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Abstract

A major drawback hinders the application of Model Predictive Control (MPC) to
the regulation of electromechanical systems or, more generally, systems with fast
dynamics: the time needed for the online computation of the control is often too
long with respect to the sampling time. This paper shows how this problem can
be overcome by suitably implementing the MPC technique. The main idea is to
compute the control law using the discrete-time Euler Auxiliary System (EAS)
associated with the continuous-time plant, and apply the control obtained for the
discrete-time system to the continuous-time system. In this way the implementa-
tion sampling time can be much smaller than the EAS time parameter, which leads
to significant savings in computation time. Theoretical results guarantee stabili-
sation, constraint satisfaction and robustness of such a control strategy, which is
applied to the control of an electric drive and a cart-pendulum system.

Keywords: Model Predictive Control, Euler Auxiliary System, Constrained
Control, Stability, Permanent-Magnet Motor Drive, Cart-Pendulum System

1. Introduction

Model Predictive Control (MPC), also referred to as Receding Horizon Con-
trol, is an established control technique (see, for instance, [9]) that was initially
intended for linear time-invariant (LTI) systems. Despite the heavy computational

Email addresses: blanchini@uniud.it (Franco Blanchini),
daniele.casagrande@uniud.it (Daniele Casagrande),
giulia.giordano@uniud.it (Giulia Giordano), viaro@uniud.it (Umberto Viaro)

Preprint submitted to Journal of The Franklin Institute September 11, 2016



burden required by its implementation, MPC is characterised by a high level of ro-
bustness, which has motivated its extension to other important classes of systems,
such as distributed systems [10, 11] and nonlinear systems [20]. Its application in
industrial contexts is more recent (see, e.g., [21]).

In the last years the MPC technique has been applied to the control of electric
equipment, such as power converters [22, 1, 29] and electromechanical systems
with fast dynamics [24, 28], with particular regard to electric drives [12, 13, 8, 18].
An overview of results on this subject can be found in [16] and [23].

The industrial application of the MPC technique to the regulation of the afore-
mentioned systems has a severe drawback: the time needed for its real-time imple-
mentation is often too long. Several methods have been proposed to overcome this
problem. Some of them are based on the idea of performing off-line part of the
computation needed to find a solution (see, e.g, [26, 2, 17]). Some others, instead,
aim at speeding up computations. For instance, an interesting solution that com-
bines warm-starting, reordering of the variables and early termination is proposed
in [27]. Another approach is followed in [3], where the state space is divided into
subsets that require the solution of simpler linear quadratic problems. However,
in general, there is no upper bound on the number of these subsets, which may
grow exponentially with the dimension of the prediction horizon. Other solutions,
such as the so-called Generalized Predictive Control [15] and Finite Control Set
MPC [16], have also been investigated.

Here we pursue the idea of quasi-optimal MPC put forth in [6], which is sum-
marised in Section 2. The key feature of the method is to consider the Euler
Auxiliary System (EAS) for the computation of the MPC law. In fact, the con-
trol law determined by means of the MPC technique for the discrete-time EAS
can safely be applied to the continuous-time system. In this way, the implementa-
tion sampling time can be made much smaller than the time parameter adopted in
the sampled-data prediction model, with remarkable computational benefits. Sec-
tion 3 analyses the robustness of the suggested technique. In particular, a condition
is derived that ensures robust stability in the presence of parametric uncertainties.
The effectiveness of the method is tested on two fast electromechanical systems.
Specifically, Section 4 considers the control of a a permanent-magnet synchronous
motor, while Section 5 deals with a cart-pendulum system. The results are briefly
discussed in the concluding Section 6.
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2. MPC strategy

2.1. Motivation and background
MPC techniques based on standard sampled-data models must satisfy the fol-

lowing requirements that are often conflicting.

• The sampling time must be small; roughly, the sampling frequency must be
significantly greater than the system bandwidth.

• The prediction horizon must be large enough to allow an effective optimi-
sation of the trajectory.

