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ABSTRACT
Oscillators are essential to fuel autonomous behaviours in molecu-
lar systems. Artificial oscillators built with programmable biological
molecules such as DNA and RNA are generally easy to build and tune,
and can serve as timers for biological computation and regulation.
We describe a new artificial nucleic acid biochemical reaction net-
work, andwedemonstrate its capacity toexhibit oscillatory solutions.
This network can be built in vitro using nucleic acids and three bacte-
riophage enzymes, and has the potential to be implemented in cells.
Numerical simulations suggest that oscillations occur in a realistic
range of reaction rates and concentrations.
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1. Introduction

All organisms require timing circuits to orchestrate processes related to their life cycle,
such as cell growth, metabolism, and division [36]. By building molecular timers from the
bottom up, we have an opportunity to understand the design requirements to programme
periodic biochemical behaviours. In addition, synthetic oscillators are useful components
to direct autonomous molecular operations in vivo and in vitro [11,13,30,33,35].

In vitro nucleic acid oscillators can be built with a small number of parts, and their
behaviour is quantitatively predictable [15,16,19,22,35]. Nucleic acids have becomemolec-
ular building blocks for a variety of logic and dynamic circuits, because their thermody-
namic and kinetic interactions can be programmed by choosing their sequence content
with rational optimization algorithms. Existing nucleic acid oscillators however cannot be
ported to the cellular environment, because they rely on the presence of multiple single-
stranded or partially single-strandedDNAspecies, which are incompatiblewith the cellular
machinery [15,16,19,22]. Here we describe a new nucleic acid oscillator architecture that
has the potential to overcome this limitation, as it does not require single-stranded DNA
molecules. A particularly interesting aspect of our circuit is that all regulatory interac-
tions are non-cooperative. Therefore, the corresponding model does not include Hill-type
nonlinearities, present in the majority of models for molecular non-equilibrium circuits.

CONTACT Elisa Franco efranco@engr.ucr.edu; Christian Cuba Samaniego christian.sami@gmail.com;
Giulia Giordano giulia.giordano@uniud.it; Franco Blanchini blanchini@uniud.it

© 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is anOpenAccess article distributed under the terms of the Creative CommonsAttribution License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
mailto:efranco@engr.ucr.edu
mailto:christian.sami@gmail.com
mailto:giulia.giordano@uniud.it
mailto:blanchini@uniud.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


JOURNAL OF BIOLOGICAL DYNAMICS 103

Figure 1. (a) Architecture of the three-node oscillator: enzymes E1 and E2 mutually regulate their con-
centration (arrows indicate activation, flat arrows indicate repression) generating a negative feedback
loop; enzyme E3 counteracts the loop regulation.(b) Schematic of the chemical reactions underlying the
oscillator architecture. Different enzyme species are indicated as circles of different colour ; bright colour
indicates active enzyme, and dim colour indicates inactive enzyme. RNA species are transcribed (dashed
arrows) from synthetic genes present at constant concentration; enzymes are activated or inhibited by a
given RNA species according to the illustrated reactions and corresponding rates. The full set of reactions
is listed in Section 2, and result in ODE systems (1) and (2).

Our oscillator comprises three polymerases, two of which mutually regulate each other
(Figure 1(a )). The interactions among enzymes are defined by four synthetic genes and
four RNA species (Figure 1(b )). The activity of two of the enzymes is modulated by RNA
species that serve as inhibitors or activators. The third enzyme species controls the baseline
production of two of the RNA species, and has a net effect of counteracting the mutual
regulation of the other two enzymes. For instance, let us consider the pathway by which
enzyme E2 is inhibited by enzymeE1 and activated by enzymeE3.E1 produces RNA species
R1 by transcribing gene g1; R1 binds to and inhibits enzyme E2, converting it to inactive
enzymeE∗

2 (a reaction experimentally demonstrated, for instance, in [23, 24]). RNA species
R4 (transcribed by E3) counteracts this pathway and causes reactivation of E2 (conversion
of E∗

2 to E2), because it is designed to displace R1 bound to E2, and to titrate free R1 as
well. Similar reactions generate inhibition and activation pathways for E1 (due to E3 and
to E2, respectively). Overall, these interactions contribute to creating a negative feedback
loop. This system can be experimentally implemented using T7, T3, and SP6 bacteriophage
RNA polymerases [20,21,31], which can be purchased off-the-shelf from many vendors.
RNA sequences (known as aptamers [12]) that bind to bacteriophage RNA polymerases
and work as inhibitors have been experimentally characterized [23,24]. RNA activators
can be designed as strands whose sequences are complementary to the sequences of the
inhibitors via the mechanism of strand displacement and strand titration [18,37].

