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Abstract

We propose a novel approach to the problem of inverse kinematics for possibly re-
dundant planar manipulators. We show that, by considering the joints as point masses
in a fictitious gravity field, and by adding proper constraints to take into account the
length of the links, the kinematic inversion may be cast as a convex programming
problem. Convex constraints in the decision variables (in particular, linear constraints
in the workspace) are easily managed with the proposed approach. We also show how
to exploit the idea for avoiding obstacles while tracking a reference end-effector trajec-
tory and discuss how to extend the results to some kinds of non-planar manipulators.
Simulation results are reported, showing the effectiveness of the approach.

Keywords: robotic manipulators; inverse kinematics; convex programming;
constraints.

1. Introduction and Motivation

For robotic manipulators, the inverse kinematics problem consists in finding a joint
configuration that corresponds to a given position and/or orientation of the end-effector.
The problem arises because, usually, the task to be performed by the robot is expressed
in the operational space (Cartesian space), while the robot is controlled in the con-
figuration space (joint space). Solving the inverse kinematics problem allows the ap-
plication to manipulators of planning and navigation techniques available for the con-
figuration space (see for instance [1, 2, 3, 4]). Closed-form solutions exist only for
manipulators having a simple kinematic structure (see [5]). In the other cases, for ex-
ample when the manipulator is redundant ([6]), it is necessary to resort to numerical
methods. Numerical approaches to kinematic inversion may be roughly divided in two
categories. A first one is based on differential kinematics and comprises Jacobian-
based methods (the Jacobian matrix represents a linear, configuration dependent, map
between the joint velocity space and the operational velocity space). Various methods
based on differential kinematics have been proposed: Jacobian pseudoinverse ([7]), Ja-
cobian transpose [8, 9], damped least-squares ([10, 11]) and other variations (see also
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[12] and the references therein). Iterations are necessary due to the linearized nature
of the approach: in all the mentioned methods, the solution results from a process that
starts from an assigned configuration and iteratively computes a sequence of kinemat-
ically feasible configurations that eventually converges to the desired one. A second
category is that of global methods, which explore the whole configuration space and
try to find a minimizer for the position and/or orientation error with respect to the pre-
scribed one (see for instance [13, 14] and the more recent [15, 16]). The task is difficult
because of the highly nonlinear relationship between joint space variables and opera-
tional space variables. These approaches lead to a non-convex nonlinear programming
problem, need to resort to heuristics in order not to get stuck in local minima and are,
in general, computationally expensive.

In the present paper, we propose a novel optimization-based method for kinematic
inversion. The main features of the proposed approach can be summarized as follows.

• The method is global, in the sense that it takes into account all the admissible
poses.

• The joints are considered as point masses subject to fictitious gravity forces.
Suitable constraints take into account the length of the links.

• The inverse kinematics problem is formulated as a minimization problem whose
objective function is the total potential energy of the system of masses.

• The objective function provides a criterion to fruitfully exploit redundancy by
selecting the unique minimizing configuration.

• The approach leads to a convex programming problem, which can be efficiently
solved by means of well-known tools (this is a significant advantage over the
existing global methods).

• In some circumstances, the feasible solution of the optimization problem may
result non admissible from a kinematic point of view. In these cases, we show
how to properly modify the fictitious gravity field so as to achieve physical ad-
missibility.

• Additional convex constraints in the operational space are easily taken into ac-
count to avoid collisions.

• The main limitation of the method is that it is valid, in general, for planar ma-
nipulators only. However, it can be employed for some particular, but practically
important, non-planar manipulators that we characterize in terms of their kine-
matic structure.

Rather than providing continuity theorems, which would be valid case by case,
we support our idea by the following physical intuition: the movements of the robot
correspond to those of a rope subject to gravity, of which we are moving one of the
extrema. This creates smooth transitions, as it can be certified by experiments.

It is worth mentioning that a virtual gravity approach has already been proposed
for legged robots by [17], where the fictitious gravity field is employed to enforce a
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motion direction that is parallel to the ground, without an explicit design of the gait.
Our use of fictitious gravity is different, since it is instrumental to characterize the
desired configuration as a minimizer of the potential energy. Our approach can be seen
as a fast method for finding a robot configuration that satisfies a prescribed end-effector
pose and, possibly, convex constraints. For this reason it is not necessarily alternative to
classical navigation approaches, but can be successfully combined with other methods,
e.g., those proposed by [18, 19], based on potential functions. Many developments of
the basic idea are possible: some of them have already been described in [20].

The paper is organized as follows: in Section 2 we state and solve the problem for
planar manipulators and provide some extensions to non-planar cases. Section 3 shows
how to include the obstacles in the problem formulation. Various simulation results
are presented in Section 4, for both planar and non-planar cases. Finally, a concluding
discussion is reported in Section 5.

2. The inverse kinematics problem: the planar case and some extensions

Consider a redundant planar manipulator as represented in Fig. 1, composed of
several links connected by revolute joints (also called nodes in the following). Let the
position of the end-effector (xE ,yE)= (x4,y4) be assigned, as well as the link lengths ri.
The inverse kinematics problem consists in determining suitable angles qi that provide
the desired position; in the case of motion planning, smooth end-effector and joint
trajectories need to be obtained. The problem is well known to be difficult for the
following reasons:

• the involved equations include trigonometric terms;

• in the presence of obstacles or boundaries, the “forbidden” region in the config-
uration space may be hard to describe;

• it is not always clear how to cope with redundancy.

The main idea of this paper is to adopt an inversion method based on convex optimiza-
tion, which can provide a solution that efficiently deals with the above issues. In order
to formulate the inverse kinematics as a convex optimization problem, it is convenient
to describe the configuration of the robot by the n-tuple (xi,yi), i = 1, . . . ,n, instead of
the more common qi, i = 1, . . . ,n.

In the following we call

• admissible: a configuration (xi,yi), i= 1, . . . ,n, that is compatible with the robot
kinematics;

• feasible: a configuration that is compatible with the constraints of the optimiza-
tion problem.

The typical solution to the inverse problem, for instance in the case of manipulators as
in Fig. 1, considers directly the following equations:

xn =
n

∑
i=1

ri cos(qi), yn =
n

∑
i=1

ri sin(qi),
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Figure 1: The inverse kinematics problem.
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Figure 2: The catenary kinematics problem.

which have to be solved in the free variables qi. Now let us imagine the same problem
solved for a catenary in which a “unit gravity force” FG = (cos(θ),sin(θ)) is assigned,
as in Fig. 2, and affects unitary fictitious masses placed at the joints. Such a force can
be arbitrarily (i.e., not necessarily vertically) directed.