• The time required to compute the solution must be smaller than the sam-
pling time.

Unfortunately, both reducing the sampling time and extending the prediction
horizon increase the number of variables in the optimisation problem that must be
solved to find the control law, which results in a longer computation time. Coping
with these conflicting requirements is even harder in the presence of constraints.

The idea suggested in [6] and applied in this paper is to distinguish between
two different time intervals:

T : the implementation sampling time, which is chosen on the basis of the sys-
tem bandwidth and must be small enough to cope with the fast system dy-
namics.

τ : the time parameter adopted in the prediction model. This parameter is cho-
sen on the basis of the prediction horizon and must be large enough to ensure
that the solution of the optimisation problem is computed within time T .

In short,
τ � T .

Now, if T is very small (virtually zero w.r.t. the process time constants), the
sampled-data implementation is virtually equivalent to a continuous-time imple-
mentation and the following questions arise.

Q1 How can an MPC scheme based on the time parameter τ be adopted and
applied to the continuous-time system?

Q2 What performance can be guaranteed?

Q3 Can constraint satisfaction be ensured?

The next subsection answers these questions.
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2.2. Overview of constrained suboptimal MPC [6]
Consider a system

ẋ(t) = f(x(t), u(t)) , (1)

where x(t) ∈ Rn for all t, u(t) ∈ Rm for all t, and f(·, ·) is locally Lipschitz
with respect to the first argument. Assume that x̄ = 0 is an equilibrium point
corresponding to ū = 0, namely f(0, 0) = 0, and denote the initial state by
x0 = x(0). We are concerned with the problem of finding the control law u that
minimises the cost functional

J(x, u) =

∫ ∞
0

g(x(t), u(t))dt , (2)

where g is positive definite, subject to the constraints

x(t) ∈ X (3)
u(t) ∈ U (4)

for all t, where X and U are convex and closed sets including the origin in their
interior.

Now, suppose that the optimal control law minimising the cost functional and
satisfying the constraints can be written in the state-feedback form

u(t) = Kopt(x(t)) . (5)

If the optimal cost is finite andKopt is well-defined, we can consider the cost-to-go
function

Ψ(x0)
.
= J(x,Kopt(x)) =

∫ ∞
0

g(x(t), Kopt(x(t)))dt , (6)

with
ẋ(t) = f(x(t), Kopt(x(t))) , x(0) = x0 , (7)

which represents the value of the optimal cost, subject to the constraints, given the
initial state x0.

Since, except for special cases, finding Kopt and Ψ is an almost hopeless task,
resort can profitably be made to the EAS

x(k + 1) = x(k) + τf(x(k), uD(k)) , (8)

where τ > 0 is the aforementioned time parameter, and to the associated cost
function

JτD(x, u) = τ
∞∑
k=0

g(x(k), uD(k)) . (9)
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If, as previously assumed, the discrete-time optimal control may be expressed in
the state-feedback form uD(k) = KD(x(k)), the EAS dynamics can be written as

x(k + 1) = x(k) + τf(x(k), KD(x(k))) , x(0) = x0 (10)

and the cost-to-go function ΨD(x0, τ), i.e., the optimal discrete-time cost with
initial state x0 subject to the given constraints, is

ΨD(x0, τ)
.
= JτD(x,KD(x)) = τ

∞∑
k=0

g(x(k), KD(x(k))) . (11)

The following result, proven in [6], points out an important relation between the
continuous-time problem and the discrete-time solution.

Theorem 2.1. Assume that ΨD and Ψ are convex functions defined on an open
convex set including the origin. Then, for all τ > 0 ,

Ψ(x0) ≤ ΨD(x0, τ) .

