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a b s t r a c t 

This paper addresses set invariance properties for linear time-delay systems. More precisely, the first goal 

of the article is to review known necessary and/or sufficient conditions for the existence of invariant sets 

with respect to dynamical systems described by linear discrete time-delay difference equations (dDDEs). 

Secondly, we address the construction of invariant sets in the original state space (also called D-invariant 

sets) by exploiting the forward mappings. The notion of D-invariance is appealing since it provides a 

region of attraction, which is difficult to obtain for delay systems without taking into account the delayed 

states in some appropriate extended state space model. 

The present paper contains a sufficient condition for the existence of ellipsoidal D-contractive sets for 

dDDEs, and a necessary and sufficient condition for the existence of D-invariant sets in relation to linear 

time-varying dDDE stability. Another contribution is the clarification of the relationship between convex- 

ity (convex hull operation) and D- invariance of linear dDDEs. In short, it is shown that the convex hull 

of the union of two or more D- invariant sets is not necessarily D- invariant , while the convex hull of a 

non-convex D- invariant set is D- invariant . 

© 2016 International Federation of Automatic Control. Published by Elsevier Ltd. All rights reserved. 
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. Introductory remarks 

Positive invariance is an essential concept in control theory,

ith applications to constrained dynamical systems analysis,

ncertainty handling as well as related control design problems

 Blanchini, 1999; Hmamed, Benzaouia, Ait Rami, & Tadeo, 2007;

oussaoui, Abbou, & Loiseau, 2014 ). It serves as a basic tool in

any topics, such as model predictive control ( Mayne, Rawl-

ngs, Rao, & Scokaert, 20 0 0; Reble & Allgöwer, 2010c; Santos &

onzalez, 2015d ), fault tolerant control ( Olaru, De Dona, Seron,

 Stoican, 2010 ) and reference governor design ( Stoican, Olaru,

eron, & De Dona, 2012 ). Furthermore, there exists a close link

etween classical stability theory and positive invariant sets. It is

orth mentioning that, in Lyapunov theory, invariance is implicitly
� A preliminary version of the paper has been presented at the 12th IFAC Work- 

hop on Time Delay Systems, Ann Arbor (MI), USA, 2015. 
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escribed by the sub-level sets of a Lyapunov function, which are

nown to be contractive sets ( Blanchini & Miani, 2008 ). 

The response of a dynamical system to external excitation is

arely instantaneous, and time-delay models are well suited for de-

cribing dynamics related to propagation phenomena and/or com-

unication flows (see, for example, Avila Alonso et al., 2014;

oussaada, Mounier, Niculescu, and Cela, 2012; Di Cairano, Kal-

bi ́c, and Kolmanovsky, 2015; Hennet, 1998; Hetel, Daafouz, Tar-

ouriech, and Prieur, 2013; Hmamed, Benzaouia, and Bensalah,

995 ; Keqin Gu, 2003 ; Miani & Morassutti, 2009; Michiels &

iculescu, 2007; Normey-Rico, 2007; Samanta, 2011; Seuret, Özbay,

onnet, & Mounier, 2014; Tarbouriech, 1998; Tarbouriech & Silva,

0 0 0e ). In closed loop, the dynamics can be represented by delay

ifferential equations (resp. inclusions) or delay difference equa-

ions (resp. inclusions) according to the continuous/discrete frame-

ork and the presence of disturbances or uncertainties. In the

resent paper, we consider autonomous dynamics where the de-

ayed arguments are treated as a state dependence and not as a

erturbation signal. 

From a mathematical point of view, delay difference equa-

ions form an important modeling class, since most modern con-

rollers are implemented via computers or dedicated embedded

ystems. They have been widely studied in the literature (see
d. All rights reserved. 
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Cooke & Ivanov, 20 0 0; Elaydi, 20 04; Fisher & Goh, 1984; Tang &

Chen, 2002 ). Difference and differential equations with unbounded

random delays have been addressed in Crauel, Doan, and Sieg-

mund (2009) . Delay difference inclusions DDIs represent also a rich

modeling class including networked control systems and uncertain

time-delay systems. The relationship between stability of DDIs and

the existence of Lyapunov–Krasovskii and Lyapunov–Razumikhin

functions has been studied in detail in Gielen, Lazar, and Kol-

manovsky (2012a) . Stabilizing controller construction and stability

analysis based on Lyapunov–Krasovskii and Lyapunov–Razumikhin

functions for DDIs have been proposed therein. 

Positive invariance for dynamical systems described by dDDEs

has been addressed in Seifert (1976) . As hinted before, two main

approaches exist in the literature dealing with positive invari-

ant sets for discrete time-delay difference equations. The first ap-

proach, referred to as Krasovskii approach , relies on the fact that

the discrete-time dDDE allows a finite-dimensional extended state

space model (this representing a demarcation with respect to the

continuous-time counterpart). This extended state space, whose di-

mension is finite but strongly related to the delay value, leads to an

invariant set characterization with respect to an equivalent linear

time-invariant model. This concept is well understood and popular

in the literature, but it suffers from an increased numerical com-

plexity when delays are relatively large. Lyapunov–Krasovskii and

spectral techniques have been also used in Damak, Ferhi, Andrieu,

Di Loreto, and Lombardi (2013) to analyze Lyapunov and asymp-

totic stability. 

The second approach, referred to as Razumikhin approach , has

been formulated in the ’90s and re-investigated in the last decade,

to obtain an invariant set for the dDDE in the original state space,

which is independent of the delay value. This concept is also de-

noted as D-invariance, and is often conservative as long as the

existence conditions are restrictive. It is worth mentioning that a

relaxation of the Lyapunov–Razumikhin conditions has been pro-

posed by Gielen, Lazar, and Rakovi ́c (2013) . The proposed condi-

tions, which can be verified by solving an LMI problem for lin-

ear dDDEs, prove to be necessary and sufficient for asymptotic

stability of dDDEs. Furthermore, the obtained relaxed Lyapunov–

Razumikhin functions are useful for constructing invariant sets for

dDDEs. 

It has been recently recognized that D-invariance can be seen

as set factorization of an invariant set in the extended state space

( Olaru, Stankovi ́c, Bitsoris, & Niculescu, 2014 ). It has been estab-

lished that the extended state space invariance corresponds to a

minimal factorization while D-invariance, under the constraints

imposed by the dimension of the dDDE, represents the maxi-

mal regular ordered factorization. This interesting result opens the

way for factorizations which are in between the two representa-

tions, by exploiting non-minimal state space equations. In Laraba,

Olaru, Niculescu, and Bitsoris (2015a) , the authors have focused on

the maximal factorizations. They have proposed a characterization

of the link between the Razumikhin and Krasovskii approaches,

by using set factorization. The proposed framework yields a fit-

ting trade-off between the conceptual generality of the extended

state space approach and the computational convenience of the

D-invariance approach. It has been shown that D-invariance rep-

resents a particular realization of a broader family of invariant

structures. The relationship between these families of invariant

sets has been established via set factorization and conjugacy. In

Athanasopoulos and Lazar (2014a) , two specific families of con-

trolled (k, λ)-contractive sets in the augmented state space frame-

work have been characterized and the link between these con-

trolled (k, λ)-contractive sets and those of the time-delay system

has been established in Rakovi ́c and Gielen (2014) . 