We describe this system by means of ordinary differential equations (ODEs) built using
the law of mass action, starting from a list of chemical reactions reported in Section 2. We
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demonstrate that the system is a candidate oscillator due to the sign pattern of its Jacobian
matrix [4, 5]; in particular we show that the system admits transitions to instability that are
exclusively oscillatory.

Our analysis relies on monotone systems theory (background is provided in Section 3)
and the theory of invariant sets. In Section 4 we study the capacity of this dynamical sys-
tem to structurally exhibit sustained oscillations whenever it becomes unstable, in view
of its particular Jacobian structure; this approach can be applied to a variety of chemical
reaction networks, as we have shown, for instance, in the context of other titration-
based regulatory networks [9]. Structural (namely, parameter-free) results can greatly help
unravel the functioning of biological systems, which are affected by intrinsic uncertain-
ties and variabilities in their parameters, but can nonetheless exhibit an extraordinary
robustness and resilience [3]. We conclude with a numerical bifurcation analysis and
study of period and amplitude as a function of variations in individual parameters, show-
ing that for realistic reaction rates the system exhibits oscillatory behaviours (Section 5).
We previously described a two-enzyme oscillator relying on RNA aptamers [2,10]; we
claim that a three-enzyme system is more tunable, and simulation results indicate that
in a certain region of parameter space its amplitude can be modulated independently
of the period.

2. A three-enzyme oscillator regulated by first- and second-order reactions

In the following, capital letters represent chemical species and the corresponding low-
ercase letters represent species concentrations (e.g. species A has concentration a). Our
three-node oscillator is described by the biochemical reactions below. Reactions are
grouped in two sets corresponding to functionalmodules (Figure 2), whose common exter-
nal input is E3. For simplicity we assume a common degradation rate for all products
Ri, i = 1, . . . , 4.

Module1 : Module2 :
E1

α1−−⇀ E1 + R1 Production E2
α2−−⇀ E2 + R2 Production

E3
α3−−⇀ E3 + R3 E3

α4−−⇀ E3 + R4
E2 + R1

β1−⇀ E∗
2 Inhibition E1 + R4

β2−−⇀ E∗
1 Inhibition

E∗
2 + R3

γ1−⇀ E2 Conversion E∗
1 + R2

γ2−−⇀ E1 Conversion

R1 + R3
δ1−⇀ 0 Titration R2 + R4

δ2−−⇀ 0 Titration

R1
φ−⇀ 0 Degradation R2

φ−−⇀ 0 Degradation

R3
φ−−⇀ 0 R4

φ−−⇀ 0

The differential equations describing Module 1 are:

ṙ1 = α1e1 − β1r1e2 − δ1r1r3 − φr1,

ṙ3 = α3e3 − γ1r3e∗2 − δ1r1r3 − φr3,

ė2 = γ1r3e∗2 − β1r1e2.

(1)
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Figure 2. Schematic of the interconnections between reaction Modules 1 and 2, with enzyme concen-
trations as inputs and outputs.

The differential equations describing Module 2 are:

ṙ2 = α2e2 − γ2r2e∗1 − δ2r2r4 − φr2,

ṙ4 = α4e3 − β2r4e1 − δ2r2r4 − φr4,

ė1 = γ2r2e∗1 − β2r4e1.

(2)

The total concentration of E1 and E2 is assumed to be constant, and equal to etot1 and
etot2 , respectively; hence, mass conservation laws yield e∗1 = etot1 − e1 and e∗2 = etot2 − e2.
The twomodules are interconnected and form a feedback loop: Module 1 (associated with
variables r1, r3 and e2) receives input e1 fromModule 2; in turn, Module 2 (associated with
variables r2, r4 and e1) receives input e2 from Module 1. Both modules receive input e3,
which we assume is constant (Figure 2); we assume that the timescale at which e3 binds to
a gene and transcribes RNA is fast relative to the other timescales in the system, so that its
dynamics can be neglected; this assumption is sensible for short transcripts (30–60 bases).
In the next sections we demonstrate that transitions to instability in this system can occur
exclusively due to a pair of complex conjugate eigenvalues crossing the imaginary axis,
hence sustained oscillations necessarily arise whenever the system is driven to instability.
From numerical simulations it is apparent that the system can actually be destabilized, for
suitable parameter choices, and is therefore a good candidate oscillator.

3. Background

We summarize several background notions that are required to introduce our main results
in Section 4. Additional information can be found in references [4,5]. Consider a system:

ẋ(t) = f (x(t),μ), x ∈ R
n, (3)

whereμ is a real-valued parameter and f (·, ·) is a sufficiently smooth function, continuous
in μ, satisfying the following Assumptions for every admissible value of μ.
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Assumption 1: All the solutions of (3) are globally uniformly asymptotically bounded in the
compact set S ⊂ R

n.

