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Acoustic Target Tracking Through a
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Abstract—This paper discusses the problem of tracking a
moving target by means of a cluster of mobile agents that is
able to sense the acoustic emissions of the target, with the aim of
improving the target localization and tracking performance with
respect to conventional fixed-array acoustic localization. We han-
dle the acoustic part of the problem by modeling the cluster as
a sensor network, and we propose a centralized control strategy
for the agents that exploits the spatial sensitivity pattern of the
sensor network to estimate the best possible cluster configuration
with respect to the expected target position. In order to take into
account the position estimation delay due to the frame-based
nature of the processing, the possible positions of the acoustic
target in a given future time interval are represented in terms
of a compatible set, that is, the set of all possible future posi-
tions of the target, given its dynamics and its present state. A
frame-by-frame cluster reconfiguration algorithm is presented,
which adapts the position of each sensing agent with the goal
of pursuing the maximum overlap between the region of high
acoustic sensitivity of the entire cluster and the compatible set
of the sound-emitting target. The tracking scheme iterates, at
each observation frame, the computation of the target compati-
ble set, the reconfiguration of the cluster, and the target acoustic
localization. The reconfiguration step makes use of an opportune
cost function proportional to the difference of the compatibil-
ity set and the acoustic sensitivity spatial pattern determined by
the mobile agent positions. Simulations under different geometric
configurations and positioning constraints demonstrate the abil-
ity of the proposed approach to effectively localize and track a
moving target based on its acoustic emission. The Doppler effect
related to moving sources and sensors is taken into account,
and its impact on performance is analyzed. We compare the
localization results with conventional static-array localization
and positioning of acoustic sensors through genetic algorithm
optimization, and results demonstrate the sensible improvements
in terms of localization and tracking performance. Although the
method is discussed here with respect to acoustic target track-
ing, it can be effectively adapted to video-based localization and
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tracking, or to multimodal information settings (e.g., audio and
video).

Index Terms—Acoustic target tracking, microphone arrays,
mobile agents, set-theoretic position estimation, source localiza-
tion, sparse sensor networks.

I. INTRODUCTION

MULTIROBOTS’ target detection and tracking are an
active research topic within the broader field of cooper-

ative multirobots systems [1]. Its range of applications includes
ground and aerial surveillance in civilian and military oper-
ations, broadcasting of sports and entertainment events, and
underwater acoustic monitoring, to name a few.

Coordination and control strategies of the units in the clus-
ter often depend on the nature of the robotic platform, on
the nature of the sensing devices they can rely on, and on
the nature and number of moving targets [2]. Commonly
addressed robotic platform include unmanned aerial vehicles
(UAVs), unmanned ground vehicles (UGVs), and unmanned
underwater vehicles (UUVs). Among these, UAVs are rapidly
gaining popularity for research and applications in coopera-
tive robotics, due to the availability of reliable, stable, and
cost-effective devices which are also able to carry a variety of
sensors. Recent research concerning multirobots target track-
ing based on UAV clusters can be found in [3], in which
cooperative control of fixed-wings UAVs is addressed for the
tracking of ground mobile targets emitting radio-frequency sig-
nals; in [4], the path planning strategy for video-based tracking
of ground targets is especially aimed at maximizing the visi-
bility of the target in an urban area setting; thus, when ground
obstacles of different shapes and sizes may cause occlusion;
in [5], a study on the localization and tracking of a generic
target through a cluster of UAVs with acoustic sensors is
illustrated.

In general, the studies on multirobots target tracking seem
to have mainly addressed configurations based on video and
range sensors [2] while neglecting the potentialities of exploit-
ing acoustic sensing, despite the wide knowledge available in
the field of multichannel audio signal processing. Acoustic
source localization (ASL) through microphone arrays is a
rather mature research field, in which a typical scenario
consists of estimating a sound source position in space by ana-
lyzing the sound field sensed by a microphone array [6]–[10].
While most of the literature in the past has addressed sensor
arrays with a static position and fixed geometry, the interest
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toward reconfigurable arrays and dynamically varying geom-
etry is rapidly increasing [11]. Fields of application in which
the localization of acoustic sources through sensor networks
is desirable include audio surveillance [12] and acoustic
monitoring [13]; autonomous robots [14], [15]; human–robot
interaction [16]; and animal ecology [17].

When the acoustic source position may change during the
localization process, a number of factors related to the source
motion must be taken into account to effectively track the posi-
tion of the target. Under given hypotheses on the target nature
and on its motion constraints, it is possible to pair the localiza-
tion signal-processing methods with tracking techniques based
on motion dynamics modeling, which allow to forecast the tar-
get position to a certain extent. Recent approaches to acoustic
tracking may also exploit the timbre characteristics of the
source to recognize its acoustic signature and improve the
tracking [18].

Here, we are interested in the specific problem of controlling
a multirobots cluster of acoustic sensing units to localize and
track a moving sound-emitting target, under the assumption of
delayed measurements of the target acoustic emission. We are
moreover interested in discussing the mobile agents position-
ing strategies in terms of the intersection of the whole cluster
acoustic sensitivity pattern and of the compatible sets of the
target. The choice of compatible sets framework is motivated
by recent investigations that have reported the effectiveness
of set-theoretic control methods for problems involving object
tracking and robotic control in different scenarios [19]–[21].

To address the acoustic localization step in the target track-
ing and mobile agents control scheme, we might refer to
the techniques for ASL through microphone networks. The
optimal static positioning of microphones in sensor networks
has been addressed over a few decades [11], [22], [23], how-
ever, the tracking of moving sources through reconfigurable
and/or moving microphone networks has been addressed only
recently. In [24], an evolutionary strategy for the optimal
static placement of microphones in an indoor search region
is proposed. It is based on a spatial-likelihood function built
on a spatial map of the acoustic power for a given sen-
sor network configuration. In [25], the case of ASL by a
moving sensors pair is discussed. The target source local-
ization in this case is achieved through a particle filtering
algorithm; however, no strategy for the sensor positioning
is suggested. In [26] and [27], examples of robotic applica-
tions are provided, in which the dynamic configuration of
the sparse sensor network is achieved through particle swarm
optimization methods.

