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Abstract— We consider the problem of stabilizing a class
of systems formed by a set of decoupled subsystems (nodes)
interconnected through a set of controllers (arcs). Controllers
are network–decentralized, i.e. they use information exclusively
from the nodes they interconnect. This condition requires a
block–structured feedback matrix, having the same structure
as the transpose of the overall input matrix of the system. If
the subsystems do not have common unstable eigenvalues, we
demonstrate that the problem is solvable. In the general case, we
provide sufficient conditions for solvability. When subsystems
are identical and each input agent controls a pair of subsystems
with input matrices having opposite sign (flow networks), we
prove that stabilization is possible if and only if the system
is connected with the external environment. Our proofs are
constructive and lead to structured Linear Matrix Inequalities
(LMIs).

I. INTRODUCTION AND MOTIVATION

Control and coordination of independent units is rele-
vant in many applications, such as platoons of autonomous
vehicles [13], [16], [17], large data communication net-
works [22], [21], [14], [18], [19], inventory management
and production–distribution systems [5], [6], [7], [9], [10],
[27], [28] and network flows in general [5], [2], [25]. These
systems can be viewed as complex systems composed by
naturally independent subunits that interact through designed
control actions. In these networked control systems it is
often too expensive or physically impossible to implement a
centralized controller deciding an optimal strategy based on
information about all the subsystems. Therefore, controllers
have to be computed based on information about a limited
subset of agents/components. Literature on the topic of
decentralized networked control has flourished in the past
decades, yielding a variety of approaches to stabilize [13],
coordinate [12], or synchronize [24], [26] large sets of
systems using locally computed controllers.

In a wide class of applications, the same controller may
affect simultaneously several subsystems in the network. For
instance, in water distribution networks [20], [4] the flow
controlled in a pipe affects the upstream and the downstream
reservoirs simultaneously; in transportation networks, traffic
control in a communication route affects at once the density
of vehicles at both extremities of the route [3], [23]. If
we associate a graph with this kind of networked systems,
controllers are associated with the arcs connecting the nodes
(dynamically independent subunits). The design and synthe-
sis of this type of controllers has been pioneered in [18],
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[17], [19]; more recent work is due to [9], [4], although
essentially limited to the case in which subsystems are first–
order integrators.

In this paper we consider the case in which the nodes
are arbitrary subsystems with their own, possibly unstable,
dynamics. Under stabilizability assumptions, we seek lin-
ear network–decentralized [18], [17], [19], [9], [4] state–
feedback controllers in which each control agent (arc) can
use information only from the subsystems (nodes) it con-
nects. This is equivalent to imposing that the feedback
matrix has the same structure as the transpose of the input
matrix. This type of control is intrinsically different from
decentralized control frameworks where several naturally
interacting subsystems are equipped with their own local
controller [29], since we consider control agents which are
associated not with subsystems, but with flow arcs.

Our main results are:
• if the subsystems do not have common unstable eigen-

values, we show that the problem is solvable;
• in the case of (possibly) common eigenvalues, we dis-

cuss general structural sufficient conditions, including a
constrained LMI [8];

• in the case of a single common eigenvalue (typical in
distribution systems), the problem is solvable if and only
if the LMI is feasible;

• in the special case in which all subsystems are equal,
each control agent regulates at most two nodes, and
the input matrices in these nodes have opposite sign
(typical in flow and platoon problems), we prove that
a necessary and sufficient condition for solvability is
that the system is suitably connected with the external
environment.

A. Motivations

In most of the literature on network decentralized dynamic
flow, nodes are buffers modelled by simple integrators [17],
[19], [18]. Some exceptions are first–order node dynam-
ics [18], [9] and systems with a Laplacian state matrix [4].
The general equation for the class of buffer systems is

ẋ(t) = Bu(t) + Ed(t) (1)

where B is the flow matrix, u is the controlled flow and d is
an external signal. Yet, in many cases, the nodes have some
local processing dynamics which are more complex and have
to be taken into account.