Denoting by (xi,yi) the joint positions, and taking into account the gravity, the
following optimization problem arises:

min
xi,yi

n

∑
i=1

[cos(θ)xi + sin(θ)yi]

s.t. (xi− xi−1)
2 +(yi− yi−1)

2 = r2
i , i = 1,2, . . . ,n

(x0,y0) = (0,0)
(xn,yn) assigned

where θ is a fixed parameter, representing the gravity direction, and we aim at mini-
mizing potential energy. The above problem is not convex, but it can be convexified by
replacing the equality constraints with inequality constraints:

min
xi,yi

n

∑
i=1

[cos(θ)xi + sin(θ)yi] (1)

s.t. (xi− xi−1)
2 +(yi− yi−1)

2 ≤ r2
i , i = 1,2, . . . ,n (2)

(x0,y0) = (0,0) (3)
(xn,yn) assigned (4)
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Figure 3: Different configurations.

This relaxation physically corresponds to the case of unitary masses subject to gravity
and connected not by rigid arms, but by strings which can be not completely stretched.
While the problem with equality constraints is strictly equivalent to the inverse kine-
matics problem, the “relaxed” problem is not. We remind that a constraint is

• active if it is satisfied as an equality;

• inactive if it is satisfied as a strict inequality.

As we will see, a solution of (1)–(4) corresponds to an admissible configuration if and
only if the inequality constraints are active at the optimum.

The optimization problem (1)–(4) has a simple formulation, convex obstacles and
boundaries can be easily considered without affecting convexity and, despite redun-
dancy, the solution is unique. The degrees of freedom can be fruitfully exploited in the
actuation by choosing the fictitious gravity force FG, which can be arbitrarily oriented
in order to shape the robot chain and cope with environmental constraints: different
orientations of FG produce different configurations with the same end-effector position
(as in Fig. 3).

Although the optimization problem involved can be solved very efficiently, it is not
ensured that, for a given end-effector position, the optimization problem provides an
admissible solution. On the one hand, an admissible configuration may not exist at all,
e.g., due to the distance of the end-effector from the reference origin (x0,y0) = (0,0).
Obviously this distance has to be smaller or equal to the sum of the link lengths:√

x2
n + y2

n ≤
n

∑
i=1

ri = ρmax.

Otherwise, no admissible configuration exists which guarantees the desired end-effector
position. On the other hand, except for particular cases, there exists also a minimum
distance under which admissible configurations exist, but are not produced by any se-
lection of a common gravity force. This is the case of Fig. 4 (left), where the admissible
configuration (solid line) is different from the one achieved by the optimization prob-
lem (dashed line). The solutions provided by the optimization problem, in fact, physi-
cally correspond to solutions that would be achievable if the nodes were connected by
strings rather than rigid arms. The situation can be fixed if we solve the same problem
by adopting different gravitational fields for each node. This boils down to solving the
optimization problem with the same constraints, but assigning different angles θi in the
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Figure 4: Left: an admissible configuration (solid line) not recovered by the solution of the optimization
problem with a single gravity (dashed line). Right: the same configuration recovered with different gravity
forces.

objective function, namely replacing (1) with the (linear) objective:

min
xi,yi

n

∑
i=1

[cos(θi)xi + sin(θi)yi] .

Remark 1. The functional with a node-specific gravity can be exploited in order to
“shape” the robot, e.g., to surround obstacles (see Fig. 4, right). The problem of
associating a suitable gravity field with each node will be considered later.

2.1. Formalization of the problem

In the planar case, the problem may be formulated in the following general form:

min c>x+d>y (5)
s.t. (xi− xi−1)

2 +(yi− yi−1)
2 ≤ r2

i , i = 1,2, . . . ,n (6)
(x0,y0) = (0,0) (7)
(xn,yn) assigned (8)
Mx+Ny≤ q (9)
Qx+Ry = s (10)

where x and y are the vectors of the node coordinates, M, N, Q and R are assigned
constraint matrices, while q and s are assigned constraint vectors. The weight vectors
c and d define the linear cost and can be seen as a possibly node-specific gravitational
field. A possible choice of c and d is associated with the gravity potential encountered
before: c> = cos(θ)[1 1 . . .1] and d> = sin(θ)[1 1 . . .1]. Equality constraints (10) are
introduced, e.g., if a cart which carries the robot is constrained on a track. Fixing the
attitude of the end-effector also corresponds to a linear equality constraint. Inequality
constraints (9) for the points (xi,yi) are due to the environment (ceiling, floor, walls)
and may take into account global (i.e., acting on all nodes) or local (i.e., acting on a
subset of nodes) constraints.
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In the configuration space q, the constraints would be non-convex and hard to de-
scribe. On the contrary, (5)–(10) is convex. The only problem is that a feasible solution
does not necessarily correspond to a physically admissible configuration. A feasible so-
lution is physically admissible only if the inequality constraints are active at the optimal
solution.

Observation 1. A feasible solution of problem (5)–(10) corresponds to a physically
admissible configuration if and only if the inequality constraints (6) are active at the
optimum.

Since our aim is to use convex optimization to solve the inverse kinematics prob-
lem, we need to handle the case in which a feasible solution is found with some non-
equality (strict inequality) constraints. The first preliminary result states that any phys-
ically realizable (admissible) configuration is the solution of the convex optimization
provided that the functionals c and d are properly chosen.

Proposition 1. Let x̃ = [x̃0 x̃1 . . . x̃n]
> and ỹ = [ỹ0 ỹ1 . . . ỹn]

> be vectors that satisfy the
constraints (6)–(10), with (6) satisfied as equality. Then there exist vectors c and d in
(5) such that the optimal solution of the problem (5)–(10) is equal to (x̃, ỹ).

Proof Since the constraints (6) are active, x̃ and ỹ are on the boundary of the feasibility
domain (6)–(10), which is a compact and convex set. Then for each boundary point a
linear functional exists, corresponding to a choice of c and d in (5), for which such a
point is the optimal solution of (5)–(10). �

In practical implementations it is often necessary to determine a trajectory, rather
than a single configuration. This problem can be efficiently solved by considering the
initial and final end-effector positions and a finite number of intermediate positions.
For each of the considered positions, the convex optimization problem is solved; all
the obtained configurations are eventually interpolated using regular spline functions
in the angle space, which ensure the desired smoothness of the trajectory1. Note that
the convex optimization problems are independent of one another and each provides a
unique solution. In the presence of redundancy, however, abrupt changes of configura-
tion from one solution to the subsequent are avoided, in view of the rope analogy.