Moreover, if the control KD(x) is applied to the continuous-time system, the
continuous-time cost (2) with initial state x(0) = x0 is bounded as

J(x,KD(x)) ≤ ΨD(x0, τ)

and, for τ → 0+, ΨD(x0, τ) converges to Ψ(x0) from above. �

If the system is linear time-invariant, i.e.,

ẋ(t) = Ax(t) +Bu(t) , (12)

then the corresponding EAS is

x(k + 1) = [I + τA]x(k) + τBuD(k) . (13)

It can be shown [6] that, if the pair (A,B) is stabilisable and the function g is
convex, then Ψ(·) and ΨD(·, τ), ∀τ , are both convex functions defined on an open
convex set including the origin. Hence, in view of Theorem 2.1, the discrete-time
feedback control KD(x) can be reasonably applied to the continuous-time system
(12).
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Consider now the MPC problem

Ψ
(τ)
N (x0) = min

uD(·),x(·)

[
τ
N−1∑
k=0

g(x(k), uD(k)) + Φ(x(N))

]
, (14)

subject to

x(k + 1) = [I + τA]x(k) + τBuD(k) , 0 ≤ k ≤ N − 1, (15)
uD(k) ∈ U , 0 ≤ k ≤ N − 1 , (16)
x(k) ∈ X , 0 ≤ k ≤ N − 1 , (17)
x(0) = x0 , (18)
x(N) ∈ P , (19)

whereN is the number of steps in the prediction horizon and Φ(x(N)) is a penali-
sation of the final state x(N) (included to enforce system stability). The constraint
(19) on the final state x(N), where P is a controlled-invariant set (or a contractive
set [4, 5]), is also considered.

Based on the solution of the discrete-time problem (14)–(19), a control law for
the continuous-time linear system (12) providing an approximate solution to the
problem of minimising the finite-horizon cost functional (2), with a guaranteed
cost J ≤ Ψ

(τ)
N (x0), can be computed according to the following procedure.

Procedure 2.1. Continuous-time control law.

Step 1 Given the state x(t) of the continuous-time system at time t = kT , k =
0, 1, 2, . . . , find the control sequence

{uD(0), uD(1), . . . , uD(N − 1)}

that solves the discrete-time optimisation problem (14)–(19) starting from
x0 = x(t).

Step 2 Apply to the original continuous-time system the control input u(t) =
uD(0) (first element of the discrete-time optimal control sequence) for all
t ∈ [kT, (k + 1)T ).

6



Remark 2.1. In practice, the computation of the values of the piecewise-constant
control law takes a non-zero time, so that over a short subinterval at the beginning
of every sampling interval the input value will remain the same as that in the
preceding sampling interval.

If
g(x, u) = x>Qx+ u>Su , (20)

where Q and S are positive-definite matrices, then the optimal unconstrained cost
is

Ψ(x0) = τx>0 Px0 ,

where P is the solution of the discrete-time algebraic Riccati equation associated
with (13), and Ψ

(τ)
N (x0) provides the true constrained discrete-time optimal cost

for the EAS, provided that the horizon N is large enough [25, 19, 14].
Since Ψ

(τ)
N is convex (actually, piecewise-quadratic [3]), when the piecewise-

constant control computed by means of Procedure 2.1 is applied to the continuous-
time system, the constraints are satisfied and the continuous-time cost is bounded
from above by the discrete-time cost Ψ

(τ)
N (x0) according to the following result

[6] that ensures stability, too.

Theorem 2.2. Let u = KD(x) be the continuous-time control law determined by
means of Procedure 2.1. Then, for N large enough,

• no constraint violation occurs for the continuous-time system, and

• Ψ
(τ)
N is a Lyapunov function for the continuous-time system satisfying the

inequality
D+Ψ

(τ)
N (x) ≤ −φ(x) , (21)

where D+Ψ
(τ)
N denotes the right Lyapunov derivative1 of Ψ

(τ)
N and φ is a

positive-definite function.