Example 1: Consider the model of a water distribution
system, shown in Fig. 1, where each node (circled) represents
a subsystem with its internal dynamics. Precisely, each node
includes two reservoirs, where water exchange depends on



Fig. 1: The water distribution network considered in Sections I-A and V

their relative levels. Different subsystems are connected by
pipes whose flow u can be controlled. The network has a
constant demand vector d. In Fig. 1, supplementary integra-
tors are added to some reservoirs, so that they asymptotically
achieve exact desired levels. Indeed in previous work [9], [4]
it has been shown that, for systems described by (1), zero
steady state error cannot be assured using static continuous
controllers; yet, discontinuous controllers may not be appli-
cable in flow networks. In this example, zero steady state
error can be guaranteed for all the reservoirs equipped with
a supplementary integrator, for any demand vector d.

II. DECENTRALIZED CONTROL OF NETWORKS:
PROBLEM FORMULATION

We consider a class of linear, interconnected systems:

ẋi(t) = Aixi(t) +
∑
j∈Ci

Bijuj(t) + Eid(t)

where xi(t) ∈ Rni is the state of the i–th subsystem; Ci
is the set that indexes the control subvectors uj ∈ Rmj ,
j = 1, . . . ,M , named agents, affecting the i–th subsystem;
Bij represents the effect of control uj on the i–th subsystem;
d is an external signal affecting the i–th subsystem through
matrix Ei. The overall system can be written as

ẋ(t) = Ax(t) +Bu(t) + Ed(t) (2)

where x(t) ∈ Rn includes the state variables associated with
each subsystem, u(t) ∈ Rm is the control vector, d(t) ∈ Rn
is the vector representing an external, non–controllable signal
affecting the system, E is a generic matrix, while A and B
are block–structured: A ∈ Rn×n is a block–diagonal matrix

A = blockdiag{A1, A2, A3, . . . , AN} (3)

while matrix B ∈ Rn×m is a suitably structured matrix.
Assumption 1: (A,B) is stabilizable.
System (2) can be naturally represented with a hyper-

graph, where the N subsystems are associated with nodes
and control agents are associated with hyperarcs. In the
following, for simplicity, hypergraphs and hyperarcs will
be referred to as graphs and arcs. Each control component
uj , j = 1, . . . ,M is a vector in Rmj associated with a
block column of B. Such a block column has zero blocks

Bij ∈ Rni×mj corresponding to all the nodes not directly
affected by agent uj : formally, Bij = 0 if and only if j 6∈ Ci.
Denoting by Nj the set that indexes the nodes affected by
agent j, we also have Bij = 0 if and only if i 6∈ Nj . All
the block dimensions must be compatible with the block
structure of A, namely

∑N
i=1 ni = n and

∑M
i=1mi = m.

Example 2: For illustrative purposes, let us consider a
system with 4 nodes and 6 agents, where

A = blockdiag{A1, A2, A3, A4},

B =

 B11 B12 0 0 B15 0
0 B22 B23 B24 0 0
0 0 0 B34 0 B36

0 0 B43 B44 B45 B46

 ,
E = blockdiag{0, 0,−I,−I}.

We have C1 = {1, 2, 5}, C2 = {2, 3, 4}, C3 = {4, 6} and
C4 = {3, 4, 5, 6}. The agents control the following nodes:
N1 = {1}, N2 = {1, 2}, N3 = {2, 4}, N4 = {2, 3, 4},
N5 = {1, 4}, N6 = {3, 4}. The graph corresponding to B
(and E) is shown in Fig. 2.
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Fig. 2: The graph corresponding to Example 2: pink squares on solid arcs
indicate controllers, dashed arcs represent external, non–controllable signals

We consider controls restricted to the class:

uj = φ (xi, i ∈ Nj) .

Thus each agent uj can have information from nodes in Nj
only. In the case of linear feedback, we can give the following
equivalent definition.

Definition 1: A control of the form u = −Kx is decen-
tralized in the sense of networks if K has the same structural
zero blocks as B>.
In Example 2, K has the following structure:

K =


K>

11 K>
12 0 0 K>

15 0
0 K>

22 K>
23 K>

24 0 0
0 0 0 K>

34 0 K>
36

0 0 K>
43 K>

44 K>
45 K>

46


>

.

III. CASE OF DISTINCT UNSTABLE EIGENVALUES

In this section we show that under the following assump-
tion, which is a generic property, decentralized stabilizability
is always possible. We refer to all the eigenvalues whose real
part is not strictly negative as “unstable eigenvalues”.