2.2. Guaranteed admissibility via hierarchical optimization

We have seen that in some cases, when the end-effector is too close to the reference
origin, no admissible configuration can be found by solving the optimization problem
with a common gravity force applied to all nodes. For instance, Fig. 5, right panel,
shows that the third link constraint is inactive (i.e., satisfied as a strict inequality),
leading to a configuration which is not physically admissible, because the actual link
length is as in the left panel (admissible configuration).

To achieve admissibility, we can consider a functional α fc +β fa, with coefficients
α > 0 and β ≥ 0. The common gravity functional fc is chosen as in (1), with a suitable

1As an alternative solution, a dynamic tracking problem can be solved using the computed optimized
configuration as a reference.
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Figure 5: Admissible (left) and non-admissible (right) solutions

choice of θ that provides the desired robot orientation, and is applied as a first option.
The node-specific auxiliary functional fa is introduced, if necessary, to guarantee that
an admissible configuration can be achieved, i.e., that all the length constraints are sat-
isfied as equalities. More in general, the coefficients α and β can be tuned to privilege
fc or fa, depending on the situation. A pseudocode procedure will be suggested later.

In this section we provide a guaranteed method to ensure that, possibly after the
introduction of a proper node-specific gravitational functional, the solution of the op-
timization problem always corresponds to an admissible robot configuration. We first
show that, if we apply a common gravity field to all nodes, corresponding to a choice of
the angle θ in (1), then, in the case of feasible but non-admissible solution, the problem
concerns at most one link. To this end, a preliminary lemma is in order.

Lemma 1. The optimal solution of the problem

min
xi,yi

n

∑
i=1

[cos(θ)xi + sin(θ)yi] (11)

s.t. (xi− xi−1)
2 +(yi− yi−1)

2 ≤ r2
i , i = 1,2, . . . ,n (12)

(x0,y0) = (0,0) (13)
(xn,yn) free, (14)

where the n-th node position is free, is such that the inequality constraints are all active,
and each link is aligned with the gravity vector.

Proof Consider the contribution cos(θ)x1+sin(θ)y1 to the objective function. Clearly,
such a quantity is minimized, under the constraint (x1− x0)

2 +(y1− y0)
2 ≤ r2

1, when
the vector (x1,y1) is directed as the antigradient (−cos(θ),−sin(θ)) and takes its
maximum allowed length, which is r1. For such a choice, call it (x̄1, ȳ1), the first
link is aligned with the gravity vector and the first inequality constraint is active.
Now consider the contribution cos(θ)x2 + sin(θ)y2 to the objective function. Such
a contribution is minimized when the vector (x2,y2) is directed as the antigradient
(−cos(θ),−sin(θ)) and takes its maximum allowed length. Given the constraints
(12), for i = 1,2, the maximum allowed length is r1 + r2 that is indeed achieved when

8



(x1,y1) = (x̄1, ȳ1) and (x2− x1,y2− y1) is directed as (−cos(θ),−sin(θ)), leading to
the second link being aligned with the gravity vector and the second inequality con-
straint being active. By repeating the reasoning for the subsequent links, the lemma is
proved.

Proposition 2. Consider a planar robot with n sequential links and the associated
optimization problem (1)–(4). Then at most one constraint in (2) may result inactive at
the optimum.

Proof Assume that the optimal solution has the ith constraint in (2) inactive (i.e., satis-
fied as a strict inequality). Since we are dealing with a convex optimization problem,
the solution is not changed if the ith constraint is removed from (2). Being the func-
tional linear, removing such a constraint splits the optimization problem in two inde-
pendent convex problems in the variables (x0,y0) . . . (xi−1,yi−1) and (xi,yi) . . . (xn,yn).
This is equivalent to considering two separate arms in which the first node (x0,y0) and
the last one (xn,yn) respectively have assigned position2. In view of Lemma 1, the
optimal solutions correspond to these two branches both directed as the gravity vector,
with all remaining constraints satisfied as equalities. �

Another property can be immediately seen with the support of Fig. 5 and formally
stated in the following proposition.

Proposition 3. Consider a reference frame having the origin in the point (x0,y0) =
(0,0) and the x axis orthogonal to the direction of the gravity, which is common to all
nodes; namely, the functional (1) is adopted with θ = π/2. Let d = |xn| be the distance
from the origin of the projection of the extremal point (xn,yn) onto the x axis. If d is
greater than the largest link, then there are no inactive constraints (i.e., constraints
satisfied as strict inequalities).

Proof Assume by contradiction that, at the optimum, the ith constraint is satisfied as
a strict inequality: (xi− xi−1)

2 +(yi− yi−1)
2 < r2

i . As in the proof of Proposition 2,
since the optimization problem is convex, then the solution is unchanged if we remove
this constraint from (6). Again the solution corresponds to the case of two separate
chains whose extrema (x0,y0) and (xn,yn), respectively, have assigned position (see
Fig. 5, right). In view of Lemma 1 the optimal solutions correspond to the two chains
both directed as the gravity vector. With obvious considerations, we would have (xi−
xi−1)

2 +(yi− yi−1)
2 ≥ d2 > r2

i , and the ith length constraint would be violated. �
If there exists an inactive constraint (unique, in view of Proposition 2), an admissi-

ble solution can be achieved by introducing an auxiliary functional, so that the gravity
vectors are different for each node. How can these node-specific vectors be chosen?

Consider a reference frame having the origin in the point (x0,y0) (denoted by A in
Fig. 6), one axis (z in the figure) parallel to the segment joining the origin and the end
effector, and the other axis orthogonal (w in the figure). Auxiliary forces p and −p
parallel to z are applied to the second and last but one node (B and E), respectively,
in opposite directions. A force h in direction w is applied to all remaining nodes. The

2Intuitively, “breaking the chain” by removing the ith link; see Fig. 5, right.
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Figure 6: The common gravity g and the auxiliary forces.

following proposition guarantees that admissibility is always achieved by taking p large
enough, provided that there is no high disproportion among the link lengths.

Proposition 4. Assume that each link length is smaller than the sum of any other two.
Let p and h be the auxiliary forces as defined above. Then, for p large enough and
h 6= 0, the solution of the optimization problem has all length constraints satisfied as
equalities (hence it is admissible).

