Network-decentralised optimisation and control:
an explicit saturated solution

Franco Blanchini ?, Daniele Casagrande b Filippo Fabiani ¢, Giulia Giordano d
Raffaele Pesenti ©

aDipartimento di Matematica, Informatica e Fisica, University of Udine, Via delle Scienze, 206 - 33100 Udine, Italy
(e-mail: blanchini @uniud.it)

bDipartimento Politecnico di Ingegneria e Architettura, University of Udine, Via delle Scienze, 208 - 33100 Udine, Italy
(e-mail: daniele.casagrande @uniud.it)

¢Department of Information Engineering, University of Pisa, Via G. Caruso, 16 - 56122 Pisa, Italy (e-mail: filippo.fabiani@ing.unipi.it)

dDelft Center for Systems and Control, Delft University of Technology, Mekelweg 2 - 2628 CD Delft, The Netherlands
(e-mail: g.giordano@tudelft.nl)

¢Dipartimento di Management, Universita Ca’ Foscari Venezia - Cannaregio 873 - 30121 Venezia, Italy (e-mail: pesenti@unive.it)

Abstract

This paper proposes a decentralised explicit (closed-form) iterative formula that solves convex programming problems with linear equality
constraints and interval bounds on the decision variables. In particular, we consider a team of decision agents, each setting the value of a
subset of the variables, and a team of information agents, in charge of ensuring that the equality constraints are fulfilled. The structure of
the constraint matrix imposes a communication pattern between decision and information agents, which can be represented as a bipartite
graph. We associate each information agent with an integral variable and each decision agent with a saturated function, which takes the
interval bounds into account, and we design a decentralised dynamic mechanism that globally converges to the optimal solution. Under
mild conditions, the convergence is shown to be exponential. We also provide a discrete-time algorithm, based on the Euler system, and
we give an upper bound for the step parameter to ensure convergence. Although the considered optimisation problem is static, we show
that the proposed scheme can be successfully applied to find the optimal solution of network-decentralised dynamic control problems.

1 Introduction and Motivation

The complexity of large-scale systems, such as power dis-
tribution systems, water systems distributed in space, logis-
tics and transportation systems, leads to severe difficulties in
the definition of centralized optimisation and control poli-
cies, which typically arise due to systems’ dimensionality,
information structure constraints, uncertainty, and delays,
and motivate the interest in decentralized optimisation and
control (see, e.g., Bakule 2008, 2014). In recent years, this
interest is possibly increased given the necessity of making
strategic large-scale systems resilient to failures and attacks.

Distributed and decentralised optimisation and control traces
back to the 60s. Sekine (1963), for example, proposed a de-
centralised optimisation setup in which the cost functional
is the sum of local functionals depending on local vari-
ables, each associated with a decision agent, and a single
coupling linear constraint is considered. This scheme was
adopted in many subsequent contributions (see, for instance,
Chang, Nedi¢ & Scaglione 2014; Kozma, Conte & Diehl
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2015; Chatzipanagiotis & Zavlanos 2016 and the references
therein). Cherukuri & Cortés (2016) proposed a slightly
different setup that considers a set of coupling linear con-
straints. In particular, the constraint (coefficient) matrix is
assumed block-diagonal and the proposed algorithm exploits
its structure. Other contributions consider agents that reach
an agreement on the decision variables (Terelius, Topcu &
Murray 2011; Falsone et al. 2017; Lin, Ren & Farrell 2017;
Mokhtari, Ling & Ribeiro 2017): equality constraints are
introduced for the decision variables associated with the
agents. Several techniques were proposed to solve optimisa-
tion problems within the mentioned schemes: alternating di-
rection method (Boyd et al. 2011; Makhdoumi & Ozdaglar
2017), nonuniform gradient gains (Lin, Ren & Farrell 2017),
sub-gradient methods (Johansson, Rabi & Johansson 2009;
Nedi¢ & Ozdaglar 2009), dual averaging (Duchi, Agarwal &
Wainwright 2002; Nedié, Lee & Raginsky 2015), extremum
seeking control (Dougherty & Guay 2017). Bagagiolo et al.
(2017) recently introduced a mean field game approach to
routing problems for interacting agents distributed on a net-
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work and gave an explicit expression of an optimal decen-
tralised control via a state-space extension technique.

In this paper, we consider a convex programming problem
with linear equality constraints, and upper and lower bounds
on the decision variables. The optimisation problem, and
in particular the connection between agents, is seen from
a novel perspective that generalises previous schemes. The
set of constraints, in fact, is generic and not related to any
kind of predefined “coupling” between the decision vari-
ables, while the sparsity structure of the constraint matrix (a
block matrix) imposes a communication pattern between two
kinds of agents: decision and information agents. A decision
agent is associated with each column (or block-column) of
the constraint matrix, while an information agent is associ-
ated with each row (or block-row) of the matrix. Decision
agents choose the value of their subsets of free variables,
under proper “bounding-box” constraints, while information
agents ensure that the linear equality constraints are satis-
fied. Each decision agent can communicate only with the
subset of the information agents corresponding to non-zero
blocks in its block-column. It cannot communicate with the
other decision agents. Conversely, each information agent is
aware only of the actions of the decision agents that corre-
spond to non-zero blocks in its block-row. It cannot com-
municate with the other information agents.