Hence, system (3) admits an equilibrium x̄ in S [25,26,29].

Assumption 2: ∂fi/∂xj is either always positive, always negative, or always null in the
considered domain.

Assumption 3: For all i, ∂fi/∂xi < 0, that is, the system is non-autocatalytic.

Due to the monotonicity of fi(·) with respect to each argument xj, the Jacobian matrix J
of system (3) is sign definite.

Definition 3.1: Given a system with a sign-definite Jacobian J, its structure is the sign
pattern matrix	 = sign[J].

The structure	 of system (3) is assumed to be invariant with respect toμ. Assumption 1
ensures that an equilibrium exists; all the following definitions refer to this equilibrium,
which is, in general, a function of μ: f (x̄μ,μ) = 0. We assume that x̄μ depends con-
tinuously on μ. Note that a suitable change of coordinates always allows us to shift the
equilibrium to the origin, without affecting our analysis.

Definition 3.2: System (3) undergoes a transition to instability (TI) at μ = μ∗ iff its Jaco-
bian matrix J(x̄μ) is asymptotically stable in a left neighbourhood of μ∗, and unstable in a
right neighbourhood.1 A TI is simple if at most a single real eigenvalue or a single pair of
complex conjugate eigenvalues crosses the imaginary axis.

Definition 3.3: System (3) undergoes an oscillatory transition to instability (OTI) at μ =
μ∗ iff its Jacobian matrix J(x̄μ∗) has a single pair of pure imaginary eigenvalues, while all
the other eigenvalues have negative real part:

σ(J(x̄μ∗)) = {λ1, λ2, . . . , λn}, where λ1,2 = ±jω,

with Re(λk) < 0 for k>2 and Re(λk) > 0 for k=1,2 in a right neighbourhood of μ∗.

We now provide general definitions for candidate oscillatory and multistationary sys-
tems. We consider system (3), with its given structure 	 (invariant with respect to μ),
under Assumptions 1, 2 and 3.

Definition 3.4: A system of the form (3), with structure	, is structurally a candidate

(1) oscillator in the weak sense iff it admits an OTI for some μ = μ∗;
(2) oscillator in the strong sense iff every simple TI (if any) is an OTI;

Necessary and sufficient conditions characterizing strong and weak oscillators/ multi-
stationary systems are provided in [4] in terms of cycles in the structure graph.We associate
matrix	 with a directed n-node graph, whose arcs are positive (+1), negative (−1), or zero
depending on the sign of the corresponding matrix entries.
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Definition 3.5: Given a graph, a cycle is an oriented, closed sequence of distinct nodes
connected by distinct directed arcs. A cycle is negative (positive) if the number of negative
arcs is odd (even). The order of a cycle is the number of arcs involved in the cycle. We say
a system is critical when all negative cycles (if any) are of order two.

Proposition 3.6: A non-critical system is a candidate oscillator in the weak sense if and only
if its structure has at least one negative cycle (necessarily of order greater than two).

Proposition 3.7: A non-critical system is a candidate oscillator in the strong sense if and
only if its structure has only negative cycles.

Proofs for Propositions 3.6 and 3.7 can be found in [4].

Remark 1: The results above are verified as well if we drop Assumption 1 and we restrict
our analysis to solutions that belong to a compact positively invariant set S , with a non-
empty interior and with no equilibrium points on the boundary.

The graph-based results in [4] have been generalized in [5] to the case of systems that are
the sign definite interconnection of subsystems that are eithermonotone or anti-monotone
(as in the case of our system). We provide below the definitions of monotone and anti-
monotone system.

Definition 3.8: A system

ẋ(t) = f (x(t), u(t)), (4)

where u(·) ∈ R is a scalar, time varying input, is input-to-state monotone if, denoting as
x1(t) and x2(t) the solutions of the system corresponding to inputs u1(t) and u2(t), the
fact that x2(0) ≥ x1(0) and u2(t) ≥ u1(t) for t>0 implies that x2(t) ≥ x1(t) for t>0,
where inequalities are intended to hold componentwise. The system is input-to-state anti-
monotone if the input has the opposite effect on the state, that is, if x2(0) ≥ x1(0) and
u2(t) ≤ u1(t) for t>0, then x2(t) ≥ x1(t) for t>0. If the system includes an output y =
g(x), the system is input–output monotone (anti-monotone) if it is input-to-state monotone
(anti-monotone) and if x2 ≥ x1 implies g(x2) ≥ g(x1).