We propose here a centralized control strategy for the
mobile agents of the cluster, based on the computation of the
compatible sets of the tracked source and on the exploita-
tion of the acoustic sensitivity spatial pattern determined by
the instantaneous positions of the agents carrying the micro-
phones. The aim of the proposed method is to improve the
target localization and tracking performance with respect to
conventional fixed-array acoustic localization, by allowing the
sensor network geometry to dynamically adapt, provided the
sensors are carried by mobile robotic agents. With respect to
other studies in the literature, this paper’s main novelty is the
combination of the forecasting setting for the target dynamics

and of a model of the mobile agents cluster acoustic sensi-
tivity, to define an effective centralized control strategy for
the agents of the cluster. The main objective of the strategy
is to increase as much as possible the target localization and
tracking performance by the effective positioning of the agents
carrying the sensors. With respect to a fixed sensor network,
or to a cluster of agents moving with fixed geometry, the
proposed positioning algorithm has several advantages: for
example, it can provide a way to keep the agents at the min-
imum distance from their target, which is safe against losing
it. From the acoustic point of view, this can be advantageous
since it allows sensing of acoustic data with the smallest pos-
sible time latency, the highest signal-to-noise ratio (SNR), and
the best localization properties. In terms of path planning, the
proposed control strategy for mobile agents based on acoustic
sensing can be seen as a component of a more general planning
problem with several constraints, including collision avoid-
ance, shortest path selection, and obstacle sensing. Considering
these additional constraints is out of the scope of this paper.

From the point of view of array signal processing, the
method can also be seen as a novel dynamic sensor network
positioning and reconfiguration approach in the context of
moving ASL and tracking. Practical applications of the
proposed method are foreseen in situations where sensors are
mounted on pools of autonomous vehicles (e.g., UGVs or
UAVs), whose goal is to localize and track a moving acoustic
target, while maximizing the amount and quality of the global
information obtained by fusing the partial information from
each single device in the pool. This scenario also includes the
case in which the acoustic emission encodes further higher
level information of interest, such as in acoustic events classi-
fication or as in speech recognition. In such cases, localization
and tracking can be followed by signal enhancement through
beamforming and by classification/recognition steps.

The centralized control method is discussed here with
respect to acoustic target tracking, however, we stress the fact
that it can be effectively adapted to video-based localization
and tracking, or to full information (audio and video) sen-
sor networks. An example task related to such a different
scenario is target coverage maximization by a visual sensor
network, in which this strategy might be employed to con-
trol the agents carrying the cameras with overlapping fields of
view, so to provide maximum target visual coverage and best
image resolution while keeping a safe distance.

II. PROBLEM FORMULATION

We aim at designing a centralized control strategy for a
cluster of mobile agents in the following problem setting.

1) The mobile robotic agents have known dynamics and
their average reachable speed is larger than the maxi-
mum target speed.

2) The moving target has known dynamics, with bounded
process noise and magnitude-bounded random control
input.

3) Each mobile agent carries a single microphone with
omnidirectional sensing characteristics.

4) The sound emitting target can be assimilated to an
acoustic point source.
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Fig. 1. Schematic example of target tracking and mobile agents positioning
control (fixed linear cluster geometry).

5) The position measurements of the target are delayed by
a known, generally nonconstant, time lag.

6) The environment in which the sensors and the target
move is assumed free from obstacles.

We consider a standard second-order dynamical model for
each mobile agent of the cluster, which can be written in the
following discrete-time state-space representation:{

x(m)
k+1 = A(m)x(m)

k + B(m)u(m)
k

r(m)
k = C(m)x(m)

k

(1)

where r(m)
k is the mth agent position at the discrete-time instant

k; x(m) is the state of agent dynamics; u(m) is the control input;
and A, B, and C are the state matrix, input matrix, and output
matrix, respectively. We will assume that the m mobile agents
have identical dynamics, that is, A(m) = AM , B(m) = BM , and
C(m) = CM for m = 1, . . . , M.

Moreover, we assume the following continuous-time
dynamical model for the motion of the sound-emitting target:

r̈(t) + λṙ(t) = f(t) (2)

with f = [fx, fy]T , |f| < F being the control input (a magnitude
bounded force) and λ− < λ < λ+ being the parameter that
models the damping of the system. The vector r = [rx, ry]T

is the target position in the two spatial coordinates, and ṙ =
[ṙx, ṙy]T and r̈ = [r̈x, r̈y]T are the corresponding speed and
acceleration. Similar to the mobile agent dynamics model, a
discrete-time state-space representation can be derived for the
motion dynamics of the target.

Even if the environment in which the sensing mobile agents
and the target move is assumed free from obstacles, the agents
may only move within a subset of the free space due to their
dynamics and possibly due to structural constraints. In the fol-
lowing, we will call, respectively, Yk, and Xk, k = 0, 1, 2, . . . ,

the acoustic sensitivity pattern determined by the agents clus-
ter configuration and the compatibility set of the target, with
respect to a generic time interval k (whose length is typically
the size of the audio analysis buffer of the acoustic front-end).

The problem setting is illustrated in Figs. 1 and 2. If a
new estimate of the target position and velocity is avail-
able at discrete-time k, the reconfiguration control procedure

Fig. 2. Schematic example of target tracking and robotic agents positioning
and reconfiguration (arbitrary cluster geometry).

computes the set Xk+1 of possible states of the target at
discrete-time k + 1, corresponding to the next observation
instant. This computation may also take into account the
sound propagation (including possible Doppler effects) and
the acoustic measurement delay, if known. The control system
then decides the position of the robotic mobile agents carrying
the sensors, to be reached at time k+1, on the basis of the set
Yk of the possible acoustic sensitivity pattern compatible with
its state at time k. Fig. 1 represents the target tracking and
agents positioning in the case of fixed linear cluster geometry
(a typical configuration in microphone array systems), Fig. 2
represents the tracking in the case of arbitrary, time-varying
cluster geometry.

III. DYNAMIC RECONFIGURATION OF THE CLUSTER

OF MOBILE AGENTS

A. Cluster Acoustic Sensitivity Spatial Pattern Computation

From the acoustic point of view, the cluster of acoustic
sensing agents can be modeled as a sparse array of M micro-
phones located in r(m)

k = [x(m)
k , y(m)

k ], m = 1, . . . , M at time k,
and with no structural position constraints within the search
space. The environment is assumed reverberant and affected
by stationary noise, which corrupts the acoustic signal emit-
ted by the moving target. The localization of an acoustic
source located in rs

k at time k is performed through a steered
response power algorithm with phase normalization (SRP-
PHAT) [28]–[30]. This procedure requires the computation of
a generalized cross-correlation (GCC) function between each
microphone pair

�k(r) =
M−1∑
a=1

M∑
b=a+1

Rab,k(τab(r)) (3)

where r is a generic point of a discrete search grid � ⊂ N
3;

τab(r) is a mapping between the spatial point r and the time-
difference of arrival (TDOA) related to the microphones a and
b; and Rab,k(τ (r)) is the GGC-PHAT function, defined as

Rab,k(τab(r)) = 1

2π

∫ π

−π

Xa,k(ω)X∗
b,k(ω)

|Xa,k(ω)X∗
b,k(ω)|ejωτab(r)dω (4)
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where ω is the angular frequency, Xm,k(ω) is the Fourier trans-
form of the signal that reached microphone m at time k, (·)∗
denotes the complex conjugate, j denotes the imaginary unit,
and |·| denotes the absolute value. The standard mapping from
a spatial point r and the TDOAs is

τab(r) =
⌊

fs
c
(‖r − ra‖ − ‖r − rb‖)

⌋
(5)

for each microphone pair (a, b), with a ∈ {1, . . . , M − 1}
and b ∈ {a + 1, . . . , M}, and with fs being the audio digital
sampling frequency, c is the speed of sound propagation, and
�·� denoting the floor function that maps a real number to the
largest integer less than or equal to that number.