Proof Consider Fig. 6 and let B′ and E ′ be the projections of B and E on the line for
A and F . At the optimum, for p large enough, the first and last links are stretched:
dist(A,B) = r1 and dist(F,E) = rN . Indeed, consider the first link and suppose by con-
tradiction that, at the optimum, dist(A,B) < r1. Now, by moving the point B to B′′

along the circle of radius BC having C as center, we get a feasible solution such that
dist(A,B′′) = r1. The value of the objective function corresponding to such a feasi-
ble solution is less than the optimal, provided that the displacement vector BB′′ has
a positive component along p+ g, which is always the case for p large enough. The
existence of a feasible solution with a better value of the objective function contradicts
the supposed optimality. The same holds for the last link. Then, for p increasing, the
distance dist(B′,E ′) gets larger and converges to:

dist(A,F)+dist(A,B′)+dist(E ′,F)

= dist(A,F)+ r1 + rN > ri, for any i,

by assumption. If dist(B′,E ′) is large enough, we can apply the reasoning of Propo-
sition 3 to the intermediate part of the robot (B–C–D–E in the figure). Indeed, if we
consider a fictitious convex problem in which we fix the second and last but one nodes
to their optimal positions, the remaining nodes optimal positions are clearly unchanged.
Then the proof follows from Proposition 3, being the intermediate nodes subject to a
common gravity field (g+h in the figure). �

In the following we report a pseudocode that shows how the common functional
α fc is applied and the auxiliary functional β fa is added (the total functional being the
sum α fc +β fa), whose weight β is progressively increased by δβ if necessary.
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Figure 7: Anthropomorphic arm with spherical wrist.

Pseudocode
Inputs: End-effector position (xn,yn); step δβ ; maximum value βmax; gravity direction
θ ; weight α > 0.
Outputs: Angles qi.

1. Set β := 0. Set p = [px, py] := [xn,yn]/‖[xn,yn]‖.
2. Solve problem (5)–(10) with functional

c> := α[cos(θ) cos(θ) . . .cos(θ)]+β [0 px 0 . . .0 −px 0]
d> := α[sin(θ) sin(θ) . . .sin(θ)]+β [0 py 0 . . .0 −py 0]

3. IF the length constraints (6) are satisfied as equalities, then GOTO step 5;
ELSE β ← β +δβ .

4. IF β ≤ βmax, then GOTO step 2, ELSE STOP (unsuccessfully).
5. Compute the angles qi := atan2(yi− yi−1,xi− xi−1), i = 1, . . . ,n.

Remark 2. The assumption in Proposition 4 rules out the extremal condition in which,
due to a long link, pulling the extremal links is not sufficient to accommodate the chain,
because the inequality constraint for the long link remains inactive at the optimum. To
fix this problem, further auxiliary forces can be subsequently added, so as to “activate”
the unique inactive constraint: e.g., forces directed as p and −p could be applied to
nodes C and D in Fig. 6.

Remark 3. The propositions of this section are also valid for three-dimensional robots
moving in a plane which rotates along the vertical axis. It is not difficult to see that
they can be extended, e.g., to DLR manipulators (considered in the following) with a
possibly non-vertical gravity field, which can be integrated by an auxiliary functional.

2.3. Guidelines for the choice of the gravity vector

The direction of the gravity vector is a parameter that governs the solution of the
inverse kinematics problem as formulated in the proposed approach. In particular, it
allows us to enforce a “shape” of the robot, given an end-effector position. It is worth
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Figure 8: To circumvent an obstacle, the gravity vector may be chosen orthogonal to the segment joining the
base to the center of the obstacle.

mentioning that, in the case of redundant robots (i.e., robots that admit many configura-
tions resulting in the same end-effector pose), any method for inverse kinematics must
include, either explicitly or implicitly, a parameter that allows to determine a single
configuration among the many configurations corresponding to the same end effector
pose. For the method proposed in the present paper, this parameter is precisely the
gravity vector. Due to the analogy of the rope subject to gravity, the meaning of the pa-
rameter and its effect on the obtained configuration are intuitive and this very intuition
can help in choosing it. The choice of the gravity has to be made on a case-by-case
basis and may help in forcing the selection of collision free configurations, in the pres-
ence of obstacles (another possibility for avoiding collision, based on the introduction
of suitable constraints in the optimization problem, will be considered in Section 3).
As an example of how the gravity vector may be chosen in different situations, for
avoiding obstacles, we report three cases (Figures 8-10).

a : an obstacle is located in the interior of the workspace (Figure 8). By choosing
the gravity vector to be orthogonal to the segment joining the base of the robot
to the center of the obstacle, the robot is forced to stay either on one side or the
other with respect to the mentioned segment, thus avoiding collisions;

b : a conic region has to be avoided in Figure 9, and the gravity vector may be
chosen orthogonal to the segment joining the base to the vertex of the region;

c : the admissible workspace is a vertical stripe (Figure 10). In this case, a reason-
able direction for the gravity vector is vertical.

2.4. Extension to non-planar manipulators
The approach described so far is not suitable for generic non-planar manipulators,

i.e., manipulators represented by a sequence of nodes that do not necessarily lie in the
same plane. Thanks to the analogy of the rope subject to gravity, it is easy to recog-
nize that different gravity vectors acting in different points are necessary in order for
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Figure 9: In this case, the gravity vector may be chosen orthogonal to the segment joining the base to the
vertex of the polygon to be avoided.

Figure 10: To avoid collision with vertical boundaries, the gravity vector may be chosen as in the figure.
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Figure 11: Kinematic structure of the DLR manipulator described by [5].

the robot to assume a non-planar configuration. Moreover, in general, additional con-
straints must be included in the optimization problem to enforce the consistency of the
solution with respect to the robot structure. Unfortunately, due to these constraints, the
relaxed problem3 might become non-convex. As an example, consider the anthropo-
morphic arm with spherical wrist, whose kinematic structure is shown in Fig. 7. Node
positions are denoted by Pi, i = 1, . . . ,4. For generic values of the joint variables, the
nodes do not lie in the same plane. Consider now the position P3 of the wrist’s center.
For an assigned P2, having ||P3−P2||22 = r2

3 (|| · ||2 is the Euclidean norm) does not
guarantee that P3 is compliant with the robot structure: since the joint located in P2
is not spherical, the further constraint [(P3−P2)× (P2−P1)] · (P3−P2) = 0 is neces-
sary, where the symbols × and · denote cross product and dot product, respectively.
The latter constraint is non-convex, rendering non-convex the whole relaxed problem.
However, in some cases of practical significance, the technique can be employed even
for non-planar manipulators. As an example, consider the DLR manipulator described
by [5], whose kinematic structure is depicted in Fig. 11. Note that the links O–A, A–B
and B–EE may have arbitrary orientations. For this system, given any position for the
points4 EE, B and A, compatible with the link lengths, there exists an admissible con-
figuration in terms of joint variables: as a consequence, no additional constraints are
required for complying with the robot structure and the relaxed problem remains con-
vex. In general, the relaxed problem remains convex (and thus the method is viable) for
all manipulators that can be represented by a sequence of nodes Pi, i = 1, . . . ,n, whose
mutual positions are only constrained by ||Pi−Pi−1||22 = r2

i , i = 2, . . . ,n. In particular,
any open kinematic chain consisting of a sequence of an arbitrary number of spherical
joints enjoys this property, thus being suitable for the proposed method. A simulation
of a DLR-like manipulator is reported in Section 4.