In Lombardi, Olaru, Bitsoris, and Niculescu (2012) , a new

concept of set invariance with respect to discrete-time linear
ystems subject to delays has been introduced. A family of sets

hich represent a sequence of cyclically invariant subsets of the

tate space was defined and characterized. Basically, the existing

lgebraic conditions for invariance analysis of linear dynamics

ave been generalized and conditions for the invariance of a given

equences of sets with respect to linear discrete-time dynamics

n the presence of delay have been established. The notion of

nvariant family of sets has been proposed in Rakovi ́c, Gielen, and

azar (2012) and Rakovi ́c and Gielen (2014) to generalize the cyclic

nvariance concept. 

This paper is an extended version of work published in Laraba

t al. (2015b) , where we addressed the existence of positive in-

ariant sets in the state space of the original dDDE. More pre-

isely, the case of two delays was addressed in the conference pa-

er, while the general case is treated here. D-invariant sets can

e seen as invariant sets in both the current and the retarded

tate space and further related to the stability analysis based on

yapunov–Razumikhin approach. Sufficient conditions for the exis-

ence of a D-invariant set have been first obtained in Dambrine,

ichard, and Borne (1995) ; Goubet-Bartholomeus, Dambrine, and

ichard (1997) . Then, a necessary and sufficient characterization

or the existence of D-invariant sets has been provided in Hennet

nd Tarbouriech (1998) ; Vassilaki and Bitsoris (1999) . Particularly,

s far as the construction of D-invariant sets is concerned, we can

nd a series of results in Lombardi, Luca, Olaru, and Niculescu

2011a) ; Lombardi, Olaru, Lazar, and Niculescu (2011b) , which will

e appropriately recalled in the present paper. Recently, Stankovi ́c,

laru, and Niculescu (2014) has proposed a computationally effi-

ient numerical routine which is necessary to guarantee the exis-

ence of D-invariant sets for the delay difference equations with

wo delay parameters. This condition covers, for the two delay

ase, the existing necessary conditions in the literature and proves

o reduce considerably the gap with respect to sufficient condi-

ions. In the present work, we provide an interesting example for

hich the condition in Stankovi ́c et al. (2014) is verified but the

xisting algorithms fail to construct a D-invariant set. 

As discussed in Aleksandrov and Mason (2014) , from the stabil-

ty point of view a pertinent analysis of D-invariance can be made

n relationship with delay-independent stability . In short, it has been

hown that the existence of a diagonal Lyapunov–Krasovskii func-

ional is necessary and sufficient for delay-independent stability .

olyhedral Lyapunov functions have been used for stability and

ositive invariance analysis of networked control systems in the

resence of bounded delays, constant, unknown or time-varying.

he problem of finding stability margins has been proved to re-

uce to a linear programming problem ( Bitsoris, Athanasopoulos,

 Dritsas, 2012 ). 

To summarize, the main objectives of the present paper are re-

umed as follows: i) an overview of necessary and/or sufficient

onditions for the existence of D-invariant sets for dDDEs with an

rbitrary delay value; ii) a sufficient condition for the existence of

llipsoidal D-invariant sets for dDDEs; iii) the proof of the rela-

ionship between time-varying dDDE stability and the existence of

-invariant sets; iv) the proof of two properties related to con-

exity and convex operations over D-invariant sets. Notably, it is

stablished that a dDDE admits a D-invariant set if and only if it is

ime-varying delay-independent stable. 

This paper is structured as follows. Section 2 presents some

reliminary mathematical notions and definitions. Basic properties

f D-invariance concept are addressed in Section 3 . In the same

ection, we present necessary and sufficient conditions for the ex-

stence of nontrivial sets. The relationship between D-invariance

nd stability of dDDEs concludes the section. Algorithmic construc-

ion based on set iteration using forward mappings, and some

llustrative examples are revisited in Section 4 . The concepts of

yclic invariance and the invariant families of sets as well as the
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2. A P ⊂ P
elationship with the set factorization are presented in Section 5 .

inally Section 6 draws some concluding remarks. 

. Prerequisites 

.1. Notations 

We denote by R , R + , Z and Z + the sets of real numbers, non-

egative reals, integer numbers and non-negative integers, respec-

ively. For every interval � of R we define Z � := Z ∩ �. For an

rbitrary set A ⊆ R 

n , int(A ) denotes the interior of A . B 

n 
r (0) de-

otes the ball of radius r in Euclidean norm, centered in the origin

f R 

n . We denote by 1 n the vector of dimension ’n’ with all the

ntries equal to 1. We denote by D , ∂D , ext(D ) the open unit disc,

he unit circle and the exterior of the closed unit disc respectively.

or the matrix pair ( A, B ), the set of generalized eigenvalues and

he Kronecker product are denoted by γ ( A, B ) and A �B , respec-

ively. I n ∈ R 

n ×n and 0 n ×m 

∈ R 

n ×m denote the identity and the null

atrix, respectively. X � Y denotes the Minkowski sum of sets X 

nd Y, which is defined by: 

 � Y := { z| ∃ (x, y ) ∈ (X , Y) such that z = x + y } . 
efinition 1. A set P ⊆ R 

n is bounded if there exists r ∈ R + such

hat P ⊂ B 

n 
r (0) ; closed if ∀ x / ∈ P, ∃ ε ∈ R + such that B 

n 
ε (x ) ∩ P = ∅ ;

ompact if it is bounded and closed . 

efinition 2. A set P ⊆ R 

n is a (proper) C-set if is convex, compact

nd includes the origin in its strict interior . 

We denote by Com (R 

n ) and C omC (R 

n ) the space of compact

ubsets and the space of C-subsets of R 

n containing the origin,

espectively. The spectrum of a matrix A ∈ R 

n ×n is the set of the

igenvalues of A , denoted by λ( A ), while the spectral radius is de-

ned as ρ( A ) := max ξ ∈ λ( A ) (| ξ |). The spectral norm will be de-

oted by σ ( A ) and is defined as σ (A ) := 

√ 

ρ(A 

T A ) . 