Given this acoustic array processing setting, the sound-
emitting target position can be finally estimated by picking
the maximum value of the function �k(r) on all points of the
search grid:

r̂s
k = argmax

r∈�

�k(r). (6)

The conventional localization algorithm searches a uni-
formly spaced grid, not taking into account the spatial accuracy
characteristics of the sensor network. To compute a sensitivity
measure of a given spatial configuration of the sensors we rely
on the geometrically sampled grid (GSG) algorithm proposed
in [30], which provides a measure of the sensor network local-
ization accuracy in the surrounding region. The GSG array
sensitivity is defined as a function δ(r) that provides the
number of discrete hyperboloids related to sensor pairs and
intersecting in the position r. The sensitivity function provides
a measure of the density of the TDOA information over the
spatial search grid and, thus, defines a measure of localiza-
tion accuracy by identifying those areas for which the sensing
system is more accurate. In the implementation adopted here,
the number of intersections of the hyperbolas is weighted by
a term which is inversely proportional to the squared distance,
in order to take into account the decrement of acoustic energy
reaching the sensors as the distance increases. If δ(r) is the
number of intersections in r, counted using the numerical
procedure provided in [30], we define its distance-weighted
version as

δw(r) = δ(r)

1 + (1/M)
∑M

m=1‖r − cm‖ (7)

where the denominator is augmented by the average distance
from r to each midpoint cm, m = 1, 2, . . . , M, of the segment
connecting two neighboring microphones. Given a sensitivity
map δw(r), r ∈ �, we also define a sensing region Y as the 2-
D region for which δw(r) has values above a certain threshold
δ̂w, that is,

Y =
{

r ∈ �|δw(r) ≥ δ̂w

}
. (8)

The region Y represents the region in which the sensor
network is more sensitive. As discussed in [30], a reasonable
choice for the threshold is δ̂w = (max[δw(r)]+min[δw(r)])/2.

Fig. 3 shows the sensitivity function δw(r) for some typical
acoustic sensor network configurations.

The sensitivity function δw(r) and the acoustic sensitivity
pattern Y(r) will be used, along with the target position fore-
cast model described in the next section, to design the cost

Fig. 3. Sensitivity maps corresponding to four different microphone array
configurations. In the right column plots, red color is associated with high
sensitivity, yellow with mid-range sensitivity, and blue with low sensitivity (the
colormap shows the mapping between number of intersecting hyperboloids
and colors).

function upon which the position update strategy of the sensing
agents is based.

B. Target Motion Modeling

Given the following general discrete-time description of the
target dynamics:{

xk+1 = ak+1,k(xk, uk) + ηk
zk = hk(xk) + εk

(9)

with ηk and εk being stochastic vector variables, and ak+1,k
and hk being vector functions, the state estimation problem
has been studied with the set-theoretic approach [31], [32].
Comparisons with the Bayesian state estimation approach can
be found in [33] and [34]. The recursive estimation of the
state according to this framework aims to define a set of states
consistent with the set of possible values of the input control
and with uncertainty about the starting conditions, the process
noise and the measurement noise. This approach is also known
as “set-membership” estimation [35]. Unlike the stochastic set-
ting, the uncertainty is defined in this case in terms of bounds
imposed on the range of the control and noise signals. If the
reference system is still described by the equations in (9),
with u being the bounded input control, and η and ε being,
respectively, the bounded process noise and the bounded mea-
surement noise, the goal is to calculate a recursive estimate
of X e

k , the set to which the state x needs to belong at time k
based on the observed measurements and on the predictions
up to instant k.

Given the set estimate X e
k , the calculation of the new set

X e
k+1 at instant k + 1 occurs in two phases.
1) A prediction phase

X p
k+1 = ak+1,k

(X e
k ,Uk

) + Hk (10)

where Uk and Hk are the bounding sets for uk and ηk, respec-
tively, which generates the set X p

k+1 of all possible states
obtained by the evolution of X e

k according to the dynamics
of the process.

2) A fusion phase in which the new bounding set is
the prediction set refined by the measurement-compatible set
X z

k+1:

X e
k+1 = X p

k+1 ∩ X z
k+1 (11)
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where denoting by Ek+1 the bounding set for εk+1 and zk+1
the measurement at time k + 1, the measurement-compatible
set is

X z
k+1 = {x : zk+1 = hk+1(x) + ε for some ε ∈ Ek+1}. (12)

In general, the intersection of sets provided by the iteration
state observer may not return a set described by a simple ana-
lytical form. As a result, the calculation of the sets X is usually
not simple and it is often accomplished by using simpler out-
bounding geometric objects (typically ellipsoids, hyperboloids,
or polytopes) [32].

For specific classes of systems and under given assumptions,
however, it is possible to derive a particularly advantageous
form for the compatibility sets. We shall examine here the
case in which the motion of a point system is described by
a dynamic equation, linear or nonlinear, affine in the con-
trol input and with force control bounded in amplitude and
constant between observation instants.

We consider the problem of estimating the 2-D position
r = [rx, ry]T of an object whose motion is modeled by a lin-
ear dynamical system of the second order, described by (2),
with f = [fx, fy]T , control input |f| < F̄ (an amplitude bounded
force), and λ− < λ < λ+ being an uncertain damping param-
eter. If the state is defined as x = [rT , ṙT ]T , we obtain the
following continuous-time state-space system:⎧⎨

⎩ ẋ(t) =
[

02 I2
02 −λI2

]
x(t) +

[
0

f(t)

]
+ η(t)

z(t) = [
I2 02

]
x(t) + ε(t)

(13)

with the column vectors η(t) ∈ R
4 and ε(t) ∈ R

2 being,
respectively, the process noise and the measurement noise. The
corresponding approximated discrete-time system (T = tk+1 −
tk being the sampling period) is defined by⎧⎨

⎩ xk+1 =
[

I2
1−e−λT

λ
I2

02 e−λTI2

]
xk + T

[
0
fk

]
+ ηk

zk = [
I2 02

]
xk + εk.