In other cases the physical realizability of a configuration can be imposed if one
restricts the external forces to have special directions. For instance, in the case of

3By relaxed problem we mean the optimization problem where the equality constraints (xi − xi−1)
2 +

(yi−yi−1)
2 = r2

i , i = 1,2, . . . ,n are replaced by inequality constraints (xi−xi−1)
2 +(yi−yi−1)

2 ≤ r2
i , i =

1,2, . . . ,n.
4That are actually the nodes, i.e., the optimization variables.
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Table 1: The Denavit-Hartenberg parameters for the robot of Fig. 12.

Link ai αi di ϑi
1 a0 0 0 0
2 0 −π

2 d2 ϑ2
3 a3 0 0 ϑ3
4 a4 0 0 ϑ4
5 a5 0 0 ϑ5
6 a6 0 0 ϑ6
7 a7 0 0 ϑ7
8 a8 0 0 ϑ8
9 a9 0 0 ϑ9

a planar vertical arm which lies on a plane rotating with respect to the vertical axis,
admissibility can be ensured by assuming forces lying in that plane (see the first exam-
ple in Section 4.2). Simulation results are reported in Section 4, in which significant
examples of non-planar robot are considered.

Remark 4. For planar robots, a desired end-effector attitude can be considered in the
optimization problem without difficulties. Indeed, if the robot is planar, the attitude
is actually a direction, since no rotation around the direction is possible. If the end-
effector position is given, then the problem involves only the remaining links. Con-
versely, if we can freely choose the end-effector position, its orientation is a linear
constraint on the last link of length rn: (xn−xn−1 yn−yn−1 zn− zn−1)

> = rnν , where
ν is a unit vector with the assigned orientation. This does not affect convexity.
For non-planar robots, the situation is different. In particular, two cases may occur:

1) the approach is not suitable for the robot, because the constraints that enforce
the kinematic consistency are not convex (this is one of the limitations of our
approach);

2) the approach is suitable, implying that the wrist of the robot is spherical (other-
wise additional non-convex constraints would be present).

If case 2) occurs, the optimization problem involves only the first portion of the kine-
matic chain (up to the wrist), since the location of the wrist is determined by the loca-
tion and attitude of the end-effector.

2.4.1. Two examples of non-planar manipulators
In the following we formulate the optimization problem for two non-planar redundant
robots. For the same robots, we report simulations in Section 4.

The first example is a redundant robot on a cart; the kinematic structure is reported
in Fig. 12 and the Denavit-Hartenberg parameters are in Table 1. The robot is a planar
manipulator having 7 d.o.f. mounted on a cart moving along the x-axis. The whole
planar structure can rotate above the first revolute joint. The gravity vector has a
vertical component which can point up or down, to obtain a robot configuration with
upward or downward concavity, and a horizontal component which can be zero or
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Figure 12: The kinematic structure of the redundant robot on a cart. The robot has 9 d.o.f. (one prismatic
joint and 8 revolute joints).

can incline the robot forward or backward. Given the desired end-effector position
(xd

E ,y
d
E ,z

d
E), the convex optimization problem can be formulated as:

min
xi,yi,zi

±γV ∑
i

zi + γN‖[xn− xd
E yn− yd

E zn− zd
E ]‖2 (15)

+γK(η +ξ )+ γH(νH,x ∑
i

xi +νH,y ∑
i

yi) (16)

s.t. (xi− xi−1)
2 +(yi− yi−1)

2 ≤ r2
i , i = 1,2, . . . ,n (17)

zi ≥ 0, i = 1,2, . . . ,n (18)
y0 = z0 = 0 (19)
η , ξ ≥ 0 (20)
η−ξ ≤ x0 (21)
η−ξ ≥ x0, (22)

where γV ,γN ,γK ,γH are proper weights, respectively, on vertical gravity, on the distance
of the end-effector from its desired position, on the distance of the cart from its central
position, and finally on horizontal gravity. η and ξ are nonnegative auxiliary variables
such that x0 = η−ξ , |x0|= η +ξ ; νH = [νH,x νH,y]

> is the horizontal gravity vector;
the term in γV is taken with positive or negative sign depending on the desired concavity
(upward or downward, respectively).
Remark 5. In this formulation, the cost functional is a combination of more terms,
each expressing a different requirement. Of course, different robot configurations may
be obtained by properly changing the weights associated with each term. For high-
precision positioning, the end-effector coordinates can be assigned as constraints:
xn = xd

E , yn = yd
E , zn = zd

E . This can cause “unnatural” trajectories and even feasi-
bility problems if the target point is too far. Clearly these equality constraints can be
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Table 2: The Denavit-Hartenberg parameters for the robot of Fig. 11.

Link ai αi di ϑi
1 0 −π

2 d1 ϑ1
2 0 π

2 0 ϑ2
3 0 −π

2 d3 ϑ3
4 0 π

2 0 ϑ4
5 0 −π

2 d5 ϑ5
6 0 π

2 0 ϑ6
7 0 0 d7 ϑ7

activated ad hoc when the robot is sufficiently close to the target.

The second example is the DLR 7 d.o.f. non-planar manipulator represented in
Fig. 11, whose Denavit-Hartenberg parameters are reported in Table 2. For this robot
any solution of the optimization problem (consisting in the coordinates (xA,yA,zA) and
(xB,yB,zB) of the points A and B) is physically realizable (provided that, as usual, in-
equality constraints are satisfied as equalities). Given the desired end-effector position
(xd

E ,y
d
E ,z

d
E), the gravity vectors fA = ( f x

A, f y
A, f z

A) and fB = ( f x
B, f y

B, f z
B), acting respec-

tively on the points A and B (see Figure 11), the convex optimization problem can be
formulated as:

min
xA,yA,zA,xB,yB,zB

f x
AxA + f y

AyA + f z
AzA + f x

BxB + f y
ByB + f z

BzB

s.t. (xA− xO)
2 +(yA− yO)

2 +(zA− zO)
2 ≤ r2

1,

(xB− xA)
2 +(yB− yA)

2 +(zB− zA)
2 ≤ r2

2,

(xEE − xB)
2 +(yEE − yB)

2 +(zEE − zB)
2 ≤ r2

3,

where ri (i = 1, 2, 3) are the lengths of the robot links.
A desired end-effector attitude can be obtained easily by imposing the relation:

(xEE − xB yEE − yB zEE − zB)
> = r3ν , where ν is a unit vector with the assigned

orientation. If this is the case, the optimization problem becomes

min
xA,yA,zA,xB,yB,zB

f x
AxA + f y

AyA + f z
AzA

s.t. (xA− xO)
2 +(yA− yO)

2 +(zA− zO)
2 ≤ r2

1,

(xB− xA)
2 +(yB− yA)

2 +(zB− zA)
2 ≤ r2

2.