Proof. (Sketch - for a detailed proof, see [6].) According to [25, 19, 14], if
the horizon N is large enough, Ψ

(τ)
N is a Lyapunov function for the discrete-time

EAS. As a consequence, there exists a positive definite function φD, such that

Ψ
(τ)
N (x+ τ(Ax+BKD(x)))−Ψ

(τ)
N (x) ≤ −φD(x) . (22)

1It is necessary to consider the right Lyapunov derivative, defined as D+Ψ(x) =

limh→0+
Ψ(x(t+h))−Ψ(x(t))

h , because Ψ is convex but, in general, non-smooth.
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By setting
φ(x) := φD(x)/τ ,

from (22) we obtain

Ψ
(τ)
N (x+ τ(Ax+BKD(x)))−Ψ

(τ)
N (x)

τ
≤ −φ(x) . (23)

If Ψ
(τ)
N is convex, its right Lyapunov derivative can be written as the limit for

τ → 0+ of the left-hand side of (23), which is a non-decreasing function of τ and,
consequently,

D+Ψ
(τ)
N (x) = lim

h→0+

Ψ
(τ)
N (x+ h(Ax+BKD(x)))−Ψ

(τ)
N (x)

h

≤ Ψ
(τ)
N (x+ τ(Ax+BKD(x)))−Ψ

(τ)
N (x)

τ
≤ −φ(x) .

�

3. Robustness of the control strategy

A theoretical result with important practical implications on the robustness of
the proposed control strategy is derived in this section.

The theory presented in the previous section applies as long as Ψ
(τ)
N is convex,

which is certainly true in the case of linear systems with convex constraints. If the
system is nonlinear, resort can be made to linearisation. Two types of linearisation
are possible:

• linearisation around an equilibrium point, obtained by Taylor-expansion
truncation;

• feedback linearisation, obtained by applying a suitable feedback to the non-
linear system.

In both cases, the resulting model exhibits uncertainties: in the first, because the
higher-order nonlinear terms are neglected; in the latter, because exact cancella-
tion is impossible if the parameter values are not known precisely. Therefore, a
realistic use of the model should take into account parameter uncertainties. It is
shown next by means of a Lyapunov approach that, under suitable assumptions,
the robustness of the adopted solution is guaranteed.
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Consider the system

ẋ(t) = [A+ ∆]x(t) +Bu(t) , (24)

where matrix ∆, which represents the uncertainty on the state matrix A and can
itself be a function of the current state, i.e., ∆ = ∆(x) (for simplicity, only the
state matrix A is assumed to be uncertain), satisfies a bound

‖∆(x)‖ ≤ µ . (25)

for all x. Then, the following result holds.

Proposition 1. Assume that the nominal system (12) with u = KD(x) admits the
Lyapunov function Ψ

(τ)
N , whose right Lyapunov derivative satisfies (21). Then, the

stability of the uncertain system (24) is ensured if

ψ(x) < φ(x) (26)

for all x, where

ψ(x) = lim
h→0+

Ψ
(τ)
N (x+ h∆(x)x)−Ψ

(τ)
N (x)

h
. (27)

Proof. It is enough to prove that Ψ
(τ)
N is a Lyapunov function for the uncertain

system (24). Indeed, if Ψ
(τ)
N is differentiable at all points, then, denoting by∇Ψ

(τ)
N

its gradient, from (21) and (24) we have

D+Ψ
(τ)
N (x) = ∇Ψ

(τ)
N (x)> [Ax+ ∆(x)x+BKD(x)]

= ∇Ψ
(τ)
N (x)> [Ax+BKD(x)] +∇Ψ

(τ)
N (x)> ∆(x)x

≤ −φ(x) + ψ(x) < 0.

In general, however, Ψ
(τ)
N is not differentiable at all points (for example, in the

constrained linear-quadratic case it is piecewise quadratic [3]). The proof for the
general case is given in the Appendix. �

To exploit this result, it is necessary to check whether condition (26) is satisfied
for some positive-definite function φ(x). Now, if a Lipschitz constant cL for Ψ

(τ)
N

in a certain domain XL ∈ X is known, then from (25) and (27) we have

ψ(x) ≤ cLµ‖x‖ ,
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for all x ∈ XL. Another bound can be obtained if φ(x) ≤ α‖x‖2; in this case

ψ(x) ≤ αµ2‖x‖2 .