Assumption 2: Two different subsystems do not share
unstable eigenvalues.

Definition 2: The system is node–stabilizable if any sub-
system i can be stabilized using the control inputs in Ci,
namely (Ai, [Bi1 Bi2 . . . BiM ]) are stabilizable ∀ i.
In Example 2 we would have that (A1, [B11 B12 B15]),
(A2, [B22 B23 B24]), (A3, [B34 B36]) and
(A4, [B43 B44 B45 B46]) are stabilizable.



We now provide two preliminary results, before we state
our main findings.

Claim 1: Given any state–input matrix pair (F,G), there
exists a Kalman–like transformation (KL-transformation for
short) such that

T−1FT =

[
S R
0 U

]
, T−1G =

[
V
0

]
,

where (S, V ) is a stabilizable pair and U contains only
unreachable unstable eigenvalues.

Claim 2: Consider any system of the form

F = blockdiag{F1, . . . , Fr}, G = [G>1 . . . G
>
r ]>,

where Gi have the same number of columns and Fi, Fj do
not share unstable eigenvalues for i 6= j. Then, if (Fi, Gi)
are stabilizable pairs, the system is stabilizable. In particular,
node–stabilizability and stabilizability are equivalent.

The proof of Claim 2 follows from the Popov criterion:
(F,G) is stabilizable iff rank [λI − F |G ] = n for all
unstable eigenvalues. Consider an unstable eigenvalue λ, say
of the first block F1, and let F̃1 = blockdiag{F2, . . . , Fr},
G̃1 = [G>2 . . . G

>
r ]>. We must have

rank
[
λI − F1 0 G1

0 λI − F̃1 G̃1

]
= n

The condition is true, since [λI − F̃1] has full rank because
λ is an eigenvalue of F1 only and [λI−F1|G1] has full rank
in view of the stabilizability of (F1, G1).

Theorem 1: Under Assumption 2, the following condi-
tions are equivalent:

• the system is stabilizable;
• the system is node–stabilizable;
• the system can be stabilized by means of a network–

decentralized control.

Proof: By Claim 2, if the subsystems do not share
unstable eigenvalues, node–stabilizability is equivalent to
stabilizability. If the system is decentralized–stabilizable,
then it is stabilizable. Therefore, we just need to show that
(node) stabilizability implies decentralized stabilizability.

Assume that the system is node–stabilizable. We consider
the first input u1 and we rewrite the system so that the p
subsystems in N1 are each KL-transformed (with respect to
input u1) and grouped in the first columns of A and B, as
below:

[A||B] =



S1 R1 . . . 0 0 0 V1 X
0 U1 . . . 0 0 0 0 X
...

...
. . .

...
...

...
...

...

0 0
. . . Sp Rp 0 Vp X

0 0 . . . 0 Up 0 0 X

0 0 . . . 0 0 Λ 0 B̃



Matrix Λ contains the subsystems not in N1 and X are
entries we can neglect. By rearranging the blocks we get:

[A||B] =



S1 . . . 0 R1 . . . 0 0 V1 X
...

. . .
...

...
. . .

...
...

...
...

0 . . . Sp 0 . . . Rp 0 Vp X

0 . . . 0 U1 . . . 0 0 0 B̃1

...
. . .

...
...

. . .
...

...
...

...
0 . . . 0 0 . . . Up 0 0 B̃p
0 . . . 0 0 . . . 0 Λ 0 B̃


Again by Claim 2, we can stabilize the blocks S1 . . . Sp by
means of the first input: we feed back the substates associated
with these blocks, xS1 (t), . . . , xSp (t), so that S1 . . . 0

...
. . .

...
0 . . . Sp

+

 V1
...
Vp

 [ K̃1 . . . K̃p

]
= Φ1

is stable. We achieve the following block–triangular form

[Â||B] =

[
Φ1 X Γ11 Γ12

0̄ Φ2 0 Γ22

]
. (4)

We will not feed back the substates xS1 (t), . . . , xSp (t) any-
more, so that a) the term denoted as 0̄ in (4) is preserved,
b) Φ1 remains untouched. The procedure is iterated by
considering the remaining part:

[Φ2||Γ22] =


U1 . . . 0 0 B̃1

...
. . .