.2. System dynamics 

In the sequel, we will consider discrete time-delay difference

quations of the form: 

 (k + 1) = 

d ∑ 

i =0 

A i x (k − i ) (1)

here x (k ) ∈ R 

n is the state vector at the time k ∈ Z + , d ∈ Z + is

he maximal fixed time-delay, the matrices A i ∈ R 

n ×n , for i ∈ Z [0 ,d] 

nd the initial conditions are considered to be given by x (−i ) =
 −i ∈ R 

n , for i ∈ Z [0 ,d] . 

efinition 3. The null solution of the dDDE: 

 (k + 1) = 

m ∑ 

i =0 

A i x (k − d i ) (2)

s asymptotically stable if ∀ ε > 0, ∃ δ > 0 such that whenever

up j || x (− j) || ≤ δ, j = { 1 , . . . , m } , || x (k ) || < ε, ∀ k ∈ Z + and x ( k ) →
 when k → ∞ . 

efinition 4. The dDDE (2) is delay-independently stable if its null

olution is stable ∀ d = [ d 0 , . . . , d m 

] ∈ (Z + ) m +1 . 

efinition 5. The dDDE with time-varying (positive) delay values:

 (k + 1) = 

m ∑ 

i =0 

A i x (k − d i (k )) (3)

s delay-independently stable if its null solution is stable ∀ d(k ) =
 d (k ) , . . . , d m 

(k )] ∈ (Z + ) m +1 . 
0 
It is clear that an extended state space representation can be

onstructed for any given delay realization. For instance, by setting

(k ) = [ x (k ) T · · · x (k − d) T ] T , Eq. (1) can be rewritten as: 

(k + 1) = A ξ ξ (k ) = 

⎡ 

⎢ ⎢ ⎣ 

A 0 . . . A d−1 A d 

I . . . 0 0 

. . . 
. . . 

. . . 
. . . 

0 . . . I 0 

⎤ 

⎥ ⎥ ⎦ 

ξ (k ) , (4)

his class is relevant for modeling several propagation and trans-

ission phenomena. One example is represented by networked

ontrol systems (see Heemels et al., 2010 ) where the feedback

echanism is affected by communication delays. These delays are

nown to degrade the performances and eventually affect sta-

ility ( Halanay & Rasvan, 20 0 0 ). We report next, without proof,

ome well-known results related to asymptotic stability of systems

1) and (4) (see e.g Aström, Wittenmark, 1997 ). 

emma 1. The following statements hold: 

• System (1) is asymptotically stable if and only if 

det 

( 

zI −
d ∑ 

i =0 

A i z 
−i 

) 

 = 0 , ∀ z ∈ ext(D ) ∪ ∂D . (5)

• System (4) is asymptotically stable if and only if: 

ρ(A ξ ) < 1 . (6)

heorem 2. The following statements are equivalent: 

• The delay difference equation (1) is asymptotically stable . 

• The system (4) is asymptotically stable . 

. D-invariance properties 

Let us first consider the generic (nonlinear) discrete-time dy-

amical system: 

 (k + 1) = f (x (k )) (7)

here x (k ) ∈ R 

n is the state vector at time k ∈ Z + and the function

f : R 

n → R 

n is continuous. 

efinition 6. The set P ⊂ R 

n is said positively invariant for the

ystem (7) if for all x (k ) ∈ P, x (k + 1) ∈ P for k ∈ Z + . Alternatively,

he set P ⊂ R 

n is positively invariant for (7) if f (P ) ⊆ P . 

efinition 7. Given a scalar ε ∈ R (0 , 1) , a set P ⊂ R 

n containing the

rigin is called ε-contractive with respect to system (7) if for any

 (k ) ∈ P, x (k + 1) ∈ εP for k ∈ Z + . 

One can notice from Definitions 6 and 7 that positive invari-

nce is a limit case of ε-contractivness (it would amount to choos-

ng ε = 1 in Definition 7 ). In the sequel, we will come back to

hese notions and detail analogies and particularities of time-delay

ystems. The D-invariance concept, recalled below, will be widely

sed throughout this paper for the set-characterization of dDDEs.

he notations by Lombardi et al. (2011a , 2011b) will be mainly

sed in this endeavor. 

efinition 8. A set P ⊆ R 

n is called D-invariant for the system

1) with initial conditions x −i ∈ P for all i ∈ Z [0 ,d] if the state tra-

ectory satisfies x (k ) ∈ P, ∀ k ∈ Z + . 

emma 3 ( Lombardi (2011) ) . The following statements are equiva-

ent: 

1. P ⊆ R 

n is D-invariant for system (1) . ⊕ d 

i =0 i 
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1 It is easy to observe that sets like {0} or R n are D-invariant but they do not 

satisfy the non-degenerate or boundedness conditions. 
Several properties fix a set of basic relations between D-

invariant sets. 

Proposition 1. The following properties hold: 

1. If P ⊂ R 

n is D-invariant then αP is D- invariant for any α ∈ R + . 
2. Let P 1 , P 2 ⊂ R 

n be two D-invariant sets for (1) . Then P 1 ∩ P 2 is a

D-invariant set for the same dynamical system. 

3. Let P 1 , P 2 ⊂ R 

n be two D-invariant sets for (1) . The Minkowski

sum P 1 � P 2 is a D-invariant set for the same dynamical system. 

4. If the set P ⊂ R 

n is D-invariant for the system: 

x (k + 1) = 

d ∑ 

i =0 

A i x (k − i ) (8)

then P is D-invariant for 

x (k + 1) = 

d ∑ 

i =0 

A i x (k − τi ) (9)

for any τi ∈ Z + . 
5. If the compact set containing the origin P is D-invariant, then its

convex hull Con v (P) is D-invariant . 

6. If P 1 , P 2 ⊂ R 

n are two D-invariant sets for (1) , their union

P 1 

⋃ 

P 2 is not necessarily D-invariant . 

7. The convex hull of the union of D-invariant sets is not necessarily

D-invariant . 

Proof. Properties (1), (2) and (4) were proved in Lombardi (2011) .