The proposed scheme is embedded within the theoretical
framework of system dynamics: we provide an explicit
(closed-form) expression of the iterative formula to get the
solution, in a feedback form. In particular, we design a
dynamic decentralised mechanism, described by an explicit
formula, which asymptotically solves the problem of mini-
mizing the cost }; f;(u;), where f; are convex functions, in
the presence of lower and upper bounds on u; and under the
linear constraint Bu = w, where B is a block-structured ma-
trix. The key features of the scheme are summarised next.

e Each information agent is equipped with an integral vari-
able, expressing the violation of a subset of the constraints.
The convergence of this integral variable ensures that the
corresponding constraints are asymptotically satisfied; its
dynamic equations only depend on the actions of the de-
cision agents to which the information agent is connected.

e Each decision agent chooses its current action based on
the integral variables of the information agents to which
it is connected. An explicit, closed-form iterative formula
given by a saturation function is provided.

e The dynamical solution scheme works in continuous time
and its convergence to the optimal solution of the opti-
misation problem is proven by exploiting recent results
from network-decentralised control (Bauso et al. 2013;
Blanchini et al. 2016).

e From the continuous-time scheme, an iterative discrete-
time algorithm is obtained by adopting the Euler discreti-
sation method with step parameter 7 > 0. Convergence of
the algorithm is ensured if 0 < T < Tyuqy < 2/||B||*, where
|IB|| denotes the Euclidean norm of matrix B.

e Under mild conditions, the algorithm converges exponen-
tially (i.e., “linearly” in the optimisation jargon).

e When the constraint matrix B is uncertain, a reduction of
the step parameter bound 7, is typically required.

e Although the scheme is thought for static problems, it
is successfully applied to network-decentralised control
problems (Iftar 1999; Iftar & Davison 2002; Blanchini,
Franco & Giordano 2013, 2015), to derive optimal control
strategies that are inherently decentralised.

2 Main Assumptions and Problem Statement

We consider the constrained optimisation problem

min ’Zn:fi(ui)

ue? 4 @9)
st. Bu=w,

where functions f; : % — R, matrix B € R"*", with m > n,
and vector w € R" are given, and where the feasible set is

U={ueR" :u; <u;<uf, fori=1,....m}, (2)

for assigned lower and upper bound vectors #~ and u™. To
find the solution u* of (1)—(2), we look for a decentralised
dynamic mechanism that generates a function u(z) such that

}Lrilau(t) =u". (3)

We call decentralised solution any solution of the optimi-
sation problem (1)—(2) achieved in a decentralised manner.
Throughout the paper, we denote by int%/ the interior of %
and we make the following, standard assumptions.

Assumption 1 Foralli=1,...,m, the function f; is strictly
convex. In particular, it is twice continuously differentiable

2
and there exists a constant |1 > 0 s.t., V), dd?fi(x) > U

Assumption 2 Matrix B € R is full row rank.

Assumption 3 (Slater’s constraint qualification) There
exists u € int% for which Bu = w.

Assumption 2 is necessary to have a proper optimisation
problem, where the constraints Bu = w define a non-empty
subspace and none of them is redundant. Assumption 3 (cf.
Boyd & Vandenberghe 2004) guarantees that the problem
is strictly feasible, so that infinitesimal perturbations on w
cannot lead to unfeasibility. However, in general the optimal
solution #* may not be in int% .

We aim at solving problem (1)—(2) in a decentralised man-
ner, by considering the interplay between a set .# of de-
cision agents and a set .4 of information agents. Decision
and information agents communicate according to a bipartite
graph corresponding to the block structure of the sparse ma-
trix B (see, e.g., the graph in Fig. 1, associated with the con-
straint matrix in Example 2.1). Each decision agent j € .4
iteratively fixes the tentative values of the m; elements of a
sub-vector u; of u and each information agent 1 € 4" ver-
ifies whether a subset %), of n;, equality constraints of the
system ¢ : Bu = w are feasible for the values fixed by the
decisions agents. More formally,

e each decision agent j € . is associated with a subset
of m; consecutive indices in the set ., = {1,...,m}; the



Information Agents

Decision Agents
Figure 1. The information-decision graph for Example 2.1.

agents in .# partition .%,, so that } je. Mj = m;

e each information agent i € .4 is associated with a subset
of nj, consecutive indices in the set .%, = {1,...,n}; the
agents in .4 partition .%,, so that Y ,c 4 n, =n.

Accordingly,

e vector u is partitioned into |.#| sub-vectors u; of dimen-
sion mj, for j € A

e the constraint set € is partitioned into |.#’| subsets %,
of cardinality 7, while vector w is partitioned into |4/
sub-vectors wy, of dimension ny, for h € A,

e matrix B is partitioned into block-columns By, ; € R"*"/,
each associated with a decision agent j € .#, and into
block-rows By ) € R™>*™ each associated with an infor-
mation agent i € .4"; these partitions identify |.4/| X |.Z|
blocks By, j) of dimension nj, X m;, for h € N, jEM.

Remark 2.1 Since each decision (information) agent can
be associated with more columns (rows) of matrix B, in
generaln# | AN | and m # |.#|. Hence, m > n does not imply
that there are more decision agents than information agents.
Also, since we are considering partitions, each column (row)
of B is associated with a single decision (information) agent.

Each information agent 4 € .4 aims at enforcing the con-
straints 6, if these constraints are not fulfilled, it imposes
an additional penalty, proportional to B, . u(t) — w, to the
cost currently paid by the decision agents. Hence, at each
time ¢ > 0, the decision agents have to pay an overall cost
given by the sum of the “basal” cost Y./ f;(#;) and the cur-
rent penalties imposed by the information agents.

B is a structured matrix, with structural zero-blocks. Agents
communicate according to the following rules.

e Each agent can communicate with some agents of the
other group, but with no agents of its own group.

e Agent h € A and agent j € .# are connected (respec-
tively not connected) if the block By ;) of matrix B is a
non-zero (respectively zero) matrix.

e Each decision agent can communicate only with the infor-
mation agents connected to it (corresponding to non-zero
blocks in its block-column); each information agent can
communicate only with the decision agents connected to
it (corresponding to non-zero blocks in its block-row) and
knows the value of the corresponding components of w.

The connections among decision and information agents can
be represented by a bipartite information-decision graph,
where each edge connecting an information agent h € .4
and a decision agent j € .# corresponds to a non-zero block

B, ;) of matrix B.

Example 2.1 Consider the following partitioned matrix B
and vectors u and w.

u
Bi1 012 Biz Bis 045 wi
u
051 0 Byz 004 O w
g |02 022 B2z 024 0o P P 2w
031 032 033 B3y Bss w3
Uy
By1 By 043 Bag 045 Wy
LU5 ]

We have || =4 and |.#| = 5. The corresponding graph
is reported in Fig. 1. The structure of B in (4) shows that,
for instance, decision agent 1 can communicate only with
information agents 1 and 4; information agent 1 can com-
municate only with decision agents 1, 3 and 4.