...
...

...
0 . . . Up 0 B̃p
0 . . . 0 Λ B̃


Note that this subsystem
• includes the inputs we still have to exploit, u2, . . . , uM ;
• has a block–diagonal structure and meets Assumption 2;
• is node–stabilizable, hence stabilizable.

Therefore the problem of its stabilization is exactly as the
one we started with. By exploiting u2 and feeding back
components of the state which are not among those of
xS1 (t), . . . , xSp (t), we reach a new triangular form and so
on. At each step, we deal with the last part [Φk||Γkk] of a
system of the form

[Â||B̂]k =


Φ1 X . . . X Γ11 Γ12 . . . Γ1k

0 Φ2 . . . X 0 Γ22 . . . Γ2k

...
...

. . .
...

...
...

. . .
...

0 0 . . . Φk 0 0 . . . Γkk


The assumed node–stabilizability assures that the proce-

dure terminates successfully, because the unstable modes of
the residual system [Φk||Γkk] are unreachable by the inputs
u1 . . .uk−1, therefore they can necessarily be stabilized by
some of the remaining agents.
The procedure provides a control which might take advantage
of only a subset of the control agents. If this is an issue,
we can fully exploit the available arcs: we find a structured
feedback u = −K̄x, we solve the Lyapunov equation to find



a P for the closed–loop system, and finally we derive a more
suitable K with this P by solving

min ‖K‖2 : (A−BK)>P +P (A−BK) < 0, K ∈ S(B>)

This convex optimization problem is always feasible and the
obtained control exploits all available links.

IV. CASE OF SHARED UNSTABLE EIGENVALUES

To consider the case of common unstable eigenvalues,
we first provide a general sufficient condition in terms of a
structured LMI [8]. We will show that this condition becomes
sufficient and necessary under additional assumptions.

Proposition 1: Consider system (2), with A block–
diagonal and B block–structured. If the following LMI

SA> +AS − 2γBB> < 0 (5)

has a solution S > 0 in the form

S = P−1 = blockdiag{P−11 , P−12 , . . . , P−1N }, (6)

with Pk of the same dimensions of Ak, then the problem
admits a network–decentralized stabilizing feedback control.

Proof: The LMI is solvable if and only if

(A− γBB>P )>P + P (A− γBB>P ) < 0 (7)

with P = S−1, [11]. The network–decentralized control
K = γB>P assures

(A−BK)>P + P (A−BK) < 0. (8)

The LMI condition is sufficient, but not necessary, to guar-
antee network decentralized stabilizability [8].

Solvability conditions can be provided under additional
assumptions. The first assumption is motivated by Example
1, in which the subsystems share a single unstable eigenvalue
(λ = 0). In this case, if the system is stabilizable then
the LMI is feasible, hence the problem of decentralized
stabilization can be solved.

Proposition 2: Assume that all the matrices Ai have a
single unstable eigenvalue λ ≥ 0 of ascent 1 (i.e. the largest
Jordan block associated with λ has dimension 1). Then the
following conditions are equivalent:
• the system is stabilizable;
• the system can be stabilized by means of a network–

decentralized control;
• the LMI (5) has a structured solution (6).

Proof: We prove that stabilizability implies that the
structured LMI is solvable. The remaining proofs are trivial.
We apply to the blocks Ak separate transformations Tk, so
that T−1k AkTk = blockdiag{λIk, ÂSk }, where the stable part
ÂSk has the identity I as Lyapunov matrix:

(ÂSk )> + (ÂSk ) = −Qk < 0

By rearranging all the blocks and joining all λIk, we can put
the system in the form

Â =

[
λI 0

0 Λ̂S

]
, B̂ =

[
B̂λ
B̂S

]

where Λ̂S = blockdiag{ÂS1 , ÂS2 , . . . , ÂSN} is stable.