The proof of properties (3) and (6) is straightforward. For the proof

of property (5), one can exploit the relationship: A 1 Con v (P) �

A 2 Con v (P) = Con v (A 1 P) � Con v (A 2 P) = Con v (A 1 P � A 2 P) . The first

equality is a direct application of the convex hull definition and

Minkowski sum properties. For the second equality, let P 1 , P 2 ⊂
R 

n , and let x ∈ Con v (P 1 � P 2 ) , then x = 

∑ 

λi (x i + y i ) with x i ∈
P 1 and y i ∈ P 2 , λi ≥ 0 and 

∑ 

λi = 1 , then x = 

∑ 

λi x i + 

∑ 

λi y i ∈
on v (P 1 ) � Con v (P 2 ) . Suppose now that x ∈ Con v (P 1 ) � Con v (P 2 )

then x = 

∑ 

λi x i + 

∑ 

β j y j , with 

∑ 

λi = 

∑ 

β j = 1 , and λi , β j ≥ 0,

x i ∈ P 1 , y j ∈ P 2 . Since 
∑ 

λi 

∑ 

β j = 

∑ 

i, j λi β j = 1 we can write x =∑ 

i, j λi β j (x i + y j ) , then x ∈ Con v (P 1 � P 2 ) . Note that 

A 1 P � A 2 P ⊂ P ⇒ Con v (A 1 P � A 2 P ) ⊂ Con v (P ) 

to conclude that: 

A 1 Con v (P) � A 2 Con v (P) ⊂ Con v (P) 

In order to check the property (7), consider the system: 

x (k + 1) = 

[
0 . 2 0 . 01 

0 0 . 7 

]
x (k ) + 

[
0 . 6 0 

0 . 005 0 . 25 

]
x (k − 1) , (10)

then the set 

P 1 = 

{
x ∈ R 

2 | 
[
−0 . 1 

−1 

]
≤ x ≤

[
0 . 1 

1 

]}
is D-invariant as well as 

P 2 = 

{
x ∈ R 

2 | 
[

−1 

−0 . 1 

]
≤ x ≤

[
1 

0 . 1 

]}
However, the set obtained as convex hull of the union P 1 

⋃ 

P 2 ,

denoted P = Con v (P 1 , P 2 ) , is not D-invariant. �

Remark 1. Property (7) of Proposition 1 raises a warning on the

convex hull operation applied to the union of two or more D-

invariant sets, which is not a closed operation over the class of

D-invariant sets. However, property (5) of Proposition 1 points out

that for one D-invariant operand, the convex hull operation pre-

serves D-invariance. It becomes clear that under the (unfortunately

uncheckable) assumption that a D-invariant set exists, an efficient

(convexity based) construction will be able to characterize it. 
emark 2. The property (4) of Proposition 1 holds also for the

imit case τi = ∞ . As a consequence, if P ⊆ R 

n is a D-invariant set

ontaining the origin, then P is positively invariant with respect to

he time invariant linear dynamics: 

 (k + 1) = A 0 x (k ) , 
. . . 

x (k + 1) = A d x (k ) . 

(11)

quivalently, A 0 P ⊆ P, . . . , A d P ⊆ P . The same result holds for a

DDE represented by a partial sum of (1) . Note that the second

roperty of Proposition 1 can be generalized. The intersection of a

nite or infinite collection of D-invariant sets is D-invariant. 

The goal of the next subsections is to collect necessary

nd/or sufficient conditions for the existence of a D-invariant

et for dDDEs. The existence of a non-degenerate and bounded

-invariant set 1 is related to the stability of the discrete-time

ynamical system (1) affected by delay. It is obvious that asymp-

otic stability is only a necessary condition for the existence of

 D-contractive set and stricter conditions have to be imposed

or guaranteeing this existence. In the following we enumerate

 series of necessary and/or sufficient conditions available in

he literature, to the best of our knowledge; whenever possible,

e will link the conditions to classical numerical routines for the

igenvalue problems. 

.1. Necessary conditions for D-invariance 

.1.1. Basic algebraic conditions 

roposition 2. Lombardi et al. (2011b) Considering the system (1) ,

he existence of a D-invariant C-set P implies that: 

1. The spectral radii of the matrices A i are sub-unitary: 

ρ(A i ) ≤ 1 , ∀ i ∈ Z [0 ,d] . 

2. The spectral radius of the matrix ( 
∑ d 

i =0 A i ) is sub-unitary: 

ρ

( 

d ∑ 

i =0 

A i 

) 

≤ 1 . 

3. The spectral radius of the extended state-space matrix is sub-

unitary: 

ρ
(
A ξ

)
≤ 1 . 

Proposition 2 in conjunction with property (4) of

roposition 1 gives a measure of the complexity of establish-

ng necessary and sufficient conditions. Practically, the difficulty is

elated to the need of testing the spectral radius of the extended

tate-space matrix for all possible delay realizations. 

.1.2. Alternative algebraic conditions 

Alternative necessary conditions were proposed in Gielen, Lazar,

nd Olaru (2012b) in terms of asymptotic stability of dDDEs, for

he existence of a D-contractive set. The main idea is to cover the

ossible sign combinations for the tuple A i , i ∈ Z [0 ,d] : a straight-

orward task for any value of the delay parameter. In order to

implify the notation, let us introduce the set S = { −1 , 0 , 1 } and

= [ δ(0) , . . . , δ(d)] . 

roposition 3. Gielen et al. (2012b) System (1) admits a D-

ontractive set only if: ( 

d ∑ 

i =0 

δ(i ) A i 

) 

≤ 1 , ∀ � ∈ S 
d+1 . (12)
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If a given dDDE does not satisfy the above condition, then it

oes not admit a D-contractive set. Gielen et al. (2012b) shows that

he condition derived in Proposition 3 is not sufficient for the ex-

stence of a D-contractive set, numerical examples being available

n this sense. 

.1.3. Specific algebraic conditions for 2 delay dDDEs 

For dDDEs with two delay parameters, in order to decrease

he conservativeness of the time-domain methods, Stankovi ́c

t al., 2014 have used the frequency-domain framework. The D-

nvariance concept was studied, along with its relation to robust

symptotic stability, considered as a strong stability of dDDEs. This

otion defines stability with respect to all delay realizations. Due

o the incompleteness of the discrete time, the characterization of

obust asymptotic stability is not simple. Thus using a more gen-

ral class of difference equation (precisely the ones that are speci-

ed in the continuous-time domain) proved to be useful. In the se-

uel the concept of strong stability is denoted by delay-independent

tability 2 and it represents the continuous-time counterpart to ro-

ust asymptotic stability . 