We are now ready to state the problem faced in the paper.

Problem 1 Design an algorithm that allows decision and
information agents to solve the optimisation problem (1)—(2)
in a decentralised manner, so that

o cach decision agent j € M sends the current value of the
sub-vector u; only to the information agents connected to
it;

e cach information agent h € N sends the current slack
values B, .yu —wy, of the associated constraints ¢}, only
to the decision agents connected to it.

In the next section, the concept of saturation function is in-

troduced and used in the explicit expression of the proposed

decentralised mechanism to solve problem (1)—(2).

3 Preliminaries

In view of Assumption 1, the objective function in (1) is
strictly convex and continuous in the whole compact and
convex domain ¥ = {u € % : Bu= w}. Hence, an optimal
solution u* always exists and is unique (Boyd & Vanden-
berghe 2004, pp. 302-304).

Given the bounds (2), the saturation function saty [-] : R™ —
R™ is component-wise defined as follows (see Fig. 2):

u;, if oy <uy,
A . —
sat%[yi}: Yi, if u; S)’zﬁuja
ulﬁ if  yi> ul+
sat[v]
/ v

Figure 2. The saturation function.

Fori=1,...,m, let g; & % be the function derivative of
fi- Assumption 1 implies that g; is strictly increasing, con-
tinuous and differentiable. Hence, its inverse function ¢; 2



g7 ' 1R — R exists and is increasing. We define the vector
function ¢ : R™ — R” mapping y = [y1...ym] €R™ to

) =[0101),92(72),- - I (ym)] - (5)

Lemma 3.1 There exists a vector &* € R" such that
the solution u* of the optimisation problem (1)—(2)
can be expressed as u* = saty|[9p(—B'E¥)] (namely,
ul = saty; [@;(—B"E*)i]). Conversely, given a vector £* € R"
such that

Bsaty [¢(—B EF)] = w, (6)
then u* = saty, [0 (=B E*)] is the solution of (1).

Proof. In the optimisation problem (1), the objective func-
tion is a continuously differentiable, convex function over
the compact and convex domain %/, while the constraints
are defined by continuously differentiable affine functions.
As a consequence, the Karush-Khun-Tucker (KKT) condi-
tions are necessary and sufficient to identify the unique op-
timal solution. If £, A and v denote the vectors of Lagrange
multipliers, these conditions are

i) = 7 OB~ ) A~ o= v

= BTE)+A—vi=0, i=1,..m, (7a)
Bu=w, u <u<u" (7b)
AT —uw)=0, vi(u—u")=0 (Tc)
Av>0 (7d)
u,l,veR", EcR" (7e)

Recalling that g; is strictly increasing, we can rewrite (7a) as
i =g(—(B1E)i+Ai—v) i=1l...m @®)

Since an optimal solution u* exists for problem (1)—(2),
then there also exists a solution (u*,&* A%, v*) satisfying
the above KKT conditions. The next step is to note that, for
i=1,...,m, this solution satisfies

uj = saty, [¢i(—(B"E%))], (9a)
A = max{g;(saty [¢:(—(B"E"),)]) + (BT £%);,0},  (9b)
Vi =max{—(B'&"); — gi(saty [¢:(—(B'£):)]),0}.  (9¢)

Conditions (7)—(8) trivially imply conditions (9), for all
components u; such that u; < uj < uf Indeed, in this
case A = v; =0 and then u} = ¢;(—(BT&*); + A — Vi) =
0:(—(BTE");) = saty[¢:i(—(BTE*);)]. Now, assume that
uf =u; and hence A/ >0 and v; = 0. Then, (8) implies
u; = ¢i(—(BTE*);+A;7). As A7 >0 and ¢; is increasing,
we have ¢i(—(BTE");) < u; = saty[¢i(—(BT £):)] = uf,
that is, condition (9a). Condition (9b) holds as A* =
8i(u; )+ (BT )i = gi(saty; [¢i(— (BT §*)i)]) + (BT £¥); > 0.
Finally, condition (9c) holds as v/ = 0 =max{—(B'&*), —
gi(saty [¢:(—(BT£7),)]),0}. The proof is completed by

observing that a symmetric argument holds if u] = ui+.

Conversely, if £* satisfies the condition (6), then, based on
(9), we can build a solution (u*,£*, A%, v*) that satisfies the

KKT conditions. ]
Lemma 3.2 Let £* € R" be fixed. There exist nonnegative
continuous functions A; : R" — R, i = 1,...,m, such that,
for all z € R”,

saty [9(—B' (E*+2))| —saty [9(—B' (E))] =A(z)(=B2).

where A(z) = diag{A;(z)}. Moreover, |A(2)|| < 1/u, for all
7€ R™, where U is the constant in Assumption 1.

Proof. Let y; : g;(R) — R denote the (non-decreasing) func-
tion defined by y;(-) = saty, (¢;(-)), which is differentiable
almost everywhere since ¢ is continuous and differentiable,
and note that, for any p, g € R,

vi(g+p) —vilg) = Vol l//f(ﬁép)d@] P

where ' is the right derivative of v, since the saturation
function is not differentiable. For all i, y/ = ¢/ when the
saturation does not occur, while l//{ = (0 when it occurs. The
first claim is then proven by defining

M) = [ Wi~ LB ag

Also, since the derivative of ¢; is ¢/ =1/gi=1/f" >0, in
view of Assumption 1, 0 < |A;| < |¢/| =[1/f| < 1/u. W

4 Main Results

This section first introduces a continuous-time, dynamical
mechanism that provides a decentralised solution to the op-
timisation problem (1)—(2). Then, a discrete-time scheme is
proposed to allow for a numeric implementation.

4.1 Decentralised continuous-time approach

Given the sets of agents .# and ./, the decentralised solu-
tion to problem (1)—(2) can be obtained as the steady-state
value u* = lim,_, u(t) generated by the following set of dy-
namic systems.