An explicit robustness condition valid when the constraints are not active2 can
also be found. Indeed, as far as the linear-quadratic constrained control problem
[14, 19] is concerned, it is always possible to find a neighbourhood X of the
origin such that, for all initial conditions x0 ∈ X , Ψ

(τ)
N (x0) = τx>0 Px0, where

P is the positive-definite solution of the discrete-time algebraic Riccati equation
associated with the EAS (13). In this case, according to [14, p. 264], φD in
(22) can be chosen as φD(x) = τx>Qx so that φ(x) = x>Qx and, therefore,
according to condition (21) of Theorem 2.2, the following relation holds for the
nominal system

Ψ̇
(τ)
N (x) = τ(Ax+BKD(x))>Px+ τx>P (Ax+BKD(x)) ≤ −x>Qx .

To guarantee robustness, the extra term ∆(x)x accounting for the uncertainties
must be added to the expression of the derivative Ψ̇

(τ)
N (x), which leads, in the case

of the uncertain system, to:

Ψ̇
(τ)
N (x) = τ [(A+∆(x))x+BKD(x)]>Px+τx>P [(A+∆(x))x+BKD(x)]

≤ −x>Qx+ τx>(∆(x)>P + P∆(x))x

and the condition to be checked becomes

x>Qx > τx>[∆(x)>P + P∆(x)]x. (28)

This is certainly true if x>Qx > 2 τ ‖P‖ ‖∆(x)‖ ‖x‖2 for all x, which in turn is
satisfied if

σmin(Q) > 2µτ‖P‖, (29)

where σmin(Q) is the minimum eigenvalue of Q.

Remark 3.1. Condition (29) might be satisfied only for small values of µ. How-
ever, if the uncertain term ∆(x) belongs to some known set D for all x, to fulfill
(28) it is sufficient that the eigenvalues of ∆(x)>P + P∆(x)−Q be negative for
all ∆(x) ∈ D. This remark is exploited at the end of the next section to determine
the robustness margin of the control law.

In the next two sections, the suggested MPC strategy is applied to a pair of
fast electromechanical systems that are widely used in practice.

2We remind that the constraint x ∈ X is active at x̂ if x̂ belongs to the boundary of X .
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4. Permanent-magnet motor drive

The dynamics of a permanent-magnet synchronous motor can be described
[7, 8] by the equations

did
dt

=
1

Ld
(−Rid + ωLqiq + ud) ,

diq
dt

=
1

Lq
(−ωLdid −Riq − ωM + uq) ,

(30)

where id and iq are the direct and quadrature stator currents, respectively; R is the
stator resistance; Ld and Lq are the direct and quadrature inductances; ω is the
rotor angular velocity; M is the permanent-magnet flux linkage; ud and uq are the
direct and quadrature stator voltages.

Since ω is measurable and M is known, reference can be made to a new vari-
able ũq related to the quadrature voltage by

uq = ũq + ωM.

Then, by setting y = (id, iq)
> and u = (ud, ũq)

>, system (30) can be rewritten in
the compact form

ẏ = (ωΛ− Γ)y + Θu , (31)

where

Γ =

[
R/Ld 0

0 R/Lq

]
, Λ =

[
0 Lq/Ld

−Ld/Lq 0

]
and

Θ =

[
1/Ld 0

0 1/Lq

]
.

The dynamics of the shaft angular speed are described by

dω

dt
=

p

JI

(
3pM

2
iq −

b

p
ω − τL

)
, (32)

where p is the number of pole pairs, JI is the moment of inertia, b is the viscous
damping coefficient and τL is the disturbance torque.