If the system is stabilizable, then B̂λ has full row rank, as
it can be immediately seen by means of the Popov criterion.
We consider the candidate block–diagonal matrix

Ŝ =

[
I 0
0 µI

]
,

where µ > 0 has to be decided, and the feedback

u = −γ[B̂>λ 0]x = −K̂x,
which is network–decentralized. Then

Ŝ(Â− B̂K̂)> + (Â− B̂K̂)Ŝ =

[
2(λI − γB̂λB̂

>
λ ) −γB̂λB̂>

S

−γB̂SB̂>
λ −µQ̂

]
,

where Q̂ = blockdiag{Q1, Q2, . . . , QN}. Since B̂λB̂>λ > 0,
for γ large enough the block 2(λI − γB̂λB̂>λ ) is negative
definite. Let us fix such a γ. Since Q̂ > 0, we can
subsequently take µ large enough to assure that

Ŝ(Â− B̂K̂)> + (Â− B̂K̂)Ŝ < 0. (9)

By using the backward transformations, we restore all the
blocks to the original position and thus we find a structured S
as desired. Then we take P = S−1, which is also structured,
to get (7). Thus (5) is satisfied with S > 0 structured.

To further investigate the problem, we introduce the follow-
ing definitions.

Definition 3: The network is locally stabilizable if each
agent ui can stabilize each of the subsystems in Ni.

Note that this by no means implies that the agent can stabilize
simultaneously more than one subsystem in Ni.

Definition 4: The system is structurally triangularizable if
there exist a) an ordering of the nodes and b) a selection and
ordering of the agents such that the resulting B has a block
triangular structure.

For instance, the system in Example 2 is structurally triangu-
larizable by ordering the nodes as 1, 2, 4, 3 and disregarding
the last two agents (i.e. selecting the first four). To present
our next result, we need to consider the case in which some
of the subsystems are open–loop stable.

Definition 5: Given the structured system (A,B), we de-
fine the extended system (A,Bext) as follows. For each node
i which is asymptotically stable, B is extended by adding a
fictitious ni columns block, which has an identity matrix
corresponding to Ai and zero blocks elsewhere.

For instance, if in the system of Example 2 the second
subsystem is asymptotically stable, we have to extend B as

Bext :=
[
B | [ 0 I 0 0 ]>

]
It is understood that this is a fictitious system which cannot
be considered in practice. The following theorem holds.

Theorem 2: If the extended system is triangularizable and
locally stabilizable, then (5)–(6) are feasible.



Proof: If the system can be triangularized, we may
assume Bext in the form

Bext =
[
B̄ B̃

]
=


B̄11 X . . . X B̃1

0 B̄22 . . . X B̃2

...
...

. . .
...

...
0 0 . . . B̄NN B̃N


where X are elements we can neglect. By assumption, ∀ i,
either (Ai, B̄ii) is stabilizable or Ai is already asymptotically
stable (then B̄ii = I , a fictitious column). Therefore, by
adopting the control

K =

[
K̄
0

]
, K̄ = blockdiag{K1,K2 . . . ,KN},

where Ki is such that Ai−B̄iiKi is asymptotically stable, the
resulting closed loop matrix is block triangular. Any asymp-
totically stable block–triangular matrix admits a Lyapunov
matrix which is block diagonal and satisfies (8); this means
that (5)–(6) are feasible.

Theorem 2 has demanding assumptions. However, there
are interesting structural assumptions under which LMI
solvability is guaranteed, such as when each control agent is
associated with an arc of a proper graph (not a hypergraph),
thus affects at most two subsystems.

Definition 6: A network is connected if the corresponding
graph is connected; it is connected with the external envi-
ronment if, in addition, the input matrix B has at least one
block–column with a single non–zero block.

Corollary 1: Assume that the system is locally stabiliz-
able and each agent controls at most two subsystems. If
the system is connected with the external environment, then
(5)–(6) are feasible, hence a decentralized stabilizing control
exists.

Proof: It is immediate, because, given a node connected
to the external environment, we can find a spanning tree and
form the triangular structure of B starting from this node.

An interesting case is that of flow networks, in which we
have a family of identical subsystems and each network link
connects a pair of nodes in such a way that its action has
opposite effects (inflow and outflow).