A simple characterization of input-to-state monotonicity and anti-monotonicity [1, 28]
can be provided by exploiting the concept of Metzler matrix: a matrix is Metzler if its
elements satisfy aij ≥ 0, ∀(i, j) such that i �= j.

Theorem 3.9: System (4) is input-to-state monotone if its Jacobian matrix J = ∂f /∂x
is a Metzler matrix and ∂f /∂u ≥ 0 componentwise. Conversely, system (4) is input-to-
state anti-monotone if its Jacobian matrix J = ∂f /∂x is a Metzler matrix and ∂f /∂u ≤ 0
componentwise.

Amore general concept, whichwewill use in the following, is given bymonotonicity (or
anti-monotonicity) with respect to a given signature tuple (s1, . . . , sn), where si = 1 or −1
for all i [14]: this amounts to requiring that, after changing the sign of the state variables as
x̂i = sixi for all i, the system becomes monotone (or anti-monotone). Hence, Theorem 3.9
applies to the system in the new coordinates.
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4. Analytical results

4.1. Existence of equilibria

First, we show that this system always admits a steady state (equilibrium).

Proposition 4.1: Consider the interconnection of systems (1) and (2). For any constant e3 >
0, there exists a suitably large ρ ∈ R

+ such that the compact set

Sρ = {r1, r2, r3, r4, e1, e2 ≥ 0 : r1 + r3 ≤ ρ, r2 + r4 ≤ ρ, e1 ≤ etot1 , e2 ≤ etot2 }
is positively invariant. Moreover, all of the solutions of the system are globally uniformly
asymptotically bounded in Sρ , hence the interconnection of systems (1) and (2) satisfies
Assumption 1.

Proof: The inequalities e1(t) ≤ etot1 and e2(t) ≤ etot2 are always satisfied by construction.
Consider the constraint r1 + r3 ≤ ρ and assume that at some point r1 + r3 = ρ. Then

d
dt
(r1 + r3) = α1e1 − β1r1e2 − δ1r1r3 − φr1 + α3e3 − γ1r3e∗2 − δ1r1r3 − φr3

≤ α1etot1 + α3e3 − φr1 − φr3 = α1etot1 + α3e3 − φρ < 0

for ρ large enough: ρ > (α1etot1 + α3e3)/φ. Hence, the constraint r1 + r3 ≤ ρ cannot be
violated. Analogously, the constraint r2 + r4 ≤ ρ cannot be violated because, if at some
point r2 + r4 = ρ, then

d
dt
(r2 + r4) ≤ α2etot2 + α4e3 − φr2 − φr4 = α2etot2 + α4e3 − φρ < 0

for ρ > (α2etot2 + α4e3)/φ. Then, any value ρ > max{(α1etot1 + α3e3)/φ, (α2etot2 + α4e3)/
φ} ensures that Sρ is positively invariant. Also, since (d/dt)(r1 + r3) is negative when-
ever r1 + r3 ≥ ρ and (d/dt)(r2 + r4) is negative whenever r2 + r4 ≥ ρ, any trajectory of
the system is uniformly asymptotically bounded in Sρ (indeed, V1 = r1 + r3 and V2 =
r2 + r4 can be taken as Lyapunov-like functions for modules 1 and 2, respectively, to show
that all the trajectories of the system are uniformly ultimately bounded in the compact
set Sρ [6]). �

Proposition 4.2: The dynamical systemdefined by the interconnection of systems (1) and (2)
always admits the existence of a steady-state.

Proof: The existence of the compact invariant set Sρ where the solutions of the system
are globally uniformly asymptotically bounded (Proposition 4.1) implies the existence of a
steady-state [25,26,29]. �

We later demonstrate that this steady state is unique.

Remark 2: The presence of degradation reactions (at rateφ > 0) is essential to have struc-
tural boundedness. In fact, if we set φ = 0 and we consider the function ψ = −r1 + r3 +
e2, we have

ψ̇ = −ṙ1 + ṙ3 + ė2 = −α1e1 + α3e3 ≥ −α1etot1 + α3e3,

which may grow unbounded for a large value of e3.
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4.2. Monotonicity properties and uniqueness of equilibrium point

Now we show that the overall system is the feedback interconnection of two subsystem,
corresponding to the modules defined earlier, that are, respectively, anti-monotone and
monotone. This property further implies that the system admits a unique equilibrium.

We individually linearize subsystems (1) and (2) around an equilibrium point (which is
guaranteed to exist), and we begin by studying each subsystem in isolation.