(14)

Working in a 4-D space would still be a problem. We show
that, fortunately, we can work in 2-D, by slightly adapting the
approach. We preliminary note that in view of the first two
equations in the discrete-time system above, if the velocity ṙ
and position r at instant k were known, the displacement in
a single sampling interval, without considering the force and
the noise, would be given by

rk+1 = 1 − e−λT

λ
ṙk + rk. (15)

We can take into account the effect of the force f directly
in this equation. Indeed, the force has an unknown direction
and an unknown intensity with maximum value F̄. Therefore,
given ṙk and rk at time k, at time k + 1 the object will be
inside a circle of center rk+1 and radius ρ:

C(rk+1, ρ) =
{

r : ‖r − rk+1‖ ≤ ρ = λT − 1 + e−λT

λ2
F̄

}
.

(16)

Note that the force |f(t)| ≤ F̄ can vary in the interval, accord-
ing to the following result, whose proof is reported in the
Appendix.

Proposition 1: If ṙk and rk are exactly measured, then the
set (16) is the exact prediction of all possible states at the next
step. Hence, the prediction for the next step is

rk+1 ∈ C(ck+1, ρ), with

{
ck+1 = 1−e−λT

λ
ċk + ck

ρ = λT−1+e−λT

λ2 F̄.
(17)

The considered prediction set is optimal: the circle
C(ck+1, ρ) is the smallest region in which one is sure to find
the target. In other words, regardless of the target escaping
strategy, given its current position rk, speed ṙk, and maximum
acceleration F̄ (escaping capability), the target will be in this
circle. However, any position inside C(ck+1, ρ) is possible.

When we want to consider the measurement noise as well,
the equations read:{

C′
k+1 = ck+1 + Ck+1 = 1−e−λT

λ
(ċk + Vk) + (ck + Ck)

ρ = λT−1+e−λT

λ2 F̄

(18)

where Ck is the set due to the additive noise on the position
measurement, Vk is the set due to the estimation error of the
velocity, and C′

k is the possible target positions set. Since it
is assumed that the noise has bounded magnitude, these sets
are in turn represented as circles centered on the estimated
location and having radius equal to the maximum module V̄ ,
C̄ for the velocity noise and the position noise, respectively.
We can, therefore, transfer the component due to measurement
noise in the computation of the radius of the circle:{

ck+1 = 1−e−λT

λ
ċk + ck

ρ′ = ρ + λ−e−λT

λ
V̄ + C̄ = λT−1+e−λT

λ2 F̄ + 1−e−λT

λ
V̄ + C̄.

(19)

To compute the center ck+1 of the circular set, the speed ċk
needs to be known or suitably estimated: the Appendix gives
an upper bound V̄ for the speed estimation error achieved using
a filter.

Fig. 4 (top panel) shows a sequence of observations gener-
ated by the dynamic system, and the sets X p for the next two
steps (k − 1) → k and k → (k + 1). We adopted the same
value of λ used for the simulation of the process; the speed
used for the prediction of the center of the circle is the exact
one. Fig. 4 (bottom panel) shows the same sequence when the
velocity used for the prediction of the circle is estimated (with
the Euler approximation, see the Appendix) instead of being
the exact one. The error on the estimated velocity causes an
error in the estimated center of the prediction circle and, in
this case, the observation falls outside the circle. This does not
happen if the radius is enlarged taking into account the speed
estimation error.

Fig. 5 (top panel) shows a single step of the observer (k →
(k + 1)) when the value λ = 1 is used for the dynamics of the
process, and different values of λ are used for the calculation
of X p (i.e., λ1 ≤ λ2 ≤ λ3 and λ1 = 0.5, λ2 = 1, λ3 = 2).
Note that, in this case, the union of the sets is still a circle.
Fig. 5 (bottom panel) shows the same step for λ = 0.5 and
λ1 = 0.1, λ2 = 0.5, λ3 = 1. In this case, the union of the sets
is no longer a circle.
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Fig. 4. Sets X p for a few steps when using the exact speed (top), and when
the speed of the target is estimated (bottom). In both cases, λ = 1.5.

Fig. 5. Sets X p for a single step, exact velocity and different values of
λ (top: λ1 = 0.5, λ2 = 1, and λ3 = 2; bottom: λ1 = 0.1, λ2 = 0.5, and
λ3 = 1).

C. Position and Geometry Adaptation of the Mobile Agents
Cluster

The target localization and agents cluster reconfiguration
scheme is illustrated in Fig. 6. At each iteration of the pro-
cess, the position of each mobile agent in the cluster must be
updated by some strategy that takes into account the predicted
target position, the present sensed signal, and the position

Fig. 6. Target localization and mobile agents cluster reconfiguration scheme.

of all other mobile agents. Recent algorithmic frameworks
that can be used to address this class of problems include
the general pattern search methods [36], or other more spe-
cific techniques gaining popularity in swarm robotics [37],
such as particle swarm optimization or glowworm swarm
optimization [26], [27].

The algorithm designed here to update the sensing agents
position aims at reaching the maximum superposition between
the forecasting set of possible target positions and the high
sensitivity regions of the agents cluster as computed by the
acoustic sensitivity function. The algorithm, exploiting the
principles of the general pattern search method, attempts at
selecting the optimal new cluster configuration by displacing
one agent at a time, and assessing each time the bene-
ficial effect on a reward function designed to predict the
performance of the acoustic localization. During the search
step at frame k, the displacement of sensing agent m is deter-
mined by an exploratory step u(m)

k ∈ (�
(m)
k P(m)

k ), whose
direction is defined by the pattern P(m)

k = BC(m)
k [B being the

bias matrix and C(m)
k being the generating matrix] and whose

magnitude is determined by �
(m)
k [36].