Proposition 3: Given a connected network, assume that
all the diagonal blocks of matrix A are equal, Ai = A1, for
i = 1, . . . , N , and that all non–zero blocks of B are ±B1.
Assume that there are at most two non–zero blocks in each
block column of matrix B and that, if they are two, they have
opposite sign. Then the following conditions are equivalent:
• the system is stabilizable;
• the system is locally stabilizable;
• the structured LMI is solvable;
• either A1 is stable or the network is connected with the

external environment.
Proof: Ignoring the trivial case of A1 stable, we show

that stabilizability implies both external connection and local
stabilizability; the rest of the proof follows from Corollary 1.
According to the Popov criterion, the system is stabilizable
iff, for all unstable eigenvalues λ, z>[λI−A|B] = 0 implies
z = 0. Consider now the vector z> = [z>1 z>1 . . . z>1 ],

where z1 6= 0 is a left eigenvector associated with A1, hence
z>[λI−A] = 0. By contradiction, assume the network is not
connected with the external environment. Then, each non–
zero block column would have exactly two blocks of opposite
sign, so we would also have z>B = 0 and the system would
not be stabilizable.

Local stabilizability can be proved in a similar way.
Indeed, if the subsystems were not locally stabilizable, there
would be an unstable eigenvalue λ such that z>1 [λI −
A1|B1] = 0, z1 6= 0, but defining again z> =
[z>1 z>1 . . . z>1 ] 6= 0 we would have z>[λI −A|B] = 0.

V. EXAMPLE

We revisit Example 1 and we assume that the nodes in
Fig. 1 have the following dynamics:

Ai =

[
−αi βi 0
αi −βi 0
0 1 0

]
where βi = 0 for i ∈ {1, 2, 4}.

In each node, the first two states are the reservoirs volumes,
while the third represents the local integrator. Constants αi
[min−1] and βi [min−1] depend on the size of the reservoirs
and the diameter of the connecting pipes; α1 = 15, α2 = 20,
α3 = 16, α4 = 16.7, α5 = 14, β3 = 12 and β5 = 22.

The overall system has the same structure as model (2),
where A = blockdiag{A1, A2, A3, A4, A5},

B =


Bu −Bd 0 0 0 0
0 Bu −Bd 0 0 −Bd
0 0 Bd −Bu 0 0
0 0 0 Bd Bu 0
0 0 0 0 −Bu Bd

 ,
Bd =

[
0 1 0

]>
, Bu =

[
1 0 0

]>
,

d = −[0 1 0 0 1 0 0 1 0 0 1 0 0 1 0]> and E = I . Since the
only unstable eigenvalue is λ = 0, which has ascent one and
is common to all the subsystems, we can apply the results
of Proposition 2 to regulate the system with a decentralized
control; K is obtained through the direct solution of the
LMI (5)–(6), numerically solved using the MATLAB LMI
toolbox [15]. To enforce a certain speed of convergence, in
the LMI A can be replaced with A + σI , σ > 0, so that
the closed loop eigenvalues have real part less than −σ. We
have used σ = 0.15.

In Fig. 3 and 4 the decentralized control is com-
pared with a centralized LQ control, with state weight-
ing matrix I and input weighting matrix I/2; x(0) =

[−8.80 3.63 −9.15 −8.57 0.43 −8.06 6.36 6.35 4.44 −7.00 3.19 0.37

9.45 2.97 6.00]>. As expected, the equilibrium values of the
states equipped with integral control are smoothly recovered.

VI. CONCLUDING REMARKS

We have proved that the problem of designing a network–
decentralized control to stabilize a system formed by a set
of independent subsystems is solvable when the subsystems
have no common unstable eigenvalues. In the general case,
we have provided a structured LMI condition which in
principle is only sufficient, but we have seen that such an
LMI is always feasible in particular cases, e.g. that of flow
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Fig. 3: Reservoir volumes evolution: decentralized (top) and optimal (bot-
tom) control.
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Fig. 4: Detailed simulation for reservoir volumes x2, x10 and x13 (zoomed
from Fig. 3).

networks and that of subsystems with a single common
unstable eigenvalue of ascent 1. Unfortunately, the general
question whether, under possibly common eigenvalues, sta-
bilization implies stabilizability in the sense of networks is
still unsolved and is left as a subject of further investigation.
Another interesting problem is how can we solve the LMI
efficiently: when BB> is large and sufficiently sparse, ideas
from chordal decomposition methods [1] could be promising.
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