Module 1 : ż = A1z + B1δe1, (5)

Module 2 : ẇ = A2w + B2δe2, (6)

where the linearized state variables of each subsystems are z = [δr1 δr3 δe2]	 and w =
[δr2 δr4 δe1]	. We denote equilibrium values of each variable with a ¯ symbol (e.g. ē1 is the
equilibrium of e1). The linearized dynamics are defined by matrices:

A1 =

⎡
⎢⎣

−β1ē2 − δ1r̄3 − φ −δ1r̄1 −β1r̄1
−δ1r̄3 −γ1ē∗2 − δ1r̄1 − φ γ1r̄3
−β1ē2 γ1ē∗2 −β1r̄1 − γ1r̄3

⎤
⎥⎦ , B1 =

⎡
⎣α10
0

⎤
⎦

and

A2 =

⎡
⎢⎣

−γ2ē∗1 − δ2r̄4 − φ −δ2r̄2 γ2r̄2
−δ2r̄4 −β2ē1 − δ2r̄2 − φ −β2r̄4
γ2ē∗1 −β2ē1 −γ2r̄2 − β2r̄4

⎤
⎥⎦ , B2 =

⎡
⎣α20
0

⎤
⎦ .

The two linearized subsystems are stable, and the matrices defining their dynamics (Jaco-
bian matrices of the nonlinear systems) are Metzler up to changes in the sign of some
variables. This can be easily shown by changing sign to the first component of z and to the
second component of w: z1 := −z1 and w2 := −w2. This is equivalent to changing sign to
δr1 and δr4, where r1 and r4 are variables of the original system, and provides matrices:

Â1 =

⎡
⎢⎣

−β1ē2 − δ1r̄3 − φ +δ1r̄1 +β1r̄1
+δ1r̄3 −γ1ē∗2 − δ1r̄1 − φ γ1r̄3
+β1ē2 γ1ē∗2 −β1r̄1 − γ1r̄3

⎤
⎥⎦ , B̂1 =

⎡
⎣−α1

0
0

⎤
⎦ ,

(7)
and

Â2 =

⎡
⎢⎣

−γ2ē∗1 − δ2r̄4 − φ +δ2r̄2 γ2r̄2
+δ2r̄4 −β2ē1 − δ2r̄2 − φ +β2r̄4
γ2ē∗1 +β2ē1 −γ2r̄2 − β2r̄4

⎤
⎥⎦ , B̂2 =

⎡
⎣α20
0

⎤
⎦ . (8)

Remark 3: We have applied a local change of variables, since z1 = δr1 and w2 = δr4 are
variables of the linearized system. This is equivalent to applying the linear transformations
z = T1ẑ andw = T2ŵ, with T1 = diag{−1, 1, 1} and T2 = diag{1,−1, 1}. This leads to the
transformed state matrices Â1 = T−1

1 A1T1 and Â2 = T−1
2 A2T2, and to the transformed

input matrices B̂1 = T−1
1 B1 and B̂2 = T−1

2 B2.
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Proposition 4.3: Matrices Â1 in Equation (7) and Â2 in Equation (8) are Metzler and are
Hurwitz stable. Moreover, their inverse matrices are (element-wise) negative.

Proof: Consider systems (5) and (6), which after the sign change havematrices (7) and (8).
Since all of their off-diagonal entries are non-negative, Â1 and Â2 are Metzler matri-
ces. They are also irreducible.2 Hurwitz stability (all the eigenvalues of the Jacobian J =
∂f /∂x(x̄) have a negative real part) immediately follows from the fact that Â1 and Â2 are
Metzler and diagonally dominant, with negative diagonal entries (this is a consequence
of Gershgorin’s circle theorem). Finally, any stable and irreducible Metzler matrix has an
element-wise negative inverse (see [6] for details). �

We are now ready to demonstrate the monotonicity properties of the two nonlinear
modules.

Proposition 4.4: Systems (1) and (2) are, respectively, input-to-state anti-monotone and
monotone after the sign change in the relative variables:

δ̂r1 = −δr1 and δ̂r4 = −δr4. (9)

Proof: This follows from Theorem 3.9, since the state matrices Â1 and Â2 are Metzler,
while the input matrices B̂1 and B̂2 are, respectively, non-positive and non-negative. �

Monotonicity and stability have important consequences on the static input-state and
input–output characteristics (input–output equilibrium conditions) and on uniqueness of
the equilibrium point. Indeed, the feedback of two systems that are either monotone or
anti-monotone always admits a single equilibrium point (if any).

We have shown in Proposition 4.2 that an equilibrium always exists; we prove below,
for completeness, that the static input–output characteristics of the two modules are
monotonic, hence such an equilibrium point is unique.