1) Reward Function Design and Assessment: Since it
is reasonable to assume that the best acoustic localization
performance would be reached when the cluster of sensing
agents has maximum sensitivity in the region where the target
is expected to be found, we define the reward function as

fk = f
(Xk,Yk, δw,k(·)

) = |Xk ∩ Yk|
NX ,k

·
∑

r∈(Xk∩Yk)

δw,k(r)

(20)

where Xk is the target prediction set at time k, |A| denotes
the cardinality of the set A, NX ,k = |Xk|, Yk is the cluster
sensing region, and δw,k(r) is the sensitivity pattern. Note that
the sensitivity function δw,k(r), if not weighted by the average
distance between r and the sensors, would increase its value
as the sensors move far away due to the increment of the
number of intersecting hyperbolas in r. When referring to a
target prediction set with circular symmetry, this would imply
that a circular sensor cluster surrounding the target prediction
set would increase its sensitivity with respect to the target as
the sensors move far away, which would be unrealistic. By
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Fig. 7. Acoustic map related to a circular cluster configuration, for different
radii.

weighting the sensitivity pattern by the inverse of the distance
from the acoustic target, we take into account also the sound
intensity attenuation, which has the effect of compensating the
increment of intersections. Fig. 7 shows the effect of weighting
the sensitivity pattern by the distance.

Next, we should assess the reward function to ensure that
it correctly predicts the localization accuracy of an acoustic
target in terms of a desired performance measure. In other
words, we want the reward function to provide a maximum
for the sensing agents cluster configuration that provides the
smallest localization root-mean-square error (RMSE) or largest
accuracy rate (AR). In that case, we might effectively use the
reward function in an iterated positioning procedure instead
of the actual localization process, which is known to be com-
putationally intensive. Since the reward function is built upon
the sensing agents cluster sensitivity function, the search for
its maximum in terms of sensing agent positions, for a given
target prediction set, has no simple analytical solution. We
thus conducted numerical investigations to gain insights on
this issue for prediction sets of circular shape. We provide in
Fig. 8 an analysis conducted on a circular cluster having cen-
ter equal to that of a static prediction circular set, in which the
target source is randomly positioned at each new repetition of
the experiment. The localization step was repeated on 100 ran-
dom source positions within the circle, for each cluster radius
tested, that is, 20 samples in the range [0.01, 1] m, when the
target prediction set radius was set to 0.2, 0.3, 0.4, 0.5, and
0.6 m. It can be seen how the localization RMSE with this
circular symmetry setting is lower on average when the sen-
sors are positioned on the circumference of the prediction set,
and how the reward function has a maximum on that value.

2) Iterative Cluster Optimization and Target Tracking
Algorithm: At each new processing frame, the acoustic target

Fig. 8. Analysis of the reward function properties compared to acoustic local-
ization performance, for a circular prediction set and target sources randomly
positioned within the circular set.

gets localized through the microphone cluster, using its present
configuration. Next, the best positions that the sensing agents
should occupy at the next frame, given the prediction of
the possible states of the target, are computed through the
iterative optimal positions search. During the agents optimal
positions search, the exploratory displacement of the mth sens-
ing agent requires that Y , δw(r), and the reward function f , are
updated given the new cluster configuration. We will call these
updates Y(m), δ

(m)
w (r), and f (m), respectively. The general pat-

tern search algorithm (GPSA) used for the cluster optimization
is described in Algorithm 1.

3) Positioning Algorithm Assessment in Static Conditions:
The cluster geometry optimization algorithm was first assessed
with respect to a number of target prediction sets with differ-
ent shapes and in static conditions, that is, when the target
prediction set is not moving during position adaptation. The
iterative procedure is thus aimed at finding the best sensing
agent positions in terms of the reward function. Fig. 9 illus-
trates three examples in which the agents are adapted to a
circular shaped set with radius 0.5 m (first row), and to two
noncircular sets resulting from the union of circular sets with
different radii (second and third row). In Fig. 10, the reward
function is shown for each case.

The fact that the heuristic search leads to this particu-
lar arrangement where the sensors lie around the prediction
region might sound obvious, but it is not. As said before,
the minimization of (20) depends on the rather complex spa-
tial distribution of hyperboloid intersections generated by the
sensors (even for the relatively small number of sensors con-
sidered here). A rigorous analysis of the hyperbolic solution
for sensor arrays has been conducted in a few cases, showing
that the area in which the hyperboloid intersections concentrate
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Algorithm 1 Target Tracking and Sensing Agents Position
Search Algorithm (GPSA)

M: number of sensing agents
r(m)

0 , m = 1, . . . , M: initial positions

Initialize C(m)
0 and �

(m)
0

for k = 1, 2, . . . do
Estimate the target position r̂s

k by eq. (6)
Compute the target prediction set Xk+1
Compute f (0)(k + 1) by eq. (20)
for m = 1 to M do

Compute move u(m)
k ∈ �

(m)
k P(m)

k
Compute r̂(m) by eq. (1)
Compute Y(m)

k+1, and δ
(m)
w,k+1(r), due to changed positions

Compute f (m)(k + 1) using Y(m)
k+1, and δ

(m)
w,k+1(r)

if ρ
(m)
k = (f (k + 1) − f (m)(k + 1)) < 0 then

r(m)
k+1 = r̂(m)

else
r(m)

k+1 = r(m)
k

end if
Compute C(m)

k+1 and �
(m)
k+1

end for
f (k + 1) = f (M)(k + 1)

end for

Fig. 9. GPSA optimization with respect of a circular target region with
radius 0.5 m (first row), of a target region given by the union of three aligned
circular regions (second row), and of a target region given by the union of
three nonaligned circular regions (third row). Left, middle, and right plots are,
respectively, the initial sensing agent positions, the final agent positions after
15 GPSA iterations, and the sensing agent paths during optimization.

can be localized in the central region of triangular arrays, as
in [38], or of square arrays, as in [39]. However, to the best of
our knowledge, no general analytical description of the spatial
pattern of the intersections is already known, nor it is trivial
to derive, even for simple symmetric array shapes. However,
it is known that for each pair of acoustic sensors in a network,
its higher TDOA resolution area is the (cone-shaped) region
perpendicular to that pair, and the resolution decreases as the

Fig. 10. GPSA optimization procedure: reward function at each iteration
for the three cases (single circular region with radius 0.5 m, union of three
aligned circular regions, and union of three nonaligned circular regions).

Fig. 11. Example of a target tracking sequence obtained through GPSA
(selected frames): the target is represented by a black dot, its trajectory by
a black continuous line, the target prediction set by the blue circle, and the
sensing agent positions by the black crosses.

incidence angle increases (see [40]). It is then intuitive that,
for a round-shaped sensed region, the best sensor arrangement
that allows each pair to look frontally at the region of interest
is an equally spaced, symmetric arrangement around that area.
It is thus reasonable that, if the sensed area is a disk, a circular
arrangement of the sensors is obtained.

4) Sensor Cluster Reconfiguration During Tracking:
Finally, Fig. 11 illustrates the result of the tracking and of the
cluster dynamic reconfiguration obtained through the GPSA
algorithm when the acoustic target moves through the search
region with a linear motion first, a turn to the right, and a
linear motion at the end.