Information dynamics: any information agent & € A4 is
associated with a dynamic system whose state variable
&, € R™ evolves according to Eq. (10a) below, starting
from an arbitrary initial value &,(0) = &, o;

Decision strategy: any decision agent j € ./ is associated
with a control variable u; € R™J, as in Eq. (10b) below;

Mechanism: the set of dynamic systems evolves according
to the equations

Et) =Y. By juj(t)—wy, VYheN (10a)
je#
Ltj(t) = saty; |fPJ <— Z B(T}l_’j>§h(t)>‘| , Vjed.
heN
(10b)



Remark 4.1 (Network decentralisation). Conditions (10a)—
(10b) allow each of the agents in A and in A to locally
compute the components of the decentralised solution of
their interest. Indeed, each information agent h € N deter-
mines the value of the associated state variable &, only as
a function of the control variables uj, with j € .#, corre-
sponding to non-zero blocks By, ;). Similarly, each decision
agent j € M determines the value of the associated control

variable uj only as a function of the state variables &, with

h € AN, corresponding to non-zero blocks B& e

T T

Denote by u = [ulT Uy ... M‘T///‘] and £ £ [5; & ... E‘TA,J
the vectors associated with the control agents and with the
information agents respectively, where u; are the control
variables and &, are the state variables. We now show that
u converges to the optimal solution u* of problem (1)—(2),
while lim,_,.. & (#) = 0, hence, asymptotically, the informa-
tion agents will detect no constraint violations. Specifically,
we rewrite the system (10) in vector form as

E(1) = Bu(t) —w,
u(t) = saty [¢ (—BTé(t))} .

(11a)
(11b)

The following theorem generalises the results by Bauso et
al. (2013); Blanchini et al. (2016).

Theorem 4.1 Under Assumptions 1, 2 and 3, the solution
E(1) of system (11) is bounded and converges to the set

E= {é € R": Bsaty, [(p(—BTé)} = w},

while u(t) converges to the solution u* of problem (1)—(2).
Proof. Let §* € E and z(¢) = §(r) — £*. Then,

(1) = Bsaty |9 (BT (&7 +2(1)))] —w
=B (sat@/ {(l) (_BT(g* -‘rZ(l)))} —saty [¢ (_BTg*)})
= —BA(z)B'z,

where the last step exploits Lemma 3.2. Consider the Lya-
punov function V (z) = %ZTZ, whose Lyapunov derivative is

V(z)=—z'BA(z)B'z <0,

because A(z) is a diagonal matrix of nonnegative functions.
So, z is bounded and, in view of LaSalle’s principle, con-
verges to the set where V(z) = —z"BA(z)B' z = 0. Now, for
any symmetric positive (or negative) semidefinite matrix S,
7Sz =0if and only if Sz = 0. Hence, z converges to the set

% = {zeR":BA(z)B'z=0}
= {ZGR”: Bsaty [¢ (—BT(é*—H)” —w:o},(lz)

hence &(¢) converges to the set E. In view of the continuity
and of Lemma 3.1, u(r) converges to the optimum »*. W

Remark 4.2 While u* is unique, the value &* such that
Bsaty [¢(—B'"E*)| = w may be not unique (hence, the set
% may include also non-zero vectors). As an example of
non-uniqueness, ifB=[11], 1 <u; <2,3<uy <4, ¢(x)=x
and w =5, then any &* € [—3,-2] is suitable. However; if
% = {0} is a singleton, then necessarily z(t) — 0.

Theorem 4.1 helps us prove the convergence of the discrete-
time algorithm described below.

4.2 Decentralised discrete-time algorithm

System (11) can be implemented through a numerical algo-
rithm where the state equation (11a) is discretised according
to an Euler scheme, with sampling time 7 > 0, to obtain:

E(k+1) = E(k) + tBu(k) — tw,
u(k) =saty [0 (~BTE(®))].

(13a)
(13b)

Clearly, this discrete-time algorithm preserves the decen-
tralised nature of the continuous-time solution.

We can show that, for 7 sufficiently small, the discrete-time
sequence & (k) defined by (13) converges to £*; hence, the
control sequence u(k) converges to u*.

Theorem 4.2 Under Assumptions 1, 2 and 3, and if

2u

T< s
18]I

(14)
where W is the constant in Assumption 1, then the sequence
u(k), which evolves according to system (13), converges to
u*, solution of problem (1)-(2).

The proof of Theorem 4.2 requires two lemmas.

Lemma 4.1 Given a symmetric, positive semidefinite matrix

S, if 0 <t <2/||S||, then || —7S|| < 1.

Proof. Being S = 0, its eigenvalues A; are in the interval
[0,]|S]]]- The eigenvalues of I — 7S are 1 — tA; and, if 0 <
7 < 2/||S||, they lie in the interval (—1,1]. Then, since I — TS
is symmetric as well, its norm must be less or equal to 1. ll

Lemma 4.2 Given a symmetric positive semidefinite matrix
S € R™™ and a vector z € R™, if 0 < 1 <2/||S||, then
Izl = ||({ — ©S)z|| if and only if Sz=0.

Proof. Clearly Sz = 0 implies the norm equality. To prove the
opposite, take an orthonormal matrix Q such that Q' SQ =
Y = diag{0,X,}, where X, is a diagonal matrix with the
positive eigenvalues of S and 0 is the null matrix associ-
ated with the zero eigenvalues. Let 2 = Q' z. Being Q or-
thonormal, it does not change the norm: ||| = ||z||. Then,
lz|l = ||(I — ©8)z|| is equivalent to ||2]| = ||(I — tQ " SQ)Z]|.
Partitioning the components and squaring gives

21 R B 00 21
2 2 01X | | %

2 2




In view of the property of the Euclidean norm we have
2012 112202 = 201> + 11 (= 722)22?,

namely, [|2,]|> = || (I — 7%2)2,||. Since £, includes the posi-
tive eigenvalues only, the eigenvalues of the diagonal matrix
(I — 7X,) lie in the open interval (—1,1) if 0 < T < 2/||S][,
hence their magnitude is strictly less than 1. Therefore, the
norm equality is possible only if Z = 0. Then XZ =0 and
Sz =QXQ"z= QX% =0. Hence, Sz = 0. [ ]
Proof of Theorem 4.2. Let z(k) = (k) —&* and, as done
for the continuous-time case, write the system as

2(k+1) = (1— rBA(z(k))BT) 2(k). (15)
In view of (14) and Lemma 3.2 we have

2u 2

< IBE = [BAGH)BT]]

Then, since ||/ — TBA(z(k))B'|| < 1 in view of Lemma 4.1,
lo(k+ 1)1 < |12 — BA(=(k)BT [[[l2(K) || < [l2(K)]|-

Therefore, z(k) is bounded.