Recently, Stankovi ́c et al. (2014) have provided a computation-

lly efficient numerical condition which is necessary to guarantee

he existence of Lyapunov–Razumikhin contractive sets. This test

s sufficient for the robust asymptotic stability with respect to the

elay parameter and can be employed in the D-invariance context.

he main result can be summarized in the next theorem. 

heorem 4. Stankovi ́c et al. (2014) Assume that ρ(A 0 + A 1 ) ≤ 1 and

hat d 0 ∈ R + and d 1 ∈ R + . Then, the system 

 (k ) = 

1 ∑ 

i =0 

A i x (k − d i ) (13)

dmits a D-contractive set only if γ (U, V ) ∩ ∂D = ∅ , where 

 = 

(
0 n 2 ×n 2 I n 2 
−B 0 −B 1 

)
, V = 

(
I n 2 0 n 2 ×n 2 

0 n 2 ×n 2 B 2 

)
(14)

 0 = A 0 � A 

T 
1 , B 1 = A 0 � A 

T 
0 + A 1 � A 

T 
1 − I n 2 , B 2 = A 1 � A 

T 
0 . (15)

As stated in Stankovi ́c et al. (2014) , the condition of

heorem 4 covers the existing necessary conditions for the two de-

ay parameters case. However, we report here an interesting exam-

le which points out the possible limitations of this condition. 

xample 1. Laraba et al. (2015b) Consider system (1) with d = 1

nd: 

 0 = 

(
0 . 5 0 . 5 

0 0 

)
; A 1 = 

(
0 0 . 5 

−0 . 5 0 . 5 

)
(16) 

or this numerical example, one can compute: 

(A 0 + A 1 ) = 0 . 8660 < 1 

nd 

(U, V ) = 1 . 7442 ± 1 . 9433 i , 0 . 2558 ± 0 . 2850 i , 0 , 0 , in f , in f . 

he necessary condition by Stankovi ́c et al. (2014) is fulfilled. How-

ver, up to the existing constructive routines (see next section)

here is no numerical construction able to determine a D-invariant

et for this system. 
2 also known as stability in the delays. 

x

.2. Sufficient conditions for D-invariance 

The converse problem of establishing sufficient conditions for

he existence of D-invariant sets has been stated in Lombardi

2011) with two tests that we recall here for completeness. 

roposition 4 ( Lombardi (2011) ) . The existence of a D-invariant C-

et P is guaranteed for the system (1) , if one of the following spectral

orm based conditions holds: 

1. The sum of the spectral norms of A i , for i ∈ Z [0 ,d] , is subunitary: 

d ∑ 

i =0 

σ (A i ) < 1 . 

2. In the case of nonsingular matrix A i for i ∈ Z [0 ,d] 

(1 + σ (A 

−1 
0 

A 1 ) + · · · + σ (A 

−1 
0 

A d )) σ (A 0 ) ≤ 1 

. . . 

(1 + σ (A 

−1 
d 

A 0 ) + · · · + σ (A 

−1 
d 

A d−1 )) σ (A d ) ≤ 1 . 

emark 3. The sufficient condition (1) can be generalized by re-

lacing the sum of the spectral norms by the sum of any other

nduced matrix norms. 

Proposition 4 concentrates on the spectral norms of the matri-

es appearing in the dDDE (1) . A different approach for establish-

ng sufficient conditions is to exploit the structural properties of

pecific classes of candidate D-invariant sets. We propose next a

ontribution in this sense with a sufficient condition for the exis-

ence of ellipsoidal D-contractive sets for a dDDE. As it is often the

ase in this framework, the tests are based on LMIs. 

heorem 5. Considering the dynamical system (1) , the existence of

n ellipsoidal D-invariant set is guaranteed if the following d + 1 LMIs

old for some P = P T � 0 : 
 

 

 

 

 

A 

T 
0 PA 0 − P A 

T 
0 PA 1 · · · A 

T 
0 PA d 

A 

T 
1 PA 0 A 

T 
1 PA 1 · · · A 

T 
1 PA d 

. . . 
. . . 

. . . 
. . . 

A 

T 
d 

PA 0 A 

T 
d 

PA 1 · · · A 

T 
d 

PA d 

⎞ 

⎟ ⎟ ⎟ ⎠ 

≺ 0 (17a) 

 

 

 

 

 

A 

T 
0 PA 0 A 

T 
0 PA 1 · · · A 

T 
0 PA d 

A 

T 
1 PA 0 A 

T 
1 PA 1 − P · · · A 

T 
1 PA d 

. . . 
. . . 

. . . 
. . . 

A 

T 
d 

PA 0 A 

T 
d 

PA 1 · · · A 

T 
d 

PA d 

⎞ 

⎟ ⎟ ⎟ ⎠ 

≺ 0 (17b) 

. . . 
 

 

 

 

 

A 

T 
0 PA 0 A 

T 
0 PA 1 · · · A 

T 
0 PA d 

A 

T 
1 PA 0 A 

T 
1 PA 1 · · · A 

T 
1 PA d 

. . . 
. . . 

. . . 
. . . 

A 

T 
d 

PA 0 A 

T 
d 

PA 1 · · · A 

T 
d 

PA d − P 

⎞ 

⎟ ⎟ ⎟ ⎠ 

≺ 0 

(17c) 

roof. In order to ensure that the set 

= 

{
x ∈ R 

n , x T P x ≤ 1 

}
s D-invariant for the system described by the dDDE (1) , one has

o show that x k +1 ∈ �, ∀ x k , x k −1 , . . . , x k −d ∈ �, which is equivalent

o the simultaneous verification of the d + 1 inequalities: 

x T 
k +1 

P x k +1 − x T 
k 

P x k < 0 

 

T 
k +1 

P x k +1 − x T 
k −1 

P x k −1 < 0 

. . . 

 

T 
k +1 

P x k +1 − x T 
k −d 

P x k −d < 0 
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Fig. 1. D-contractive set for the dDDE (1) with d = 1 , A 0 , A 1 given in (21) . 
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Exploiting the dDDE relationship one has: x T 
k +1 

P x k +1 − x T 
k 

P x k =
(A 0 x k + A 1 x k −1 + · · · + A d x k −d ) 

T P (A 0 x k + A 1 x k −1 + · · · + A d x k −d ) − x T 
k 

P x k = x T 
k 
(A 

T 
0 

PA 0 − P ) x k + x T 
k 

A 

T 
0 

P (A 1 x k −1 + · · · + A d x k −d ) + (A 1 x k −1 + 

· · · + A d x k −d ) 
T P (A 0 x k + A 1 x k −1 + · · · + A d x k −d ) < 0 . In the equivalent

matrix formulation: ⎛ 

⎜ ⎜ ⎝ 

x k 
x k −1 

. . . 
x k −d 

⎞ 

⎟ ⎟ ⎠ 

T ⎛ 

⎜ ⎜ ⎝ 

A 

T 
0 PA 0 − P A 

T 
0 PA 1 · · · A 

T 
0 PA d 

A 

T 
1 PA 0 A 

T 
1 PA 1 · · · A 

T 
1 PA d 

. . . 
. . . 

. . . 
. . . 

A 

T 
d 

PA 0 A 

T 
d 

PA 1 · · · A 

T 
d 

PA d 

⎞ 

⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎝ 

x k 
x k −1 

. . . 
x k −d 

⎞ 

⎟ ⎟ ⎠ 

≺ 0 (19)

Analogously for the second inequality: ⎛ 

⎜ ⎜ ⎝ 

x k 
x k −1 

. . . 
x k −d 

⎞ 

⎟ ⎟ ⎠ 

T ⎛ 

⎜ ⎜ ⎝ 

A 

T 
0 PA 0 A 

T 
0 PA 1 · · · A 

T 
0 PA d 

A 

T 
1 PA 0 A 

T 
1 PA 1 − P · · · A 

T 
1 PA d 

. . . 
. . . 