5) Low Complexity Positioning Algorithm for Tracking: It
has been shown in Section III-C3 that when the prediction
set has circular symmetry, the iterative positioning procedure
converges to equally spaced positions on the prediction set cir-
cumference. This suggests that a low-complexity alternative to
the tracking and positioning algorithm sketched above would
be to drive the sensing agents on a set of equally spaced posi-
tions on the circumference of the next frame prediction set.
This simplified tracking algorithm, formalized in Algorithm 2,
will be also assessed in the next sections when the exper-
imental assumptions will imply that the prediction sets are
circular.

In a real-time tracking application, the algorithms presented
require that three main tasks are carried out at each analysis
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Algorithm 2 Low Complexity Tracking and Mobile Agent
Positioning Algorithm

M: number of sensing agents
r(m)

0 , m = 1, . . . , M: initial positions
for k = 1, 2, . . . do

Estimate the target position r̂s
k by eq. (6)

Compute the target prediction set Xk+1
Move the sensing agents to equally spaced positions on the
circumference of the target prediction set Xk+1

end for

frame (whose duration is typically in the range of 10−30 ms),
namely the acoustic target localization, the computation of
the target prediction set, and the computation of the agent
positioning. Acoustic localization, if performed through effi-
cient methods as the ones mentioned earlier, can be normally
achieved within a fraction of a typical analysis frame. Since
the localization is performed on the data collected during the
previous frame, localization estimates are in general assumed
to be delayed by the duration of one frame. The computa-
tion of the target positions forecast and prediction sets is also
computationally light. The computational cost of agents posi-
tioning, on the other hand, depends on the strategy adopted
and may vary greatly. When using the low complexity posi-
tioning algorithm, it is safe to assume that all three tasks can
be completed within one typical analysis frame using standard
computing hardware. Using the time consuming GPSA algo-
rithm in real time, on the other hand, might turn to be feasible
only under specific hardware requirements.

IV. EXPERIMENTAL RESULTS

In this section, we report the results of experiments related
to the 2-D localization and tracking of a sound-emitting target
moving in a noisy and reverberant environment. The sensed
acoustic data are generated through the numerical simula-
tion of the acoustic propagation originating from an acoustic
point source moving in the environment, and of the sensing
agents displacement and signal acquisition. The sensing agents
were allowed to move in the XY plane, while their height
was kept constant at 1.7 m. We compare the performance of
the proposed reconfiguration-based localization with a con-
ventional SRP-PHAT localization operated through a fixed
microphone linear array [28], and with the sparse sensor con-
figuration method based on genetic algorithm optimization
reported in [11]. The former method, although quite simplis-
tic if compared to the one proposed here, is, however, still in
use today in many practical situations where ASL is involved,
and thus is a useful reference benchmark. The latter, a state-of-
the-art sparse sensor configuration method, is more similar to
ours, as the positioning is determined based on heuristic algo-
rithms aimed at minimizing a fitness function built on a set
of properties of the beampattern of the sensor network. With
respect to the method we propose, however, it only relies on
shape characteristics of the sensors beampattern (i.e., the main
lobe amplitude and the greatest secondary lobe amplitude)
and it does not exploit the target prediction sets. Localization
performance is reported in terms of AR and RMSE for dif-
ferent sensing cluster reconfiguration strategies, for different

values of the SNR and reverberation time (RT60), and for
different parameter settings of the target and mobile agent
dynamics. Note that we have made the assumption that the
noise corrupting the data from the acoustic source is spatially
uncorrelated. More complex acoustic scenarios might be con-
sidered in principle, for example, in which other concurrent
clutter signals are present as well. In such cases, it might be
necessary to address the problem with a multisource local-
ization approach, integrated with a clutter signals rejection
method.

The localization performances are evaluated by means of
Monte Carlo simulations, using ten run trials for each differ-
ent condition under test. For each run trial, the tracking is
conducted for several subsequent frames, and the localization
performance measure for each different condition is averaged
over all the analysis frames in the ten run trials. To simulate
reverberant audio data due to the room acoustics, an image
source method (ISM) model was used [41]. The room dimen-
sions in the simulations were set to x = 9 m, y = 6 m,
and z = 3 m. The tests were conducted with different SNR
values, which were obtained by adding mutually independent
white Gaussian noise to each channel. A cluster of 5 sens-
ing mobile agents was used. A speech signal was used as
acoustic emission of the target, and its position in the search
area was updated at each iteration using trajectories generated
by feeding the dynamical model in (2).

The audio sampling frequency was set to fs = 44.1 kHz,
and the signal analysis frame length was set to 4096 samples.
The spatial resolution of the search grid was set to 0.01 m,
and the sensitivity map resolution to 0.25 m.

Three different scenarios were investigated. First, we refer
to a situation in which the target compatibility sets can be
represented by circular 2-D regions, with constant radius over
time. This condition can represent a situation in which the
target dynamics is known and do not change over time (i.e.,
the λ parameter is constant), and the propagation time taken
by the acoustic wave to propagate from the acoustic source to
the sensors is also constant. Then, we look at possible situa-
tions in which the target compatibility sets are still circular,
but their radius may vary in time. This behavior may represent
the case in which acoustic propagation time from the source to
the sensor cluster changes consistently from frame-to-frame,
as it can be the case of sensing agents rapidly approaching
(or receding) the target. Third, we look at a case in which the
target compatibility sets should be represented by noncircular
shaped regions, as it is the case of λ parameter assuming non-
constant values in a finite range [λm, λM] (see the discussion
referring to Fig. 5).

A. Circular Target Prediction Sets, Constant Radius

If we assume that the target dynamics is known and do not
change over time, and if we neglect the propagation delays
due to the changing target-cluster distance, it is reasonable
to assume that the prediction set of the possible target posi-
tions can be modeled as a circular set with constant radius
depending on its dynamics parameter λ and on the maxi-
mum possible input force. By further assuming that the target
dynamics is known (or can be estimated), we report here
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Fig. 12. Acoustic tracking and agents cluster reconfiguration. First row:
control strategy C0 (static ULA); second row: strategy C1 (translating ULA);
third row: strategy C4 (reconfigurable sensor cluster, with sensing agents
positioning provided by Algorithm 2).

the localization performance of the proposed sensitivity-based
reconfiguration and tracking scheme. The results are discussed
by referring to the following control strategies: C0 [static
uniform linear sensor array (ULA)], where the array linear
geometry and its position are hold constant; C1 (translating
ULA sensor array), where the array linear geometry is con-
stant while the array can translate (although not rotate) along
x and y-axes; C2–C4 (reconfigurable sensor network), where
the sensors are carried by robotic mobile agents whose posi-
tion can change according to some sensing agents positioning
strategy. In this section, strategy C2 refers to agent positioning
driven by the GAs-based strategy for sensor network configu-
ration [11], strategy C3 refers to agent positioning through
the GPS Algorithm 1, and strategy C4 will refer to agent
positioning through Algorithm 2. We stress again that strate-
gies C0–C2 do not make any use of the sensitivity map of
the array and of the circular prediction sets (although these
are included in the illustrations for comparison purposes),
whereas strategies C3–C4 do exploit such features for agent
positioning.

