̃∗)

≤ J r̃(i∗) −→
r̃→∞

J th∗ ,

where the last inequality and the limit come from (S.17) and the fact that {ir̃∗}r̃∈N is a sub-

sequence of {ir∗}r∈N with limit io. Then we have shown the contradiction (S.18), which con-

cludes the proof.

1.6 Supplementary Multimedia Files: Movies

Videos representing the transient behavior with variability δ of the dielectric rigidity equal to

0.3550 (S1), 0.4375 (S2), 0.5200 (S3), 0.6025 (S4), 0.7000 (S5), 0.7675 (S6) are available

as Supplementary Material. Each video initially shows the lightning discharge, along with

an artificially introduced recorded sound at the moment when the branch is crossed by the
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continuing currents, and then shows a slow-motion rendering of the phenomenon. Video (S7)

reports the comparison between a simulation with constant supplied current and a simulation

with a current that is gradually supplied as an increasing ramp reaching the same final value.

All the videos are also available on-line: https://users.dimi.uniud.it/˜franco.

blanchini/Lightsim.zip.
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