Suppose now that the equilibrium point ȳ of (31) corresponding to a constant
input vector ū must be stabilised, and consider the state error

z = y − ȳ ,
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whose dynamics are described by

ż = (ω̄Λ− Γ)z + (ω − ω̄)Λy + Θ(u− ū), (33)

where ω̄ is the equilibrium value for ω. By applying the feedback control law

u = ū−Θ−1(ω − ω̄)Λy + Θ−1v, (34)

where v = (vd, vq)
> is a new input vector, the following linear equation is ob-

tained
ż = (ω̄Λ− Γ)z + v . (35)

Concerning the angular velocity, at steady state from (32) we have

0 =
p

JI

(
3pM

2
īq −

b

p
ω̄ − τ̄L

)
, (36)

where τ̄L = 0 is the nominal torque and ω̄ the steady-state angular velocity. De-
noting by

σ = ω − ω̄ (37)

the deviation of the angular speed from its steady-state value, the overall control
system can then be described by means of the linear equations

ż = (ω̄Λ− Γ)z + v , (38)
σ̇ = αzq − βσ − δτL , (39)

where α =
3p2M

2JI
, β =

b

JI
and δ =

p

JI
.

An even simpler linear model can be obtained by setting

u = v −Θ−1(ωΛ− Γ)y (40)

directly in (31), which leads to the state-error equation

ż = v (41)

instead of (38).
The MPC strategy can conveniently be computed for either of the aforemen-

tioned linear models, which are exactly equivalent to the original system as long
as the parameters are known accurately (i.e., ω, id, iq can be measured precisely
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and the information about the values of M , Ld and Lq is reliable), so that replac-
ing (34) in (33), or (40) in (31), leads to a perfect “cancellation” of the nonlinear
terms. Quite arbitrarily, the simulations described next use the second model,
whereas the robustness analysis at the end of the section is based on the first.

As in [8, 7], the limits |iq| ≤ imax and |id| ≤ εimax, with ε ∈ (0, 1), are
imposed on the quadrature and direct current, respectively, which is equivalent to
imposing the following constraints on the components of z = (zd, zq)

>:

−εimax − īd ≤ zd ≤ εimax − īd ,
−imax − īq ≤ zq ≤ imax − īq .

The optimal control is computed with respect to the index

J(z, σ,v) =

∫ ∞
0

[
‖z(t)‖2 + 10σ(t)2 + 0.01 ‖v(t)‖2

]
dt . (42)

The values of the parameters used in the numerical simulations are taken from [8];
precisely:

R = 0.8 Ω ,

Ld = 6.5 mH ,

Lq = 6.5 mH ,

b = 0.01 kg ·m2/s ,

M = 0.36 Wb ,

JI = 0.0085 kg ·m2 ,

p = 3 ,

imax = 10A ,

ε = 0.1 .

Since the speed transients are expected to last about 0.1 ÷ 0.3 s, the prediction
horizon is taken to be

Tpred = 0.3 s .

Considering the time-scale of this system, a reasonable sampling time is

T = 0.001 s ,

so that the prediction horizon with τ = T would include N = 300 steps. Corre-
spondingly, the optimisation problem, to be solved in a time at most equal to T ,
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would involve about 5 · 300 = 1500 free variables! Instead, the EAS with time
parameter

τ = 0.05 s ,

consists of only N = 6 steps leading to 5 · 6 = 30 free variables, so that the
optimisation problem can safely be solved within the sampling time.

In the simulations whose results are shown in Figs. 1 and 2, the reference speed
is a square wave with high value 1500 rpm, low value 500 rpm, period 2 s and
duty-cycle 50%. The load is due solely to the viscous torque term b ω, while the
disturbance torque is neglected. Fig. 1 shows the evolution of the state variables
(currents and speed) and Fig. 2 that of the corresponding control inputs (voltages).

0 0.5 1 1.5 2 2.5 3 3.5 4
−4

−2

0

2

4

6

8

10

12

14

16

Figure 1: Evolution of the state variables: angular velocity (red) in rpm/100 (for comparison, the
reference signal is drawn in cyan), direct current (blue) and quadrature current (green) (A).