To prove convergence, we invoke LaSalle’s invariance prin-
ciple for nonlinear discrete-time dynamical systems (Sun-
darapandian 2003). Since the function ||z(k+ 1)| is non-
increasing, necessarily z(k) converges to the set for which

lI2ll = |( — ©BA(z)BT )z]|.

According to Lemma 4.2, this is exactly the set for which
BA(z)B'z =0, namely, the set 2 in (12). As in Theorem 4.1,
we can therefore conclude that u(k) converges to u*. |

Next, we show that condition (14) is crucial, since it becomes
also necessary for convergence if the constraints are not
active and the function to be minimised is proportional to
the Euclidean norm of u.

Proposition 1 Take fi(u;) = yu? and assume u* € int% .
Then, the discrete-time system (13) converges only if (14)
holds.

Proof. In a neighborhood of ©*, the saturation is not active,
A= I, and equation (15) becomes z(k+1) = (I—tBB" )z (k).
The eigenvalues of matrix (I —tBB') are 1 — 7A;, where
A; are the (positive) eigenvalues of BB'. The eigenvalues
of matrix B' B are those of matrix BB plus m —n zero
eigenvalues; in both cases, the maximum eigenvalue is equal
to ||B||?. Then, condition (14) is clearly necessary for |1 —
TA;| < 1 which, in turn, is necessary for convergence. Note
that here u = 1. ]

Remark 4.3 When fi(u;) = tu?, the maximum value of
the time-discretisation T is proportional to the inverse of
the largest eigenvalue of matrix BB' (or, equivalently,
the largest eigenvalue of matrix B' B, being both equal to

|B||?). The value of T can be optimally chosen by consid-
ering the non-saturated case, when u = —BT‘;‘ and con-
vergence depends on the eigenvalue of matrix (I —tBB").
Convergence can be optimised by minimising the eigenvalue
with maximum modulus: rTn>1{)1 max{|1 — tAy|,|1 — TAu|},

where A, and Ay are, respectively, the smallest and the
largest eigenvalue of BB'. The optimal value turns out to
be the inverse of the average between the minimum and the
maximum eigenvalue of BB':

_ 2

*

T

4.3 Speed of convergence of the algorithm

Here we show that, under mild conditions, the convergence
of the algorithm is exponential. To simplify the exposition,
we consider f;(u;) = 1u?, so that u = saty [-BT&].

Theorem 4.3 Assume that (i) there is a unique vector &*
such that u* = saty, (—BTJ;*) and (ii) at least r > n compo-
nents of u* are not saturated (namely, u; < u; < uf ) and the
corresponding r columns of B span R". Then, for z =& —&*
and V(z) = ||z||?, there exists B > 0 such that the solution
of system (11) satisfies

V() < 2BV (2(1)), (16)
forall t > 6(E(0)) > 0, where 6(£(0)) is a time value de-
pending on the initial condition & (0).

Proof. System (11) can be equivalently written as

(1) :B(sat% {fBT(ZJHg*)} ~saty {73%*})

2 Bo [—BTZ] )

where o is a new saturation function with translated bounds
u; —saty, [—(BTE*);] and u” —saty, [—(B'&*);] instead
of u; and ul+ Note that zero is inside these new bounds.

By assumption, there are at least » non-saturated components
at steady state; assume they are u,s = [u}...u}]", where ns
stands for “non-saturated”. For these components, there is
a neighborhood 2 of z = 0 where o;[—(B'z);] = (—B'2);.
Denote by us = [u}, ...u}]" the other (possibly saturated)
components. Since &(r) — £*, and hence z(r) — 0, for any
£(0), there exists 8(&(0)) > 0 such that z(¢) € % for r >
0(£(0)). As a consequence, the sub-vector u(z) is not sat-
urated. For the other components,

6i[~(B"2)i] = Mi(z)(=B'2)i, 0<Ai(z) <1,
for some function A;(z). By grouping the A;(z)’s in a diago-
nal matrix A*(z), the overall system forz > 6(£(0)) becomes

2(t) = —[BusB)\, + BsAS(2(1))B! |2(1) (17)

where B,,; and B, consist of the columns of B associated with
non-saturated and saturated components, respectively. Since



the columns of B, span R”, B,,SB,TS is positive definite. The
derivative of V(z) =z 'z is

Vi(z ):—zJB Bz — 22" ByAS(2)B] 2 < —22" BB,
< —2B%2"z=—-2B%V(2),

nSZ

where [ is the smallest singular value of matrix By;. |

Remark 4.4 The condition of Theorem 4.3 implies that the
difference & — E* converges to zero as fast as e P As-
sumptions (i)-(ii), which are not demanding and are gener-
ically satisfied, ensure exponential convergence, while con-
vergence is always guaranteed as long as Assumptions -3
are satisfied. Exponential convergence is not achievable, in
general, in the presence of saturations (Hu & Lin 2001).

The following corollary addresses the performance of the
discrete-time algorithm.

Corollary 4.1 Under the same hypotheses of Theorem 4.3,
the discrete-time algorithm converges exponentially if 0 <
T <2/|B|*

Proof. As done in the proof of Theorem 4.3, we absorb
the system in the linear differential inclusion (17), where
A*(z(r)) is a diagonal matrix whose nonnegative diagonal
entries are bounded by 1. As shown in the theorem proof,
the linear differential inclusion (17) is stable. Then, consider
the corresponding Euler system

(k1) = [1= T(BrBys + B (c())B])| (k)

Since the diagonal matrix A® has positive entries upper
bounded by 1, ||[B B\, + BA’B] || < ||BB"|. Then, if
0 < 7 < 2/||B||?, convergence is ensured. On the other
hand, if a differential inclusion converges, then it converges
exponentially (Blanchini & Miani 2015). |

4.4  Dealing with uncertain models

As a step toward robust optimisation (Ben-Tal, El Ghaoui
& Nemirovski 2006; Bertsimas & Thiele 2006), we con-
sider the case in which B is characterised by an additive
uncertainty AB. In this case, while the decision agents (u)
base their strategy on the nominal B, the information agents
(&) measure and integrate the true constraint violation (B +
AB)u —w. As a consequence, equation (11b) remains un-
changed, while equation (11a) must be replaced by

E(t) = (B+AB)u(r) —w. (18)

When fi(u;) = ;uz we can show that convergence proper-
ties are preserved also when B is uncertain, provided that a
standard assumption in robust control is satisfied.