. . . 
. . . 

A 

T 
d 

PA 0 A 

T 
d 

PA 1 · · · A 

T 
d 

PA d 

⎞ 

⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎝ 

x k 
x k −1 

. . . 
x k −d 

⎞ 

⎟ ⎟ ⎠ 

≺ 0 (20)

up to the d + 1 inequality. We can conclude that the existence

of a positive definite matrix P = P T is a sufficient condition for

the existence of an ellipsoidal D-invariant set, and the proof is

complete. �

Example 2. For illustration let us consider system (1) with only

one delay parameter d = 1 and: 

A 0 = 

(
0 . 35 0 . 13 

0 . 51 −0 . 01 

)
, A 1 = 

(
0 . 51 −0 . 01 

0 . 03 0 . 51 

)
. (21)

The condition for the existence of a D-contractive set proposed in

Theorem 5 is fulfilled and the D-contractive set exists as shown

in Fig. 1 . Dashed black lines in Fig. 1 represent the state trajecto-

ries starting from some points on the boundary of the ellipsoidal

D-contractive set with respect to the dDDE (1) with d = 1 , A 0 , A 1

given in (21) . It is interesting to note that the sufficient condition

‖ A 0 ‖ p + ‖ A 1 ‖ p ≤ 1 by Hennet and Tarbouriech (1998) ; Lombardi

et al. (2011b) does not hold for this numerical example. 

3.3. Necessary and sufficient algebraic conditions for polyhedral 

D-invariant sets 

The problem of finding convex D-invariant sets can benefit

whenever particular structural properties are enforced. It is the

case of polyhedral sets, for which necessary and sufficient condi-

tions exist as resumed by the following theorem. 
heorem 6 ( Hennet and Tarbouriech (1997) ) . Let a delay differ-

nce equation be described by (1) . There exists P a polyhedral D-

ontractive set containing the origin: 

 = { x ∈ R 

n | F x ≤ 1 } (22)

ith F ∈ R 

r×n , described by its minimal half space representation, if

nd only if there exist d + 1 real matrices H i ∈ R 

r×r , for i = { 0 , . . . , d } ,
ith non-negative elements and a positive ε < 1, such that: 

 A i = H i F (23a)

 

d ∑ 

i =0 

H i 

) 

1 r ≤ ε1 r (23b)

learly, if the requirement on ε being strictly smaller than 1 is relaxed

o non-strict inequality, then (23) represents a necessary and sufficient

ondition for the existence of a D-invariant set. 

.4. Relationship between D-invariance and dDDE stability 

In this subsection we aim at complementing the overview of

he necessary and sufficient conditions with a theoretical result

hat establishes a link between the stability in presence of time-

arying delay and the existence of D-invariant sets. 

heorem 7. The dDDE (2) admits a proper D-invariant set if and

nly if the time-varying dDDE (3) is delay-independent stable. 

roof. We prove next the case of dDDE with only two delay pa-

ameters, x (k + 1) = A 0 x (k − d 0 ) + A 1 x (k − d 1 ) , the case of finite

umber of delays (2) being a direct generalization. The proof of

he ”only if” implication builds on the fact that the existence of a

-invariant set P is equivalent to the set inclusion: 

 0 P � A 1 P ⊂ P (24)

hus for initial conditions x (k ) ∈ P for k ∈ Z (−∞ , 0] one has x (1) ∈ P
ndependent of the delay realization d 0 (0) , d 1 (0) ∈ N . By induc-

ion, given a positive index i ∈ N , if x (k ) ∈ P for k ∈ Z (−∞ ,i ] then

 (i + 1) ∈ P independent of the delay realization d 0 (i ) , d 1 (i ) ∈ N

hich implies that the trajectories are bounded x (k ) ∈ P, ∀ k ∈ N + .
tability for any initial condition follows from property (1) of

roposition 1 . By homogeneity, D-invariance is preserved by scal-

ng and as such, there always exists a D-invariant set which con-

ains a given initial condition of the dDDE. 

For the ”if” part of the proof, consider the initial conditions for

he system (3) to be contained in a compact set P containing the

rigin in its interior. Formally, the initial conditions and the time-

arying delay realization can be described by the functions: 

 

−
P : Z (−∞ , 0] → P 

d 0 : N + → Z (−∞ , 0] (25)

 1 : N + → Z (−∞ , 0] (26)

aving as an objective the construction of the reachable set from

, let us denote the state at time instant k ∈ Z by x (k, x −P , d 0 , d 1 )

s the solution of (3) with respect to the initial conditions x −P and

ime-varying delay realizations d 0 ( ·), d 1 ( ·). With this notation, the

eachable set from P via (3) is defined as: 

 (P) = { x ∈ R 

n |∃ k ∈ N + , x 

−
P ( ·) , d 0 ( ·) , d 1 ( ·) s.t. x = x (k, x 

−
P , d 0 , d 1 ) }

(27)

oming back to the proof, the objective is to show that P r = P ∪
 (P) is a proper D-invariant set. The fact that the origin is con-

ained in the interior of P r is inherited from the properties of P .

he boundedness of the set R (P) is ensured by the stability as-

umption and will be inherited by P r . What remains to be proved

s the invariance of P r . Three possibilities should be discussed: 
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Algorithm 1: Basic (non-convex) set-iterates procedure. 

Data : A bounded set Q ∈ R 

n containing the origin; the 

matrices A 0 , A d ∈ R 

n ×n describing the system (1) 

Result : R a D-invariant set 

R 0 = Q ; 

R 1 = �(Q ) = A 0 Q � A d Q ; 

i = 1 ; 

while R i ⊂ R i −1 do 

R i +1 = �(R i ) = 

⋃ 

(R i , A 0 R i � A d R i ) ; 

i = i + 1 ; 
end 

Return R = R i 

(Alternatively, R = Con v (R i ) can represent the output if a 

unique convex set is needed.) 
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• x (k − d 0 (k )) ∈ P and x (k − d 1 (k )) ∈ P: in this case the state

x (k + 1) is part of the one step reachable set and subsequently

x (k + 1) ∈ R (P) ⊂ P r . 

• x (k − d 0 (k )) ∈ P and x (k − d 1 (k )) ∈ R (P) (with delay indices

which can be interchanged): this case corresponds to a reach-

able state x (k − d 1 (k )) ∈ R (P) combined with a large (pseudo-

infinite) delay d 0 ( k ). As a consequence, the state realizations

x (k + 1) will represent a subset of the reachable set and

R (P) ⊂ P r . 