According to the considerations of Section 3, the robustness of the suggested
MPC technique can be evaluated as follows. It is assumed, for simplicity, that
the only uncertain parameter is the stator resistance (which is often the case in
practice). To this purpose, matrix Γ defined immediately after equation (31) is
replaced by (1+γ)Γ with γ positive (the resistance is higher than the nominal one
during operation because of increased temperature). In this way, with reference to
the system (38)–(39) with state vector x = (z>, σ)>, the uncertainty matrix ∆ in
(24) takes the form

∆ = −γ
[

Γ 0
0 0

]
.
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Figure 2: Evolution of the control inputs: direct voltage (blue) and quadrature voltage (green) (V ).

Therefore, condition (28) particularises to

x>Qx > −τx>γ(Γ̂P + P Γ̂)x, (43)

where

Γ̂ =

[
Γ 0
0 0

]
and P is the solution of the Riccati equation computed for the associated discrete-
time EAS. Simple calculations show that (43) is satisfied for values of γ up to
0.35, corresponding to a 35% robustness margin.

5. Cart-pendulum system

Consider the cart-pendulum system of Fig. 3 actuated by means of a DC mo-
tor. By choosing the state vector as x = [ϑ ϑ̇ s ṡ]>, the input u as the cart
acceleration (directly related to the actuator torque which is approximately pro-
portional to the armature current), and the output vector as y = [ϑ s]>, the
linearised system equations can be written as

ẋ(t) = Ax(t) +Bu(t) ,

y(t) = Cx(t) .
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Figure 3: Cart-pendulum system.

The entries of the state, input and output matrices have been determined (in SI
units) from a laboratory prototype as

A =


0 1 0 0

−19.62 −0.125 0 −9.886
0 0 0 1
0 0 0 −4.943

 , B =


0

11.53
0

5.767

 ,

C =

[
1 0 0 0
0 0 1 0

]
.

The system is subject to the acceleration constraint

|u(t)| ≤ umax = 1

and the angle constraint
|ϑ(t)| ≤ ϑmax = 0.23 .

Matrices Q and S in (20) are chosen as Q = diag{1, 1, 100, 1} and S = 0.01.
Even if this system is slower than the electrical drive considered in the previous
section, the sampling time must be small to allow for the reconstruction of both
the linear and angular speed from the displacement and angle measurements. In
this case, an acceptable sampling time is T = 0.01 s and a reasonable planning
horizon is 0.5-1 s corresponding to 50-100 time steps, which would entail about
250-500 variables in a standard MPC problem to be solved in less than 0.01 s!

Instead, the EAS with time parameter τ = 0.2 s consists, for a planning hori-
zon of 0.8 s, of 4 steps. Fig. 4 shows the state trajectories with the proposed
receding-horizon control strategy starting from the initial state x0 = [0 0 0.5 0]>.
Figs. 5 and 6 show the state trajectories, starting from the same initial condi-
tion, when the prediction horizon is N = 8 (corresponding to Tpred = 1.2 s) and
N = 12 (corresponding to Tpred = 2.4 s), respectively.
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Figure 4: Simulation of the cart-pendulum behaviour starting from x0 = [0 0 0.5 0]> for τ = 0.2 s
and N = 4. The upper diagram shows the evolution of the state variables (ϑ blue, ϑ̇ green, s red,
ṡ cyan). The lower diagram shows the control input evolution.

N 4 8 12 16 20 24
Tc 0.00233 0.00270 0.00306 0.00416 0.00522 0.00640

Table 1: Computation time Tc (in seconds) for different prediction horizons.

It can be noted that the transient becomes better as the planning horizon is
enlarged.

Table 1 shows the computation time Tc on a processor with a base frequency
of 2.3 GHz. Although a non-dedicated hardware has been used, the computation
time is much smaller than T , even for large prediction horizons.