Assumption 4 For all { = 1,...,m, denoting by B, the (-
th row of B" and by (B+ AB)| the {-th column of B+ AB,

BT, (B+AB)[¢ =Y Bl ;(B+AB) (. >0.
i=1

The assumption means that the inner product of the nominal
column B|; and the actual column (B+ AB)|; cannot be
negative, otherwise the effect of the input u, would be the
opposite of the intended one. Typically, B|; has only a subset
of structurally non-zero entries and Assumption 4 is satisfied
as long as their sign is preserved in (B + AB)|s, which is a
reasonable assumption on the magnitude of the uncertainty.

Theorem 4.4 Consider the system defined by (11b) and
(18). Under Assumptions 2, 3 and 4, the trajectory &(t) is
bounded. Moreover, if there exists only one constant vec-
tor E* such that (B4 AB)saty [—BT E¥] = w, then &(t) con-
verges to £* and u(t) converges to the solution u* of the
optimisation problem

1
min  —u'u
uew
st. (B+ABu=
with the feasible set % defined as in (2). ([l

Proof. By taking z(¢) = £(r) — £*, let us consider the candi-
date Lyapunov function V (z) = %ZTz, which is positive def-
inite and radially unbounded. Its time-derivative along the
system trajectories is

V(z) =z [(B+AB)u(r) —w]
=2z (B+AB)(saty [-B' (z+&")] —saty [-B'£"])

i (B+AB)|o(saty [~BT(z+ )] — saty [-BT,&")).

In view of Assumption 4, for £ =1,...,m, the inner product
of B", and (B+AB)|, is nonnegative, and is the only (possi-
bly) non-zero eigenvalue of the R"*" diagonalisable matrix
B) £ (B+AB)|(B',. So, for all y € R", we have y' B}'y > 0.
Taking y = z, we obtain

2 (B+AB)|;B";z>0, (19)

which implies that either one of the two scalars z ' (B+AB)|,
and B' ,z is zero or they have the same sign. In both cases,

2" (B+AB)|(saty [~B/ (z+E&")] —saty [-B/ £*]) <0

because, for two scalars x and y, (y —x) (saty [x] —saty [y]) <
0 (take x = —B',£ and y = —B' ,&*). The proof can be
concluded by resorting to LaSalle’s invariance principle. ll

Remark 4.5 With the same considerations made in the pre-
vious subsections, it is possible to show that the discrete-time
algorithm converges even in the presence of uncertainties,
provided that T > 0 is small enough.

5 Dynamic Network-Decentralised Optimal Control

The proposed dynamic mechanism can be exploited to
design optimal network-decentralised control strategies
(Ataslar & Iftar 1998; Iftar 1999; Iftar & Davison 2002;



Blanchini, Franco & Giordano 2013, 2015). Consider a
discrete-time system of the form

x(k+1) =Fx(k)+ Go(k), (20)

where F € R"*" is block-diagonal, F = diag{F,F»,...,Fn},
while G € R™™ is a suitably block-structured matrix with
N block-rows and M block-columns. Each block G(i7 J)s i=
1,...,N, j=1,...,M, has the same number of rows as F;.
Several blocks G; ;) are structurally zero, hence we seek
for a network-decentralised control strategy for system (20)
that exploits the sparsity structure of G, according to the
framework by Blanchini, Franco & Giordano (2013, 2015).
In particular, we look for the sequence of control inputs in
the interval [0, 7] that, given the initial state x(0), minimises
a positive combination of the inputs norm and of the final
state norm, with inputs subject to interval constraints:

T-1
min x(T)|]? + w(k)|?
in, M+ L o]

-1 1)
st.  x(T)=FTx(0)+ Y FT*1Ga(k),
k=0

o <ok <ot, k=0,...,T-1

with 1 > 0. If we denote the decision variable vector as
u=xT)" o(r-1)" ... 0(1) 00",

the problem can be cast in the form (1)—(2), with functions
fiw)) =nu? fori=1,...,n and fi(u;) = u? for i > n,

B=[-1 G FG F2G ... F""'G] and w=—F"x(0).

Denote by G ;) the ith block-column of G and define E; =
(G(.iy FG. FZG(:J) e FT_IG(:J)}. We can obtain a
new constraint matrix B by rearranging the columns of B as
follows:

B=[-I E|=|-1 | E| Ey ... Eyl, (22)

where now B = [—1 E] has the same sparsity structure as G,
because F* is block-diagonal (hence the zero block-rows of
G.,i) correspond to zero block-rows of E;), and the identity
does not add any coupling.

Then, the optimal control sequence can be decided in a de-
centralised way according to the following theorem.

Theorem 5.1 Given a block-diagonal matrix F and a block
structured matrix G, the optimal control problem (21) can
be solved by a network-decentralised optimisation scheme
E(t) = Bu(t) —w, with u(t) = sat[—¢(BTE(t))] and B as
in (22), where the decision agents iteratively compute u,
the information agents compute the integral variables &
associated with the constraints Bu = w and the decision-
information graph structure is given by G.

Remark 5.1 The “state variable” of the solution algorithm,
E(¢), introduced to guarantee constraint satisfaction, and
the state variable of the plant to be controlled, x(k), should
not be confused. When & reaches the steady state, as it is

guaranteed to happen, the corresponding value of u is the
optimal control sequence on the chosen horizon, which can
be applied (open-loop) to the plant. The algorithm must work
on a faster time-scale than the plant. To achieve a feedback
scheme, in a model predictive fashion, we can compute the
control sequence, apply only the first input, measure the new
state and recompute the sequence, at every time instant k.