• x (k − d 0 (k )) ∈ R (P) and x (k − d 1 (k )) ∈ R (P) (with delay indices

which can be interchanged): again, via reachability x (k + 1) ∈
R (P) ⊂ P r with the particular case d 0 (k ) = d 1 (k ) which de-

serves a special treatment. Indeed, for the restriction d 0 (k ) =
d 1 (k ) , the state dynamics (3) reduces to x (k + 1) = (A 0 +
A 1 ) x (k − d 1 (k )) . But this realization is only a particular case

of the general time-varying delay realization d 0 ( k )  = d 1 ( k )

for which , x (k − d 0 (k )) = x (k − d 1 (k )) , which is covered by the

reachable set construction and the proof is complete. �

emark 4. The sets containing the forward trajectories, as those

sed in the argument of the proof, are non-convex and lead to

omputationally demanding constructions, from a practical point

f view. In the next section we describe the corresponding algo-

ithm and subsequently reinforce the convexity by exploiting prop-

rty (5) of Proposition 1 . 

. Construction of D-invariant sets based on set iterations 

We address now the construction procedures for the case x (k +
) = A 0 x (k ) + A d x (k − d) supposing that it admits a D-invariant

et. The general form (1) follows similarly. We use the fact that

xistence of D-invariant sets is exactly equivalent, by Lemma (3) ,

o the verification of A 0 P � A d P ⊆ P . To simplify the explanation,

e first define the forward mapping : 

: Com (R 

n ) → Com (R 

n ) 
�(P) = A 0 P � A d P 

(28) 

nd the mapping based on the union: 

: Com (R 

n ) → Com (R 

n ) 
�(P) = 

⋃ 

(P , �(P )) . 
(29) 

ote that even if P is convex, �(P) is not necessarily convex. 

emark 5. We enumerate here some useful properties of the map-

ings defined in ( 28 ) and ( 29 ): 

1. If a given set P (convex or not) is D-invariant for (1), then

�(P) ⊆ P . 

2. k-iterates over the family of sets is set-wise non decreasing

(�k −1 (P) ⊆ �k (P) , ∀ k ≥ 1) with �k (P) = �(�k −1 (P)) for k >

0 and �0 (P) = P . 

3. If P is D-invariant for (1) then �k (P) is set-wise non increasing

(�k (P) ⊆ �k −1 (P) , ∀ k ≥ 1) . 

.1. Basic set-iterates procedure for the construction of D-invariant 

ets 

We describe in this part the basic steps of an iterative con-

truction of D-invariant sets. Under the assumption that such an

nvariant set exists for the system (1), we can always scale it using

roperty (1) of Proposition (1) such that it encompasses the initial

et Q . Using the theoretical properties shown above, an algorith-

ic routine based on non-convex sets mapping is proposed for the

omputation of D-invariant sets with respect to (1). Algorithm 1

onsiders as an input argument an arbitrary bounded set Q con-

aining the origin ( Schneider, 2013; Ziegler, 1995 ). 

Convergence and finite determinedness analysis: First, it can be

roved that Algorithm 1 constructs a non-decreasing sequence
hat converges to a D-invariant set. Indeed, the algorithm is based

n the set mapping R i +1 = �(R i ) which satisfies R i +1 ⊃ R i . Thus

he sequence R i is non-decreasing in the sense of set inclusion. On

he other hand, since the D-invariance is scalable (using property

1) of Proposition (1) , the hypothesis of existence of a D-invariant

et P containing Q ensures Q ⊂ R i ⊂ P . Since any set R i provided

y the algorithm is a subset of P, �(R i ) is also a subset of P . In

onclusion, the algorithm provides a sequence of sets R i which is

on-decreasing by inclusion and limited from above by P . Hence

he sequence admits a limit which is D-invariant (by the struc-

ure of the algorithm) and proper (because limited from above by

which is a fixed point with respect to the mapping �( ·)). Sec-

ndly, the finite determinedness can be formally proved. Given the

delay-independent) asymptotic stability of system (1) with matri-

es A 0 and A d , there exists a finite number of time steps t max such

hat the trajectories initiated in Q end up in P . The algorithm is

ollecting the trajectories initiated in Q , which is a subset of P,

nd thus t max represents an upper bound for the number of itera-

ions. This completes the convergence analysis of the algorithm. 

Note that the iterations and the limit set are non-convex and

his is related to the union operation performed by the mapping

n �( ·). 
xample 3. Laraba et al. (2015b) Let us consider the following dy-

amical system: 

 (k + 1) = 

[
0 . 1 0 

0 . 4 0 . 1 

]
x (k ) + 

[
0 . 1 −0 . 2 

0 . 4 0 . 5 

]
x (k − d) , (30)

onsider the initialization set Q as the ∞ -norm unit ball in R 

2 .

 non-convex D-invariant set is obtained iteratively by applying

lgorithm 1 with 4 iterations. 

Fig. 2 presents this invariant set (the left one), and the image

the right one) of this set by the forward mapping �( ·). Fig. 3

resents the Convex hull of the obtained non-convex D-invariant

et and shows that it is D-invariant as theoretically proved in prop-

rty (5) of Proposition 1 . 

.2. Convex set-iterates procedure for the construction of D-invariant 

ets 

We describe briefly in this part the main steps of an iter-

tive construction of D-invariant sets while manipulating only

onvex sets. This algorithmic routine was proposed by Lombardi

t al. (2011b) , but we recall it here in light of Theorem 7 and

lgorithm 1 . Let us define the two mappings : 

: C omC (R 

n ) → C omC (R 

n ) 
�(P) = A 0 P � A d P 

(31) 

: C omC (R 

n ) → C omC (R 

n ) 
�(P) = Con v (P , �(P )) . 

(32) 
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Fig. 2. Graphical illustration of the non-convex D-invariant set for the Example 3 . 

The D-invariant set–green (left); the set A 0 P � A d P–red (right). (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article). 

Fig. 3. Graphical illustration of the convex D-invariant set for the Example 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2: Convex set-iterates converging to a D-invariant 

set. 

Data : A convex set Q ∈ R 

n containing the origin in the 

interior; the matrices A 0 , A d ∈ R 

n ×n 

Result : R Convex D-invariant set 

R 0 = Q ; 

R 1 = �(Q ) = A 0 Q � A d Q ; 

i = 1 ; 

while R i ⊂ R i −1 do 

R i +1 = �(R i ) = Con v (R i , A 0 R i � A d R i ) ; 

i = i + 1 ; 
end 

Return R = R i 

Algorithm 3: Auxiliary set-iterates procedure. 