2.5. An application to the forward kinematics of parallel robots: the case of the Delta
robot

Now we show how the same idea (minimizing a potential energy subject to prop-
erly relaxed kinematics constraints) can be applied to a forward kinematics problem.
Parallel robots (described by [21]) consist of kinematic closed chains; the loop closure
equations are usually nonlinear expressions of the joint coordinates. As a consequence,
the forward kinematic problem of a parallel robot is usually much more complex than
the inverse kinematic problem. Although we do not claim that the proposed approach
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may be employed to any kind of parallel robot (the problem is currently under inves-
tigation), we show an application to the Delta robot. The Delta robot (described by
[22]) is a well-known parallel robot having 3 degrees of freedom: a moving platform
can translate along the three axes based on the three active revolute joints attached to a
fixed platform (see Fig. 13). The forward kinematics problem, in this case, can be for-

y

x

z

Figure 13: The Delta robot.

mulated as follows: find the coordinates of the center of mass of the moving platform,
given the angles of the three revolute joints. Referring to Fig. 13, let li = ||P̄i−Pi||2,
i = 1,2,3, be the (fixed) lengths of the links attached to the moving platform. The
coordinates (x̄i, ȳi, z̄i) of points P̄i, i = 1,2,3, are uniquely determined by the known
values of θ1, θ2 and θ3. By assigning a fictitious mass to the points Pi = (xi,yi,zi),
i = 1,2,3, and choosing a vertical gravity (pointing downwards), the following convex
programming problem can be formulated, where di j = ||P̄i−Pi||2:

min
xi,yi,zi i=1,2,3

z1 (23)

s.t. (x̄i− xi)
2 +(ȳi− yi)

2 +(z̄i− zi)
2 ≤ l2

i , i = 1,2,3 (24)
(x1− x2)

2 +(y1− y2)
2 +(z1− z2)

2 ≤ d2
12 (25)

(x2− x3)
2 +(y2− y3)

2 +(z2− z3)
2 ≤ d2

23 (26)
(x1− x3)

2 +(y1− y3)
2 +(z1− z3)

2 ≤ d2
13 (27)

z1 = z2 (28)
z2 = z3. (29)
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e n d  e f f e c t o r

Figure 14: Obstacle avoidance: a convex admissible workspace.

Constraints (28) and (29) express the absence of rotational degrees of freedom (the
moving platform remains parallel to the fixed one). The Matlab code implementing
the above method for forward kinematics of a Delta robot is available at the URL
http://control.units.it/en/catenary.

3. Dealing with obstacles

The linear inequality constraints (9) may be used, by a proper choice of M, N and
q, for enforcing obstacle avoidance. In particular, we will address two cases as follows.

3.1. Convex admissible workspace
In this case, enforcing obstacle avoidance is straightforward. Indeed, a convex

admissible workspace (as that in Fig. 14) can be described to an arbitrary degree of
accuracy by the intersection of a sufficient number m of half-planes:

A =
{
(x,y) : a jx+b jy+ c j ≤ 0, j = 1, . . . ,m

}
. (30)

Assuming that the desired end-effector position is within the admissible workspace
(otherwise no admissible configuration exists), the constrained inverse kinematics prob-
lem may be formulated as (5)–(10), where M, N and q are such that the constraints (30)
hold for each of the free nodes:

a jxi +b jyi + c j ≤ 0, j = 1, . . . ,m, i = 1, . . . ,n−1. (31)

In this way the nodes are guaranteed to lie in the admissible workspace. Since the
workspace is convex, no collision can occur for all the points of the links.

3.2. Convex obstacles within a convex region
Consider now the case when the robot is required to stay within a convex region

A (described as in the previous subsection) while avoiding collisions with convex
obstacles Ok, k = 1, . . . , l. In other words, the admissible workspace is:

˜A = A \
l⋃

k=1

Ok. (32)
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Figure 15: Distance link-obstacle.

Convexity of the obstacles is assumed to ensure numerical efficiency in computing the
minimum distance point. The assumption can be relaxed by adopting convex over-
bounding volumes of the physical obstacles. Since ˜A is in general not convex, the
convexity of the problem would be lost by applying the constraints (xi,yi) ∈ ˜A , i =
1, . . . ,n−1. However there is a scenario, of practical significance, where convexity may
be retained and kinematic inversion is possible within a workspace of the form (32).
Let the robot be in a given, collision-free, configuration at time t ′ and assume that the
end-effector has to move from the current position (x′E ,y

′
E) to a new (close) position.

Such a situation occurs, for example, when the end-effector has to track a reference
generated by a human operator: the operator “pushes” the end-effector towards the
goal and the robot has to accommodate its pose to track the reference while avoiding
collisions with obstacles. The idea here is to use local convex constraints, where the
meaning of “local” is twofold: indeed the mentioned constraints are included in the
optimization problem (i) only when the robot is close to an obstacle and (ii) only for
those links of the robot that are close to the obstacle. Notice that, provided that the
geometry of the robot and of the environment is exactly known, judging the occurences
of (i) and (ii) may be performed systematically and automatically by means of proper
algorithms, e.g., the well-known method proposed by [23]. Let the ith link at time t ′ be
the segment Li =

{
λ (x′i,y

′
i)+(1−λ )(x′i+1,y

′
i+1), λ ∈ [0,1]

}
. We define the distance

between the ith link and the kth obstacle as:

dik = min{||a−b||2 : a ∈ Ok, b ∈Li} .

From Fig. 15 it is clear that, by allowing the joints i and i+1 to move less than dik, no
collision between Ok and Li can occur. In other words, by adding to the optimization
problem the following constraints:

(xi− x′i)
2 +(yi− y′i)

2 < d2
ik (33)

(xi+1− x′i+1)
2 +(yi+1− y′i+1)

2 < d2
ik, (34)

the problem remains convex and the solution (if any) is such that link Li does not
collide with obstacle Ok. By taking into account the closest obstacle to each link, the
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Figure 16: Restricting the movements of the joints to less than dik may be very conservative.

optimization problem may be formulated as:

min c>x+d>y (35)
s.t. (xi− xi−1)

2 +(yi− yi−1)
2 ≤ r2

i , i = 1,2, . . . ,n (36)
(x0,y0) = (0,0) (37)
(xn,yn) assigned (38)
(xi− x′i)

2 +(yi− y′i)
2 < min

k
d2

ik, i = 1,2, . . . ,n−1 (39)

(xi+1− x′i+1)
2 +(yi+1− y′i+1)

2 < min
k

d2
ik, (40)

i = 1, . . . ,n−1 (41)
(x′i,y

′
i) i = 1,2, . . . ,n assigned (42)

Mx+Ny≤ q (43)
Qx+Ry = s. (44)

Hence the next proposition, whose proof follows immediately from continuity ar-
guments, can be stated.