The cost in (21) only penalises the final state and the con-
trol action. However, the scheme can be adapted to a more
general setup in which all the states are penalised, just by
considering the new cost function

T T-1
Yl + ) o)
h=1 =0

and the extended set of equality constraints related to (20):

-0 --00|GO---0 —Fx(0)
F —-I---00(0G---0 X 0

A [w]: )
o o0 .-F-II00---G 0

where [x" @T]"T=x(1)"..x(T)T0w(0)"...00(T-1)"]".
If F and G are block-structured, by rearranging the blocks,
we get a block-structured optimisation problem, which can
be solved using the proposed decentralised algorithm.

6 Applications
6.1 Strategic blending problem

In this section a strategic blending problem is considered. In
particular, a deterministic and static version of the problem
is analysed in detail; however, a similar analysis can be
performed analogously in the dynamic and uncertain case.

The problem can be described as the optimal supply of a
good (Sarimveisa et al. 2008; Silver & Peterson 1985), e.g.
fuel, from a number of stocking places to a number of des-
tinations, guaranteeing that at each destination the good ex-
hibits a target level of each of a number of characteristics.
These characteristics can be chemical-physical, such as, in
the case of fuel, the purity or the number of octanes, or geo-
graphical, such as the price of transportation. The complex-
ity of the problem is increased by the fact that, with respect
to each of the characteristics, the good, or “raw material”, of
two different stocking places may have two different levels;
as a consequence, a blending process has to be designed at
each destination to comply with the desired level. Let ., #Z
and % denote the set of destinations, of stocking places and
of characteristics, respectively. The parameters (i.e., given
data) of the problem are:

byrs: amount of characteristic k, per unit of mass of raw
material (coming from the stocking place) r, reaching s;
w,: availability of raw material (at the stocking place) r;
Wws: demand of good at destination s;



Wy, desired level of characteristic k that should be satis-
fied by good at destination s;

ﬁ,:rs ii,,: bounds for allowed deviation from the desired
level Wy.

The control variables are:

u,s - amount of raw material r that reaches destination s;
i1, . unused stock of raw material r;
il - deviation from the desired level Wy.

The constraints are:

e The available amount of each raw material is either used
or left in stock:
Y wti,=w,, Vre. (23)
se.s
e No more raw material than the available amount can be
used:

0<id, <w,
0<uy< min(Wraws) )

VieZ and Vs €., (24)
VieZ and Vs e .. (25)

e At each destination the demand is filled:

Y u=w,Vse s (26)
re#

e At each destination the level of each characteristic k must
be satisfied within a given level of tolerance:

Y brrsitys + kg = Wi, Vk€ A andVse S, (27)
re#

i, < kg < iy Vke # andVs€.7. (28)
As far as the objective function is concerned, the amount of
raw materials that is moved, the unused stocks and the devi-
ations from the desired levels of each characteristic should
be minimised. As a consequence, the cost function is

Clurs, dyyiigs) & Y, Y, crsting+ Y, Y Gusiig+ Y, &7 (29)

SES reER seS ket re#®
where:

crs: cost per squared unit mass for the transportation of
raw material r to the destination s;

Crs: cost per squared unit mass for the deviation from the
desired level of characteristic k at the destination s;

¢,: cost for unused raw material r per squared unit mass;

We can cast the problem within our theoretical framework
and find the solution as the equilibrium state of a dynamical
system where information and decision agents are as follows.

¢ Information agents: one agent is associated with each
raw material (constraints (23)) and with each destination
(constraints (26) and (27)); hence, A4 = ZU.¥;

e Decision agents: one agent is associated with each ele-
ment of #Z x . for managing each possible transportation
of raw materials to a destination (variables u,s); one agent
is introduced for managing each unused raw materials
(variables #i,); one agent is associated with each element of
. x 2 for managing each deviations at each destination
(variables ii,); hence, # = (% x S YIRU(SL x K ).

Table 1
Desired level of characteristics at destinations. The columns report:
Destination; Demand; Octane Rating (p.u.); Octane Rating.

s Ws Wom/u Was
A 7000 85 595000
B 6000 93 558000

Table 2
Availability and characteristics transportation. The columns report:
Stock; Availability; Octane Rating; Price for s = A; Price for s = B.

res# Wy bara =bars  bpa  bp.p
1 2000 70 9.0 2
2 4000 80 12.5 8
3 4000 85 12.5 8
4 5000 90 27.5 12
5 3000 929 27.5 15

Table 3

Allowed deviations from the desired levels. The columns report:
Destination; Lower bound Octane Rating; Upper bound Octane
Rating; Lower Bound Price; Upper Bound Price.

SES iy s iig, ﬂgs
A 29750 29750  -338000 338000
B 27900 27900  -179000 179000

By normalising the cost, which is equivalent to suitably
rescaling the control variables, (29) can be transformed into

Clu) = %uTu, where u is the vector of all decision agents;

namely, adopting the notation in (1), f;(u;) = %ulz This leads
to the optimisation problem

. 1
min = MTM
74

st. Bu—w=0,

where Bu = w is achieved by grouping the linear constraints
(23), (26) and (27), thus forming the sparse matrix B consis-
tently with the information-decision structure previously de-
scribed and the data vector w, while (24), (25) and (28) cor-
respond to the constraints #~ < u < u™, having the form (2).
Introducing the integral variable &, with & = Bu —w, en-
sures that the decentralised algorithm u = sat[—B " &] drives
(1) to zero asymptotically, leading to the optimal u*.

We have numerically simulated a particular instance of this
problem, concerning the optimal distribution of fuel with two
characteristics from five sources to two destinations: . =
{A,B} (destinations), #Z = {1,2,3,4,5} (stocks) and .# =
{Octane Rating, Price} = {¢t,} (characteristics). The pa-
rameters specifying the problem are reported in Tables 1-3,
while all the costs ¢y, ¢y and &, are set to 1.

Moreover we assume:
figs € [—0.05 W, 0.05 - Wgy), @ maximum +5% variation
with respect to «;

iigy € [—min(w,,Wy)-bg,, min(w,, W) -bg,], an upper



0,0]".