Proposition 4.5: We assume that inputs e1 and e2 in systems (1) and (2) are constant. Then,
the steady-state values of the modules, r̄1(e1), r̄3(e1), ē2(e1) and r̄2(e2), r̄4(e2), ē1(e2), depend
monotonically on the inputs. Precisely, r̄2(e2), r̄4(e2) and ē1(e2) monotonically increase as a
function of e2, while r̄1(e1), r̄3(e1) and ē2(e1)monotonically decrease as a function of e1.

Proof: We recall that, for a generic system ẋ = f (x, u), the steady-state characteristic x̄(u)
is implicitly defined by

0 = f (x̄, u).

We can apply the implicit function theorem to find its derivative:

d
du

x̄(u) =
(

− ∂f
∂ x̄

)−1
∂f
∂u

.

Consider Module 1, after the sign change in the variables in Equation (9):

d
de1

z̄(e1) = −(Â1)
−1B̂1 < 0.

The inequality holds componentwise (Proposition 4.3), hence after the sign change
equilibria r̄1(e1), r̄3(e1) and ē2(e1) are monotonically decreasing functions of e1.
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As for Module 2, after the sign change in Equation (9):

d
de2

w̄(e2) = −(Â2)
−1B̂2 > 0

componentwise, hence after the sign change r̄2(e2), r̄4(e2) and ē1(e2) are monotonically
increasing functions of input e2. �

Proposition 4.6: The interconnection of systems (1) and (2) admits a unique equilibrium.

Proof: The systemalways admits a steady state, as shown inProposition 4.2.Due to Propo-
sition 4.5, ē2(e1) is a decreasing function and ē1(e2) is an increasing function. Thus, the
system of equations:

e2 = ē2(e1),

e1 = ē1(e2),

has a unique solution. �

It is possible to demonstrate that this unique equilibrium is strictly positive, and there
cannot be equilibria with zero components. This claim can be proved by showing that the

Table 1. Nominal simulation parameters.

Rate Description Value Other studies

α1 = α2 = α3 = α4 (/s) Production of RNA 0.1 10−3 − 1 Refs. [8, 34]
β1 = β2 (/M/s) Inhibition 5 · 105 104 − 106 Refs. [18, 38]
γ1 = γ2 (/M/s) Activation 105 104 − 106 Refs. [18, 38]
δ1 = δ2 (/M/s) Titration 4 · 104 104 − 106 Refs. [18, 38]
φ (/s) Degradation of RNA 5 · 10−5 10−5 − 10−3 Refs. [7, 17]
e1(nM) Concentration 100
e2(nM) Concentration 100
e3(nM) Concentration 10

Figure 3. Left: Time evolution of e1 and e2 when parameters are chosen as in Table 1. Right: Trajectories
in the plane e1– e2 (black) and equilibrium conditions (red and blue).
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two equilibrium equations intersect for positive values of e1 and e2. Then, we can show that
all other variables have a positive steady-state from their equilibrium conditions, which are
all derived analytically in the appendix.

4.3. The interconnected system admits exclusively oscillatory transitions to
instability

Based on the properties demonstrated in the previous sections, we establish that our three-
enzyme network has the appropriate structure to exhibit sustained oscillations, whenever it
is driven to instability.More precisely, the network admits exclusively oscillatory transitions
to instability.

Proposition 4.7: The interconnection of systems (1) and (2) is a strong candidate oscillator.

Proof: The Jacobian of the overall system, with variables ordered as (δr1, δr3, δe2, δr2, δr4,
δe1) and with the variable sign change δ̂r1 = −δr1 and δ̂r4 = −δr4, highlights that the

Figure 4. We randomly choose parameters in the interval 10−2 to 102 times their nominal value (listed
in Table 1). Each black dot in this plot indicates that the (randomly) chosen parameter vector results
in oscillations. Axes are in log scale. Orange diamonds represent the nominal value of each parameter
(Table 1).
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Figure 5. Log plots showing how varying pairs of parameters influences the stability of the equilibrium.
Each parameter was varied between one tenth to 10 times its nominal value (black diamond; nominal
values listed in Table 1). Orange regions indicate oscillatory behaviour; blue regions indicate a single
stable equilibrium.

system is the negative feedback interconnection of two monotone subsystems:

J =

⎡
⎢⎢⎢⎢⎢⎣

−β1e2 − δ1r3 − φ δ1r1 β1r1 0 0 −α1
δ1r3 −γ1e∗2 − δ1r1 − φ γ1r3 0 0 0
β1e2 γ1e∗2 −β1r1 − γ1r3 0 0 0
0 0 α2 −γ2e∗1 − δ2r4 − φ δ2r2 γ2r2
0 0 0 δ2r4 −β2e1 − δ2r2 − φ β2r4
0 0 0 γ2e∗1 β2e1 −γ2r2 − β2r4

⎤
⎥⎥⎥⎥⎥⎦ .