Proposition 5. Given a set of convex obstacles Ok, i = 1,2, . . . ,m, and a collision-free
configuration (x′i,y

′
i), i = 1,2, . . . ,n, corresponding to the end-effector position (x′E ,y

′
E)

= (x′n,y
′
n), the problem (35)–(44), where (xn,yn) = (x′E ,y

′
E)+δ (xE − x′E ,yE − y′E), ad-

mits a feasible solution for δ > 0 sufficiently small. Such a solution, if admissible, is
collision-free.

The proposition may be exploited to allow navigation in a constrained environment by
solving a sequence of convex optimization problems, whose constraints are adapted to
the current configuration of the robot via suitable “local” constraints.

Remark 6. The nature of the method is local, and resembles that of well-known ap-
proaches such as [24, 25, 18, 19]. The mentioned approaches rely on the linearized
kinematics, in particular on the null-space of the Jacobian: the motion of the whole
robot is governed by two contributions, one that pushes the end-effector towards the
goal, the other that accommodates the robot in order to stay away from the closest
obstacle. Although all the approaches deal with the distance from the robot to the ob-
stacles in 3D Cartesian space, none of them is based on convex programming. More-
over, our method is different in nature because it is not based on linearized kinematics.
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Finally, it does not require to set a significant parameter, namely the relative weight
between the two mentioned control actions.

A drawback of the strategy described above is that, in some cases, it may result in
too conservative constraints. Consider, for instance, Fig. 16. It is clear that, in both
the cases (a) and (b), the link could move parallel to the dashed lines while avoiding
collision. Unfortunately, due to the small distance dik, the constraints (33)–(34) would
allow only unnecessarily small movements in such a direction. It is possible to alleviate
this problem by slightly modifying the previous strategy. Let k̄i = argmink dik, namely
the index of the closest obstacle to link i, and modify the constraints (39)–(41) as
follows:

(xi− x′i)
2 +(yi− y′i)

2 < min
k 6=k̄i

d2
ik (45)

(xi+1− x′i+1)
2 +(yi+1− y′i+1)

2 < min
k 6=k̄i

d2
ik, (46)

where i = 1,2, . . . ,n−1. In other words, the new constraints do not take into account
the closest obstacle to link i. Instead, the requirement that no collision occurs with
the closest obstacle is enforced by properly chosen linear constraints (the red lines in
Fig. 17) that require that link i remains to the same side with respect to the closest
obstacle. In particular, two cases may occur, as shown in Fig. 17: either the minimum
distance is attained by a vertex of the object, as in case (a), or not, as in case (b). In
the former case, the constraints may be chosen by taking the line to which Li belongs
and translating it towards the closest obstacle of an amount dik̄i

. More precisely, let
ax+by+ c = 0 be the normal (i.e., such that a2 +b2 = 1) form of the equation of the
line passing through (x′i,y

′
i) and (x′i+1,y

′
i+1). Then c is the distance from the origin to

the line to which Li belongs. The linear constraints relative to the ith link take the
form:

axi +byi + c±dik̄i
≶ 0 (47)

axi+1 +byi+1 + c±dik̄i
≶ 0, (48)

where the sign on the first members and the verse of the inequalities depend on whether
the obstacle belongs to the same half-plane of the origin or not. Such constraints ex-
press the requirement that the ith link does not cross the closest line parallel to itself
and passing through the frontier of the closest obstacle. As far as case (b) is concerned,
the linear constraint may be chosen in the same way as above, with the only difference
that the line is now the one to which the closest edge (of the closest obstacle) belongs.
Proposition 5 still holds, since the constraints (45)–(46) guarantee that no collision can
occur with obstacles other than the closest.

4. Simulation results

4.1. Planar redundant robot
We report a simulation example obtained by applying the proposed technique to a

7-link planar robot. The initial configuration of the robot is shown in black in Fig. 18:
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Figure 17: A linear constraint may be employed for avoiding collision with the closest obstacle, reducing
conservativeness.

the base is located in (0,0) and the end-effector in (10,45). The gravity vector is

(cosθ ,sinθ) with θ =
5π

8
, kept constant during the whole simulation and chosen to

obtain a concavity of the robot directed towards the fourth quadrant. Note that the
value of θ is not critical: any gravity vector pointing towards the second quadrant
will result in a similar preferred concavity orientation of the robot. Two obstacles
are present, represented by the gray boxes. Moreover, three linear constraints define
the admissible region for the robot as the intersection of three half-planes delimited
by the red lines. The simulation was performed as follows: by means of a graphical
user interface, an operator specified, on-line, the desired motion of the end-effector,
chosen among {stand by, (N)orth, (E)ast, (S)outh, (W)est, NE, SE, SW, NW}. A
fixed step size of 0.75 units of length in each direction was set. Then, at each time
step, the new configuration of the robot was automatically computed by solving (35)–
(44). We stress that the role of the operator was only to specify the desired motion of
the end effector, while the proposed method automatically guarantees the kinematics
inversion and collision avoidance. A stroboscopic view of the whole trajectory is shown
in Fig. 18: the constrained trajectory from the first pose (black) to the last (blue) was
obtained by solving a sequence of convex optimization problems, one per time step.
As for the constraints, this is the case of convex obstacles (the boxes) within a convex
region (the intersection of the three half-planes delimited by the red lines), described
in Section 3.2. Hence, some local convex constraints of the type (47)–(48) need to
be activated depending on the current configuration of the robot (thus they change in
time). An example of such constraints is reported in Fig. 19: the two magenta lines
represent a pair of linear constraints acting either on the last link or the penultimate
when the robot is in the blue configuration. It is clear that the type of constraints is that
of Fig. 17(a). Constraints of the type of Fig. 16, although not shown in the figure, are
present for all the (xi,yi).

The Matlab code for the above simulation is available at the URL http://control.

units.it/en/catenary.

4.2. Non-planar redundant robots

In the following we provide simulations regarding the two examples of non-planar
robots introduced in Section 2.4.
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Figure 18: A stroboscopic view of the whole constrained trajectory of a planar robot.