In this way, matrix B and vector w are determined according
to the values in Tables 1-3 and the previous assumptions.
Hence, one can compute Ay ~ 3.8 x 10%, A, ~ 3.5 x 1073
and, consequently, T~ 5.2 x 107>, The simulation results
are reported in Figures 3—4. Fig. 3 (top) reports the discrete-
time evolution of the Lyapunov function, with a decreasing
behaviour, Fig. 3 (bottom) shows the variation of the input
variables through the iterations, while Fig. 4 shows, for each
stocking place, the amount of raw material sent to each of
the two destinations or left in the stock.

bound on u,s due to transportation cost: wg, =

10?
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Figure 3. Discrete-time evolution for the strategic blending prob-
lem in Section 6.1. Top: Lyapunov function. Bottom: inputs u(k).
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Figure 4. Blending distribution for the problem in Section 6.1.
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Figure 5. Sketch of the flood control problem in Section 6.2.

6.2 Flood control problem.

The devised algorithm for decentralised optimisation is here
applied to compute a network-decentralised optimal con-
troller that brings a system of reservoirs back to an equilib-
rium after a flood. For this problem, none of the available
model predictive strategies (Breckpot, Agudelo & De Moor
2013; Breckpot et al. 2013; Delgoda et al. 2013; Montero
et al. 2013) follows a decentralised approach as the one we
propose herein. Consider the network of reservoirs in Fig. 5,
where, besides the exchange of fluid between reservoirs,
each reservoir has a natural outflow. This scenario can be
modelled as in equation (20), with F = diag(A1, A2, A3, A4)
and

-1-1 0 0 0 0 O

I 0-1-1 0 0 O
G=

0 1 1 0-1-1 0

0 0 0 1 1

We can compute a network-decentralised optimal control
strategy on the horizon [0, 7] by solving problem (21), where
F and G are the matrices reported above, with A; = 0.9,
A =1, A3 =095, A4 = 0.9, while @, =0 and ®;" = 0.1
for all i, and 1 = 1. We take the initial condition x(0) =
[10 2 3 4]T, which models a flood in reservoir 1, and
simulate the evolution of the proposed scheme, with a re-
ceding horizon of T = 12 steps. The achieved final state
is x(T) = [1.6477 1.2727 1.3038 1.2833]", while the time
evolutions of the buffer levels and the input sequence are re-
ported in Fig. 6. With 7 = 0.0228, the procedure converges in
about 400 steps and the computation requires 0.003 seconds
on a standard PC (clock frequency 2.3 GHz). The optimal
control sequence is reported in Table 4. The components u;
and u, are initially small because, due to the high level of
the first tank, there is a strong natural outflow A;x; they sat-
urate later, when the natural outflow becomes smaller. Yet,
if A1 =1 (i.e., no natural outflow), then u; and u, saturate
from the very beginning.

0 -1

In the considered problem, the final state x(7') is a decision
variable, whose value is determined by solving the optimi-
sation problem. However, it can also be imposed as a target:
this leads to a different problem, where x(T') = %(T) is a con-
straint. For instance, the desired final state ¥(7) =[1 11 1]"
can be imposed over the horizon T = 12, resulting in a dif-



Table 4

Optimal control sequence for the flood control problem in Section 6.2.

t 1 2 3 4 5

6

7 8 9 10 11 12

u 0 0 0{0.0061
0.0305|0.0440(0.0595|0.0773
0.099910.0908 {0.0812]0.0712
0.1000{0.1000 {0.1000{0.1000
0.0839]0.0831{0.0817|0.0796
0.1000{0.1000{0.1000|0.1000
0.088910.0988 {0.1000|0.1000

0.0371
0.0977
0.0606
0.1000
0.0766
0.1000
0.1000

uz
u3
uy
us
Ug

ug

0.0715
0.1000
0.0494
0.1000
0.0727
0.1000
0.1000

0.1000|0.1000{0.1000(0.1000|0.1000|0.1000
0.1000|0.1000{0.1000|0.1000|0.1000|0.1000
0.0376|0.025310.0122 0 0 0
0.1000|0.0868 {0.0662|0.0432{0.0177 0
0.0678|0.06160.0539|0.0447]0.0336|0.0205
0.1000|0.1000{0.1000(0.1000{0.1000|0.1000
0.1000|0.1000{0.1000(0.1000|0.1000|0.1000
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Figure 6. The transient behaviour in terms of buffer levels x; (top)
and control inputs u; (bottom) for the problem in Section 6.2.

ferent optimal control sequence. When the final state is con-
strained, in general, the problem may turn out to be unfeasi-
ble. For example, when the final state ¥(7') = 0 is imposed,
there is no feasible solution with 7 = 12: a horizon of at
least T = 15 steps is needed to exactly reach such a target.

7 Conclusions and Future Work

We have proposed a decentralised closed-form iterative
formula to solve convex programming problems with a
decoupled cost function, linear equality constraints and
interval bounds on the decision variables. The algorithm

11

exploits the decentralised communication between decision
agents, which are associated with a saturation function and
set the value of the decision variables, and information
agents, which are associated with integral variables and en-
sure that the equality constraints are satisfied. Convergence
is guaranteed, and is exponential under mild assumptions.
Also the discretised version of the algorithm is guaranteed
to converge for a small enough step parameter 7.

Several interesting directions are worth exploring. First of
all, coupling in the cost function could be considered: for
instance, in the case of two variables, a positive coupled
quadratic cost would be f(u;,u;) = ou + 2Buu; + yus.
However, this would compromise the independence of some
control and information agents. After a linear transformation
(ui,u;) — (vi,v;), providing f(v;,v;) =v? +v§, we could
handle the problem and extend our result, provided that u;
and u; are unconstrained (otherwise we would still have cou-
pling in the constraints after the transformation). A further
question is whether a more sophisticated discretisation than
the Euler scheme can be applied to preserve the sparsity
structure and guarantee convergence. An intriguing problem
is a possible asynchronous implementation of the scheme,
where each agent has its own step parameter 7; (so that no
centralised computation of 7 is required). This seems a rea-
sonable possibility, provided that all the decentralised 7; are
small enough; however, we do not have any stability proof
so far. These issues are left to future investigation.
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