(10)

Due to Proposition 4.1, the system satisfies Assumption 1. By inspecting the Jacobian
matrix, it is apparent that Assumptions 2 and 3 are also satisfied. Therefore, the system
is a strong candidate oscillator [4,5]. This means that the system can transition to instabil-
ity exclusively due to a pair of complex conjugate eigenvalues crossing the imaginary axis
(OTI) and yielding oscillatory dynamics. �
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5. Numerical analysis

Model (1)–(2) was integrated using the MATLAB routine ode23. Bifurcation analysis,
period and amplitude computation was also done writing MATLAB scripts ad hoc.

In the numerical analysis that follows, we choose nominal parameters (Table 1) that are
compatible with reaction rates measured in nucleic acid strand displacement reactions and
in vitro transcription. An example solution trajectory forModel (1)–(2), integratedwith the
nominal parameters, is shown in Figure 3.

5.1. Randomized parameter sampling

First, we selected random values for the parameters sampling from a uniform distribution
in the interval 10−2 to 102 times the nominal parameter value (Table 1). We locate peaks
and wells of the oscillations and compute period and amplitude as averaged over all the
measured peaks andwells. A trajectory is classified as oscillatory if at least three oscillations
are measured, if the period of the trajectory is between 0.5 and 40 h, and its amplitude is

Figure 6. Period (h) as a function of each parameter (x axis in log scale). The period was computed
numerically for damped and sustained oscillations. We classify a solution as oscillatory (damped or sus-
tained) as long as the period is between 0.5 and 40 h, and the amplitude is larger than 1 nM. Blue circles
indicatewhen the Jacobian has at least one pair of complex eigenvalueswith negative real part (damped
oscillations). Red circles indicate when the Jacobian has at least one pair of complex eigenvalues with
positive real part (sustained oscillations). The parameters were changed in the range of one tenth to 10
times their nominal values.
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larger than 1 nM. This plot highlights that high degradation rates and low concentrations
of e1 and e2 are associated with loss of oscillations (Figure 4).

5.2. Bifurcation analysis

Using analytical equilibrium conditions (expressions (A.1) and (A.2) reported in the
appendix), we find equilibria numerically and compute the eigenvalues of Jacobian (10) at
the equilibria. If at least one pair of complex conjugate eigenvalues with non-negative real
part is found, the equilibrium is classified as oscillatory. We vary two parameters simulta-
neously, while all others are kept constant as in Table 1. Oscillatory regions are shown in
orange in Figure 5, while stable regions are shown in blue.

5.3. Period and amplitude

We focus on the influence of reaction rates and total concentrations of ei on the period and
amplitude. Parameters α1, α2, α3, α4, e3, etot1 and etot2 are particularly relevant because they
are experimentally easy to change (Figure1(b)): αi, i = 1, . . . , 4, are transcription rates,

Figure 7. Amplitude (nM) as a function of each parameter (x axis in log scale). We computed numeri-
cally the amplitude of the solutions, as long as they classify as damped or sustained oscillations (period
between 0.5 and 40 h and amplitude larger than 1 nM). Blue circles indicate when the Jacobian has
at least one pair of complex eigenvalues with negative real part (damped oscillations). Red circles indi-
cate when the Jacobian has at least one pair of complex eigenvalue with positive real part (sustained
oscillations). The parameters were changed in the range of one tenth to 10 times their nominal values.
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which can be tuned by mutating the promoter region; etot1 , etot2 and e3 can be chosen by the
experimenter.

We compute the period and amplitude from integrated solutions to the ODEs. As
explained in Section 5.1, we locate peaks and wells of the oscillations and compute period
and amplitude as averaged over all the measured peaks and wells. A trajectory is classified
as oscillatory if its period is between 0.5 and 40 h, and its amplitude is larger than 1 nM.
The results are shown in Figures 6 and 7, where each individual parameter is varied in
the range of one tenth to 10 times its nominal value, while other parameters are held fixed
at their nominal value (Table 1). Correlation between period and amplitude is shown in
Figure 8. To discriminate between damped and sustained oscillations, we check the sign
of the real part of complex conjugate eigenvalues of the Jacobian matrix (evaluated at the
considered combination of parameters). In Figures 6–8, damped oscillations are marked
by blue circles, and sustained oscillations are marked by red circles.