Table 2 shows the optimal cost corresponding to the initial condition x0 =
[0 0 0.5 0]>, a time horizon of 2.4 s, and different values of τ and N . By re-
ducing τ , better discrete-time performances (JD) are obtained. The continuous-
time performance (JC), computed numerically, is not significantly better than the
discrete-time performance.

As far as the constraints are concerned, by starting the system from the afore-
mentioned initial state, the control constraint is never active during the transients.
Instead, the constraints are active by starting the system from x0 = [ 0 0 0.75 0 ]>,
which is at a grater distance from the target (zero state), and choosing umax = 0.5.
The corresponding transient is shown in Figure 7 for a planning horizon N = 6.

The control law is effective in this case too and the settling time is only slightly
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Figure 5: Simulation of the cart-pendulum behaviour starting from x0 = [0 0 0.5 0]> for τ = 0.2 s
and N = 6. The upper diagram shows the evolution of the state variables (ϑ blue, ϑ̇ green, s red,
ṡ cyan). The lower diagram shows the control input evolution.

N 6 12 24 40
τ 0.4 0.2 0.1 0.06
JD 30.23 17.90 14.72 13.85
JC 29.11 16.71 14.02 13.61

Table 2: Optimal discrete-time (guaranteed) cost JD and numerically-evaluated continuous-time
cost JC .

larger than the previous case.

6. Conclusions

The implementation of Model Predictive Control often becomes a “race against
time” since the time to compute online the control must be smaller than the sam-
pling time. This drawback hinders the application of MPC-based techniques fast
systems, especially when the time horizon is long. The problem is even more
serious when constraints are imposed on some variables.

The modified MPC technique suggested in [6] and adopted in this paper avoids
these difficulties by relieving the computation of the optimal trajectory from the
burden of an excessive time resolution. In fact, by exploiting the Euler Auxil-
iary System, the (small) sampling time and the (much larger) time parameter used
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Figure 6: Simulation of the cart-pendulum behaviour starting from x0 = [0 0 0.5 0]> for τ = 0.2 s
and N = 12. The upper diagram shows the evolution of the state variables (ϑ blue, ϑ̇ green, s red,
ṡ cyan). The lower diagram shows the control input evolution.

in the optimisation problem may be kept distinct. Despite the coarser resolu-
tion for computing the control input, however, both stabilisation and constraint
satisfaction are guaranteed without appreciably deteriorating the control system
performance.

A new easily verifiable condition based on Lyapunov-functions theory has
been provided. It ensures the robustness of the adopted approach which has been
applied to the control of two fast electromechanical systems.
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Proof of Proposition 1

To complete the proof, points in which Ψ
(τ)
N is not differentiable need to be

considered. Since the system is linear, Ψ
(τ)
N is positive-definite and convex. Hence,

by defining the subgradient of a function g at x as the set

∂g(x) , {z∈Rn : g(y)− g(x)≥z>(y − x), for all y∈Rn} ,
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the directional derivative of Ψ in the direction y is given by (for details see, e.g.,
[5])

lim
h→0+

Ψ(x+ hy)−Ψ(x)

h
= sup

z∈∂Ψ(x)

z>y .

(Note that, at any point in which Ψ is differentiable, the subgradient is a singleton
equal to the gradient.)
Then, considering the directional derivative of Ψ

(τ)
N along the trajectories of (24),

we have

D+Ψ
(τ)
N (x) = lim

h→0+

Ψ
(τ)
N (x+ h(Ax+Bu) + h∆(x)x)−Ψ

(τ)
N (x)

h

= sup
z∈∂Ψ

(τ)
N (x)

z>(Ax+Bu+ ∆(x)x)

≤ sup
z∈∂Ψ

(τ)
N (x)

z>(Ax+Bu) + sup
z∈∂Ψ

(τ)
N (x)

z>∆(x)x

≤ −φ(x) + lim
h→0+

Ψ
(τ)
N (x+ h∆(x)x)−Ψ

(τ)
N (x)

h

= −φ(x) + ψ(x) < 0 .
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