Fig. 12 illustrates three different sensor cluster control
strategies: for each row, the plots report the array configuration
and position, and the corresponding sensitivity pattern, during
the tracking of an acoustic target moving along a piecewise
linear trajectory.

Table I reports the parameters related to the dynamics of
the moving objects in the simulation.

The results in Fig. 13 show the RMSE and AR of the
localization performance for the different control strategies,
averaged on ten repetitions each (the box plots show the
median, the lower and upper quartiles, and the lower and
upper extremes). Environmental conditions were set to SNR
= 5 dB and RT60 = 0.7 s (i.e., moderately adverse), and the
parameters related to the sensor motion dynamics were set

TABLE I
MOTION-RELATED SIMULATION PARAMETERS

Fig. 13. Localization performances for the different control strategies: static
linear array (C0), translating linear array (C1), reconfigurable circular sensor
cluster by GAs-based algorithm (C2), reconfigurable circular sensor cluster by
GPSA (C3), and reconfigurable sensor cluster by prediction circle targeting
(C4). Environmental conditions are set to SNR = 5 dB, RT60 = 0.7 s,
and mobile agent dynamics are set to Fmaxmic = 6Fmaxtarget and λmic =
100λtarget.

Fig. 14. DOP referred to the prediction disk, for the different agents
positioning strategies.

to Fmaxmic = 6Fmaxtarget and λmic = 100λtarget. Moreover,
the input force magnitude used in this experiment to drive
the target was constrained to not exceed Fmaxtarget/2, so that,
at each new simulation frame, the actual target position falls
within the circular prediction set, far from its boundary. This
is to avoid to deal, in this first experiment, with the problem
of localization error propagation from one frame to the next,
causing the target to repeatedly fall outside the prediction set.

The accuracy of localization also depends on the limited
number of TDOA values that a given spatial configuration of
sensors yields, and a common way to relate the geometrical
error due to the position of transmitter and receivers is pro-
vided by the dilution of precision (DOP) measure [42]. Since,
in our method, the source is searched in a prediction region, it
is interesting to look at the DOP related to this region for each
different strategy. Fig. 14 shows that the strategies in which
the sensors follow the target are the most effective in terms of
the average DOP within the prediction disk.

B. Factors Impacting on Performance

There are other factors that may impact on the localization
performance, that is, the mobile agent dynamics, their number
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and initial positioning with respect to the target, and the envi-
ronmental acoustic conditions. In the supplementary material
accompanying this paper, we show how the proposed method
performs with respect to these factors.

C. Doppler Effect

In an acoustic setting, when either the source, the receiver,
or both move with respect to the other, the receiver may
observe a change in the frequency of the source due to the
Doppler effect. The frequency shift is a function of the rela-
tive velocity of the two along the source–receiver axis, and is
perceived as an increase in frequency when the source and
the receiver move toward each other and as a decrease in
frequency when they move away from each other. In the con-
text of ASL, the Doppler effect can be a problem when the
source and/or the receiver move, as pointed out for example
in [43], because it may alter the phase relations among the sig-
nals at the array, for example, when a different Doppler shift
is observed at each sensor. However, it can also be exploited
constructively, as it may provide useful cues to estimate the
velocity of an acoustic source in motion [43] or even to local-
ize it [44]. We briefly discuss here the case of a possibly
negative impact on the localization performance and how this
problem can be addressed. We, therefore, focus on a specific
condition in which this effect can be highlighted, specifically
when a different Doppler shift is observed at different chan-
nels of the array. To achieve this, we refer to a static linear
uniform array, sufficiently large so that a source that moves
parallel to it from left to right is seen to move away from
the sensors to the left and to approach from the sensors to
the right. The Doppler effect at each channel of the array
is simulated by first computing the relative velocity of each
receiver–source pair projected along their axis, by computing
the related frequency shift, and by finally processing the sig-
nal through an interpolation operation as the one suggested
in [45].

The results of the simulation are reported in Fig. 15 in which
we compare, for different target velocities, the static ULA
array with Doppler simulation (a), the static ULA array when
the Doppler effect is not taken into account (b), and the recon-
figurable circular agent cluster driven by strategy C4, with
Doppler simulation (c). It can be seen how the Doppler effect
introduces a degradation in the localization performance when
the target-sensor relative velocities are different for each chan-
nel, as in the static ULA case with nearby moving source (a).
In the agent cluster strategy, the simulated Doppler effect has
a limited impact since it affects the localization only in the
first few frames, when the cluster has not yet reached the
prediction circle. After this time interval, since the velocity of
the sensors approaches the velocity of the target, the Doppler
effect vanishes. We finally note that in the other examples
proposed in this paper, the Doppler effect has no relevant
impact, since the source–receivers relative velocities are either
all the same (static ULA array) or extremely low (reconfig-
urable array following the source). In any case, the Doppler
simulation operation is an invertible process, so that in prin-
ciple it can be used to address Doppler shift compensation in
those situations that may require it.

Fig. 15. Localization performance when the Doppler effect is taken into
account.

Fig. 16. Mobile agents cluster reconfiguration when modeling the loss of
sensors data in a processing frame. Frames 3, 5, and 7 are shown. Data loss
occurs at frame 5 (middle plot), and the circular prediction set radius increases
accordingly to account for a doubled prediction interval.

Fig. 17. Localization performances when the data are lost at frames 6, 11,
12, 13, and 15. Average error for static linear array (C0), translating linear
array (C1), reconfigurable circular cluster (C4), and reconfigurable cluster
with adaptive radius (C4a). Red plus signs are outlier data points.

D. Circular Target Prediction Sets, Time-Varying Radius

In this section, we investigate a scenario involving time-
varying prediction set radii, which can account for the possi-
bility of data loss at certain frames. In these conditions, the
prediction set of the possible target positions can be modeled
as a circular set whose radius might become larger when data
loss happens, to compensate for the longer time interval on
which the target position must be predicted (e.g., two frames
instead of one). Fig. 16 illustrates such a situation with an
example in which data loss occurs at frame 5 and consequently
the circular prediction set radius increases temporarily.