Data : A bounded convex set containing the origin Q ∈ R 

n ; 

the matrices A 0 , A d ∈ R 

n ×n ; N the number of forward 

mappings in one iteration 

Result : R Convex D-invariant set 

R 0 = Q ; 

R 1 = �(Q ) = A 0 Q � A d Q ; 

Aux 1 = R 0 ;
i = 1 ; 

while R i ⊂ R i −1 do 

for m = 1 : N do 

Aux m +1 = �(Aux m 

) 

end 

Aux = [ Aux 1 , Aux 2 , . . . , Aux N+1 ] ; 

R i = Con v (Aux ) ; 

R i +1 = �(R i ) ;
i = i + 1 ;
Aux 1 = R i ;

end 

Return R = R i 

Fig. 4. Graphical illustration of D-invariant sets obtained by Algorithm 2 (left) and 

Algorithm 3 (right), for the Example 4 . 

b  

A  

n  

F  

t  

t

 

s  

g  
Given a convex set P ∈ C omC (R 

n ) , the sequence �k (P) , k > 0 con-

verges toward a convex D-invariant set Lombardi et al. (2011b) .

The main objective of this procedure remains the same as the pre-

vious one: enlarge the set as much as possible with the Convex

hull operation, while keeping it included in a D-invariant superset.

Algorithm 2 , unlike the previous one, manipulates convex sets

with all their computational advantages. At each iteration, the con-

vex hull of the union of the present set and the forward mapping

of the same set R i are obtained. 

4.3. Complexity and speed of convergence 

In this section, we point to the possible extension of

Algorithms 1 and 2 in order to improve the convergence speed.

Instead of performing one forward mapping in each iteration be-

fore checking D-invariance, N forward mappings are performed in

each iteration. The resulting Algorithm 3 seems to be efficient in

the sense that we can reduce the complexity and the number of

iterations. 

Example 4. Laraba et al. (2015b) Let us consider the following dy-

namical system : 

x (k + 1) = 

[
0 . 2 0 . 1 

0 0 . 6 

]
x (k ) + 

[
0 . 5 0 

0 . 1 0 . 3 

]
x (k − d) . (33)

Let 

Q = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

x ∈ R 

2 | 

⎡ 

⎢ ⎣ 

√ 

2 −√ 

2 

−√ 

2 

√ 

2 √ 

2 

√ 

2 

−√ 

2 −√ 

2 

⎤ 

⎥ ⎦ 

x ≤

⎡ 

⎢ ⎣ 

0 . 5 

1 

0 . 5 

1 

⎤ 

⎥ ⎦ 

⎫ ⎪ ⎬ 

⎪ ⎭ 
e the initialization set. By applying Algorithm 3 with N = 2 and

lgorithm 2 , two different D-invariant sets are obtained for the dy-

amical system (33) in 2 ∗ (N = 2) and 18 iterations, respectively.

ig. 4 presents these sets. Dashed black lines represent the state

rajectories starting from the vertices of these sets with respect to

he dynamics (33) . 

It becomes clear that, under the assumption that a D-invariant

et exists, an efficient construction exists. We can also use the al-

orithmic construction ( Algorithm 2 ) as an induced tool to check



M.-T. Laraba et al. / Annual Reviews in Control 41 (2016) 13–23 21 

Fig. 5. Sequence of the forward mappings Con v (P , A 0 P � A d P ) , for the Example 1 . 

Fig. 6. Schematic overview of the presented results. (For interpretation of the ref- 

erences to color in this figure, the reader is referred to the web version of this 

article). 
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f a D-invariant set can/cannot be obtained, whenever the dDDE

atisfies the necessary conditions for the existence of such in-

ariant sets. To illustrate this idea, Example 1 , which raises a

oubt about the sufficiency of the matrix-pencil based conditions

 Stankovi ́c et al., 2014 ), will be discussed in the sequel. By com-

uting the set iterations up to strict inclusion into the initial one,

onvergence/divergence can be inferred. If the initial set Q for

lgorithm 2 is the ∞ -norm unit ball in R 

2 and the dDDE is given

y the matrices in Example 1 , then after 4 iterations one obtains

he sequence in Fig. 5 . The set iteration can be stopped as long as

 is a strict subset of P 4 . This represents a proof by construction

hat forward set iterations diverge and the system does not admit

 D-invariant set. 

A pictorial overview of the relation between different kinds of

tability and existence of D-invariant sets is given in Fig. 6 . Solid

lack lines represent implications that have been proved herein.

olid yellow lines represent previous results and dashed lines with

uestion marks represent open problems. Dashed lines with a

ross between two statements show that the first property does

ot necessarily imply the second. 

. Extensions of D-invariance 

As mentioned in the introduction, two main approaches exist

n the literature dealing with positive invariant sets for discrete

ime-delay difference equations; an invariant set for the dDDE can

e computed either in an extended state space, or in the original

tate space (in this latter case, it is called D-invariant set). The con-

ept of cyclic invariance ( Lombardi et al., 2012 ) can be exploited

o compute, instead of a rigid set in (R 

n ) d+1 or R 

n as in the two
forementioned approaches, a tuple of invariant sets; thus offering

 certain degree of flexibility. 

efinition 9. A (d + 1) -tuple of sets { �0 , . . . , �d } is called cyclic

-invariant with respect to (1) if: 

A 0 �0 � A 1 �1 � · · · � A d �d ⊆ �d ;
A 0 �d � A 1 �0 � · · · � A d �d−1 ⊆ �d−1 ;

. . . 
A 0 �1 � A 1 �2 � · · · � A d �0 ⊆ �0 . 

(34) 

A generalization of the cyclic invariance notion to invariant

amily of sets was proposed by Rakovi ́c et al. (2012) and Rakovi ́c

nd Gielen (2014) . 

efinition 10. A family of (d + 1) -tuples of sets F ⊂ (R 

n ) d+1 

s an invariant family with respect to (1) if for any tu-

le { �0 , �1 , . . . , �d } ∈ F there exists a set �∗ ⊂ R 

n such that

 �∗, �0 . . . , �d−1 } ∈ F and A 0 �0 � A 1 �1 � · · · � A d �d ⊆ �∗. 

The link between the two main representations for discrete

ime-delay difference equations and their invariant sets has re-

eived recently a unifying characterization via set factorization

 Olaru et al., 2014 ). The reader is referred to this work for geomet-

ical details on the Cartesian product of sets in relationship with

ositive invariance for time-delay systems. 

. Conclusion 

This paper discusses positive invariance for discrete time-delay

ystems. Necessary and/or sufficient conditions for the existence of

- invariant sets have been gathered and discussed. The relation-

hip between D- invariance and stability has been studied for dis-

rete delay difference equations (dDDEs). The construction of D-

nvariant sets via set iterations has been shown to benefit from set

onvexification, despite the fact that set forward mappings based

n the original dDDE lead to a non-convex D-invariant set. 
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