Figure 19: Example of local constraints (magenta), which are configuration-dependent and active on a subset
of links: here the constraints are relative to the blue configuration and acting one on the last link, the other
on the penultimate.
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4.2.1. Redundant robot on a cart
The robot is a planar manipulator having 7 d.o.f. mounted on a cart moving along

the x-axis. The whole planar structure can rotate above the first revolute joint. The
gravity vector has a vertical component which can point up or down, to obtain a robot
configuration with upward or downward concavity, and a horizontal component which
can be zero or can incline the robot forward or backward. The robot arm can also be
stretched in order to form a straight line. The difference among the horizontal gravity
modes is shown in Fig. 20. To move the end-effector, the user needs to specify its de-
sired position. For computing the robot configuration, two different solution methods
are used: the first solves the convex optimization problem at each step (the desired
end-effector position moves on along the segment joining the initial and final posi-
tions); the second (fast mode) solves the convex optimization problem just for the final
position, while intermediate configurations are obtained via linear interpolation. Given
the desired end-effector position (xd

E ,y
d
E ,z

d
E), the convex optimization problem can be

formulated as (16)-(22). If the solution is not physically admissible, a new optimization
problem is solved: the cost functional has an additional term (due to auxiliary forces
applied as proposed in Section 2.2), whose weight is progressively increased until all
length constraints are satisfied as equalities.

Figs. 21 (a), (b) and (c) show the stroboscopic view of some trajectories obtained
with the fast mode; Fig. 21 (d) shows instead a trajectory obtained by solving at each
step the convex optimization problem. The Matlab code for this non-planar example is
available at the URL http://control.units.it/en/catenary.

4.2.2. DLR-like manipulator
Consider the 7 d.o.f. non-planar manipulator represented in Fig. 11, whose Denavit-

Hartenberg parameters are reported in Table 2. The proposed kinematic inversion
method has been applied to a commercial robot, the Mitsubishi PA-10, having the
same structure of the DLR robot. Precisely, the end-effector has been constrained
to lie on a particular closed path (the ellipse in Figs. 22 and 23), keeping a chosen
orientation (in particular, the Z-Y-Z Euler angles of the end-effector orientation are
[ϕ , ϑ , ψ] = [0 , π

2 , 0]). The end-effector orientation has been imposed by determining
the position of the last spherical wrist of the robot, given each desired position of the
end-effector, resolving the optimization problem keeping fixed both the end-effector
and last spherical wrist positions and then using redundancy to obtain the desired ori-
entation.

5. Concluding discussion

In this paper we propose an approach to the kinematic inversion problem which
is based on convex optimization. The essential idea is relaxing equality constraints to
achieve convex inequality constraints. The optimization problem is formulated so that
the constraints are in fact satisfied as equalities, which ensures the physical admissi-
bility of the solution, and can be solved in a very efficient way. The method is valid,
in general, for planar manipulators only but it can be employed for some particular,
practically important, non-planar manipulators. Compared to the available methods,

25

http://control.units.it/en/catenary


−50

0

50
−60 −40 −20 0 20 40 60

0

20

40

60

y
x

z

(a) Forward horizontal gravity

−50

0

50
−60 −40 −20 0 20 40 60

0

20

40

60

y
x

z

(b) No horizontal gravity

−50

0

50
−60 −40 −20 0 20 40 60

0

20

40

60

y
x

z

(c) Backward horizontal gravity

Figure 20: Effect of different horizontal gravity modes on the robot configuration with end-effector position
(20,20,30).
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(a) Downward concavity; the end-effector moves
from (30,30,30) to (−30,−30,40).
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(b) Upward concavity; the end-effector moves from
(30,30,50) to (−40,−30,30).
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(c) The end-effector moves from (55,50,45)
to (−55,−50,45), the cart from (0,0,29) to
(0,0,−33).
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(d) The end-effector moves from (−40,10,50) to
(40,40,20).

Figure 21: Stroboscopic views of the whole trajectory of a non-planar robot, obtained with the fast mode
solution (a), (b), (c) or by solving at each time step a convex optimization problem (d). The first pose is
depicted in black, the last in blue.
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Figure 22: A stroboscopic view of the whole trajectory of the PA10 Mitsubishi manipulator.

the scheme allows to easily include space constraints. Moreover, the optimization al-
lows to exploit the redundancy of solutions in order to ensure a proper orientation of
the robot. However, in the case of a high number of constraints, solving a constrained
optimization problem might be difficult and require ad hoc hardware. We believe that
the approach is complementary to the existing ones and can be successfully combined
with them. From a numerical point of view, a tolerance ε has to be introduced to check
if the constraints are satisfied as equalities. However, this produces an error in the po-
sition of the end-effector, which is the sum of the vectors corresponding to the robot
links: hence, such an error is upper bounded by nε , where n is the number of consec-
utive links. The tolerance can then be chosen so as to ensure the required precision
in positioning the end-effector. The optimization problem we have to cope with is a
standard convex programming problem with quadratic constraints. Length constraints
(xi− xi−1)

2 +(yi− yi−1)
2 +(zi− zi−1)

2 ≤ r2
i can be expressed in the quadratic form

v>Liv ≤ r2
i , where v = (x> y> z>)> is a vector including all coordinates and Li is a

symmetric matrix having three 2× 2 blocks of the form
(

1 −1
−1 1

)
in the proper

position. The other constraints are linear. This type of problems can be solved in frac-
tions of seconds with ordinary hardware and public domain software such as CVX, a
package for specifying and solving convex programs ([26, 27]). For instance, a time of
about a hundred milliseconds is sufficient to solve the convex problem for a non-planar
robot with 7 links, on an Intel Core i7 processor with 4 cores and a base frequency
of 2.3 GHz. Such a computation time is certainly problematic for a real-time imple-
mentation where an optimization problem has to be solved at each sampling instant.
However, we stress the fact that, being the proposed method global, it has to be consid-
ered primarily as a method for finding robot configurations satisfying some constraints:
it is not necessary to solve an optimization problem at each sampling instant, since in-
termediate configurations can be found by interpolation. On the other hand, there exist
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Figure 23: The same trajectory of Fig. 22, but using a stylized robot and visualizing the end-effector orien-
tation.

techniques for creating C-code based solvers for specific instances of convex optimiza-
tion problems, see for instance [28, 29, 30]. Results have been reported of times of
about 1 ms for solving problems having hundreds of decision variables (far more than
in our case, in which the number of decision variables is twice the number of joints).
Hence we believe that a C-code implementation, tailored for the problem at hand, could
significantly reduce the computation time.
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