A set of numerical simulations were conducted in which
data are lost at frames 6, 11, 12, 13, and 15. Fig. 17 shows the
average error for different array positioning strategies, that is,
static linear array (C0), translating linear array (C1), reconfig-
urable circular sensing cluster (C4), and reconfigurable cluster
with adaptive radius (that we will refer to as C4a). It can
be seen that, when the data loss occurs, a reconfigurable cir-
cular cluster with adaptive radius (C4a) provides the best
performance.
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Fig. 18. Mobile agents cluster reconfiguration when modeling the uncertainty
of target dynamics through the union of circular prediction sets.

Fig. 19. Localization performances when different positioning strategies
are adopted in case of uncertainty on the target dynamics. T0: sensing agents
positioned on the circle corresponding to the mean target λ; T1: sensing agents
positioned on the minimum circle covering the union of target prediction
circles; and C3: sensing agents positioned through GPSA iterative algorithm.
Red plus signs are outlier data points.

E. Noncircular Target Prediction Sets

We finally report the localization and tracking performance
in the case of target uncertain dynamics, that is, when we
assume that the parameter λ of the target falls within a known
range. In this case, as we have discussed before, the prediction
set of the possible target positions can be modeled as the union
of the circular sets corresponding to λ values falling in the
assumed range. Fig. 18 shows an example of such setting,
when the damping parameter λ is assumed to vary in the range
[4, 48], and the prediction set is modeled through the union of
three circular sets corresponding to λ equal to 4, 20, and 48.

It is worth noting that, in this case, no simple mobile
agent positioning strategy is easily found as the prediction
set resulting from the union of circular sets is in general not
a circular set, nor it is necessarily symmetric. The adoption
of an iterative optimization strategy is thus justified in this
case. Fig. 19 reports the performance of the GPSA iterative
optimization (C3) compared to a trivial strategy T0 where the
sensing agents are positioned on the circle corresponding to
the mean value of the allowed λ range, thus resulting in possi-
ble prediction errors, and to a strategy T1 in which the sensing
agents are positioned on the minimum circumference cover-
ing the union of the circular sets related to the dynamical
parameter range assumed for the target.

The strategies T1 and C3 outperform strategy T0, as
expected, however, strategy C3 based on iterative optimization
does not seem to provide substantial advantage with respect to
strategy T1, even though the latter results in a sensor network
configuration that fits the target prediction set less accurately.

V. CONCLUSION

The problem of controlling a reconfigurable cluster of
mobile agents with the aim of tracking an acoustic target in

noisy environments has been discussed. This paper has been
focused on the exploitation of the target position estimation
and forecasting and of the acoustic sensitivity pattern of the
cluster, to drive the positioning of the sensing agents of the
cluster at each tracking step. Different sensing agent position-
ing strategies have been proposed and assessed through numer-
ical simulations. Moreover, the application of the proposed
tracking strategies has been explored in different situations that
translate into different prediction set characteristics, includ-
ing circular and noncircular shape, and time-variability of the
shape during tracking. Experimental results have shown sub-
stantial performance improvements in the target location and
tracking performance with respect to conventional fixed-array
acoustic localization.

A number of issues remain to be investigated in the future
studies. These include the collision avoidance between tar-
get and sensing agents, and the trajectory planning to avoid
collisions with obstacles in the environment.

Finally, we note that this strategy can in principle be applied
to a multitarget tracking problem by setting the prediction
set to be sensed by the sensor cluster as the union of the
prediction sets of the different targets, and by then operating
a conventional multisource acoustic localization in that region.

APPENDIX

PROOF OF PROPOSITION 1

To get an analytical formula for the estimation set, given
the initial position and speed, we note that, in view of the
superposition principle for linear systems, the predicted state
is achieved due to the superposed effect of: 1) the uniform
motion of the agent starting from its actual initial position at
its actual initial speed, with no force acting on it f = 0 (this
provides the center of the prediction circle ck+1) and 2) the
motion due to the action of the force, starting from zero initial
position and with zero speed.

Consider the Laplace transform of (2) to get

s2r(s) + λsr(s) = f(s) (21)

and therefore

r(s) = 1

s(s + λ)
f(s). (22)

The inverse Laplace transform can be bounded in norm as
follows:

‖r(T)‖ =
∥∥∥∥
∫ T

0

1

λ

[
1 − e−λτ

]
f(t − τ)dτ

∥∥∥∥
≤

∫ T

0

1

λ
|1 − e−λτ | ‖f(t − τ)‖dτ

≤ F̄
∫ T

0

1

λ

[
1 − e−λτ

]
dτ = λT − 1 + e−λT

λ2
F̄ = ρ.

This expression of the radius is nonconservative (optimal).
Indeed the target can apply a constant force f of maximum
amplitude F̄ to get ‖r(T)‖ = ρ, exactly, although we can-
not predict the direction. For smaller forces ‖r(T)‖ will be
smaller. We conclude that the target will be necessarily inside
C(ck+1, ρ), but its position can be any point in this circle and
we cannot predict it.
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Speed Estimation Error: It is possible to compute an esti-
mation of the velocity from the acceleration, by using an
integrator filter with a single pole in −1/τ :

v̂(s) = s

1 + τ s
· 1

s(s + λ)
f(s). (23)

By comparing the estimated velocity with the exact velocity,
given by

v(s) = s · 1

s(s + λ)
f(s) (24)

we have the estimation error δv(s) = v̂(s) − v(s):

δv(s) =
(

s

1 + τ s
− s

)
· 1

s(s + λ)
f(s)

= −τ s

1 + τ s
· 1

(s + λ)
f(s). (25)

This estimation procedure can be easily transposed in the
discrete-time domain, using the Euler approximation.

An analytic expression can be derived for the set of admis-
sible values of the estimated velocity. In the time domain,
the product of two functions becomes the convolution of the
respective inverse Laplace transforms

δv(T) =
∫ T

0
P(σ )f(t − σ)dσ (26)

where P(t; λ, τ) = L−1{(−τ s/1 + τ s) · (1/(s + λ))}. Taking
the absolute value, we have that

|δv(T)| ≤
∫ T

0
|P(σ )||f(t − σ)|dσ ≤ F̄

∫ T

0
|P(σ )|dσ = V̄.

(27)

Finally, by computing the integral, it is possible to obtain an
upper bound for the speed estimation error.
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