From Figures 6 and 7 we observe that the period can be tuned from 0 to 5 hours. Also,
the parameters related to the kinetics rate can change the period up to 3 hours in the range
of one tenth to 10 times their nominal value.

Figure 8. Period (h) and amplitude (nM) correlation. This figure combines the results plotted in Figures 6
and 7. Amplitude and period of the solutions were computed numerically for both damped and sus-
tained oscillations (period between 0.5 and 40 h and amplitude larger than 1 nM). Blue circles indicate
when the Jacobian has at least one pair of complex eigenvalues with negative real part (damped oscilla-
tions). Red circles indicate when the Jacobian has at least one pair of complex eigenvalues with positive
real part (sustained oscillations). Parameters were changed in the range of 0.1–10 times their nominal
values.
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These plots show that when varying e3 in a range between 0.1 and 10 times its nominal
value, the period remains flat. In that same range, amplitude varies significantly. We also
observe that varying δ1 between 0.1 and 10 times its nominal value, amplitudes stays flat
while the period varies between 0 and 3 h. It is worth noting that the titration rates δ1 and
δ2 do not affect drastically neither amplitude nor period, which indicates that the system
performance is robust relative to variations in the titration rates.

We observe that there is a range in which parameters α2 and α4 could be varied to tune
exclusively the period, while the amplitude remains nearly constant. Alternatively, there
is a range in which parameters etot1 and e3 could be varied to modulate exclusively the
amplitude, keeping the period nearly unchanged (and slow).

6. Conclusion

We have described an artificial three-enzyme biochemical network that has the capacity
to oscillate. The network is designed for in vitro implementation with nucleic acid compo-
nents and bacteriophage RNApolymerases, but has the potential to be implemented in vivo
as well. The polymerases transcribe synthetic genes whose RNA transcripts in turn regu-
late enzyme activity, generating a negative feedback loop that is necessary for oscillations
(the famous Thomas’ conjecture [27,32]). We analytically demonstrate that this architec-
ture can exclusively undergo oscillatory transitions to instability, due to the structure of
its Jacobian matrix. Numerical analysis shows that in a range of realistic parameters the
system oscillates; simulations are useful to direct the experimental implementation of this
circuit, which is currently being pursued.

Notes

1. The definition holds as well for systems transitioning to instability from the right to the left
neighbourhood of μ∗: just take μ̂ = μ∗ − μ as the bifurcation parameter.

2. A matrix is irreducible if there does not exist a permutation of its rows or columns that
transforms it into a block triangular matrix.
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Appendix 1. Equilibrium conditions

Here we derive equilibrium conditions forModules 1 and 2. From ṙ2 − ṙ4 = 0 and ė1 = 0 (e1 ≡ ē1),
we obtain:

α2ē2 = α4ē3 + φr̄2 − φr̄4.

From ṙ1 − ṙ3 = 0 and ė2 = 0 (e2 ≡ ē2), we obtain:

α1ē1 = α3ē3 + φr̄1 − φr̄3.

From ṙ4 = 0 and ė1 = 0,

r̄4 = α4ē3
β2ē1 + δ2r̄2 + φ

= γ2r̄2ē∗1
β2ē1

.

We obtain the quadratic equation a1r̄22 + b1r̄2 + c1 = 0, where

a1 = δ2γ2ē∗1
b1 = γ2ē∗1(β2ē1 + φ)

c1 = −β2ē1α4ē3

r̄2(ē1, ē3) =
−b1 +

√
b21 − 4a1c1
2a1

r̄4(ē1, ē3) = γ2ē∗1 r̄2(ē1, ē3)
β2ē1

.

Then we find ē2 (the equilibrium value of e2) as a function of ē1 and ē3:

ē2(ē1, ē3) = α4ē3 + φr̄2(ē1, ē3)− φr̄4(ē1, ē3)
α2

. (A.1)

Moreover, from ṙ3 = 0 and ė2 = 0,

r̄3 = α3ē3
γ1ē∗2 + δ1r̄1 + φ

= β1r̄1ē2
γ1ē∗2

.
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We obtain the quadratic equation a2r̄21 + b2r̄1 + c2 = 0, where

a2 = δ1β1ē2
b2 = β1ē2(γ1ē∗2 + φ)

c2 = −γ1ē∗2α3ē3

r̄1(ē2, ē3) =
−b2 +

√
b22 − 4a2c2
2a2

r̄3(ē2, ē3) = β1ē2r̄1(ē2, ē3)
γ1ē∗2

.

Finally, we find ē1 (the equilibrium value of e1) as a function of ē2, and ē3.

ē1(ē2, ē3) = α3ē3 + φr̄1(ē2, ē3)− φr̄3(ē2, ē3)
α1

. (A.2)
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