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ABSTRACT: We propose a negative feedback architecture
that regulates activity of artificial genes, or “genelets”, to meet
their output downstream demand, achieving robustness with
respect to uncertain open-loop output production rates. In
particular, we consider the case where the outputs of two
genelets interact to form a single assembled product. We show
with analysis and experiments that negative autoregulation
matches the production and demand of the outputs: the
magnitude of the regulatory signal is proportional to the “error” between the circuit output concentration and its actual demand.
This two-device system is experimentally implemented using in vitro transcriptional networks, where reactions are systematically
designed by optimizing nucleic acid sequences with publicly available software packages. We build a predictive ordinary
differential equation (ODE) model that captures the dynamics of the system and can be used to numerically assess the scalability
of this architecture to larger sets of interconnected genes. Finally, with numerical simulations we contrast our negative
autoregulation scheme with a cross-activation architecture, which is less scalable and results in slower response times.
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Our increased understanding of biological parts enables their
use in a variety of new applications1 of growing complexity,
ranging from nanofabrication to drug production and delivery.
When a large number of molecular devices are required to
operate together within a system to achieve an overall
functionality, it is essential that the output of each device is
automatically tuned to meet its demand. For instance, a
synthetic circuit producing an unregulated, excessive amount of
non-native products in a host may cause overloading and
reduce growth.2−4 Again, insufficient production of key
components within an engineered circuit may hinder its overall
performance. These phenomena are typically present in
complex metabolic pathways transferred from their native
host to more cost-effective microorganisms: the production of
individual enzymes must be carefully engineered and balanced
to guarantee correct operation.5 In the context of nano-
technology, recently demonstrated RNA nanostructures require
the presence of stoichiometrically controlled concentrations of
individual strands; RNA transcription speed imbalances may
result in the formation of undesired complexes and incorrect
assemblies, both in vitro6 and in vivo.7 In other words, the
functionality of a large scale synthetic system may deteriorate if
the input/output behaviors of individual modules characterized
in isolation do not automatically meet specifications in their
network context. Rather than fine-tuning a device to fit a range
of contingent network demands, it is desirable to identify

design principles that would automatically ensure a demand-
adaptive operation.
In traditional engineering fields, the challenge of adapting the

output behavior of a device to reach the desired operating point
is met by routinely employing negative feedback at a variety of
scales (from individual transistors to layered network control
systems). Consider, for instance, a device S whose output y is
required to track a reference r, a signal which may fluctuate over
time (Figure 1A). A negative feedback loop causes the input to
the regulated process S to be proportional with opposite sign to
the error e between the output y and the reference value r.
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Figure 1. (A) General structure of a negative feedback loop, where the
system input counteracts the error between the desired and actual
system output. (B) Negative feedback scheme for a molecular system,
where an excess production of y is used to downregulate the “activity”
of the system.
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Thus, the system’s response is always driven by an input with
opposite trend relative to the error e. For instance, if y exceeds r
then the error is positive, but the input to S is negative and
drives “down” the response of S. In addition to maintaining a
desired output level, negative feedback generally gives us the
ability to redesign the dynamics of a system, and improve its
robustness with respect to parametric uncertainty.8

Negative feedback is ubiquitous in biomolecular networks.
For example, negative autoregulation is a motif present in over
40% of genes in E. coli.9,10 This mechanism is associated with
proteins that are generally in low demand,11,12 and reduces
noise13−15 and mutation rates16 in gene expression profiles. In
the context of synthetic biology, negative autoregulation has
been used to achieve faster response speed17 and to improve
robustness.13,16 The development of novel, tunable repression
mechanisms promises to improve our ability to control
dynamics and manage noise of increasingly complex molecular
circuits both in cellular hosts18,19 and in cell-free systems.20−22

However, the use of negative feedback to match production and
demand within a biochemical reaction network has, to our
knowledge, not been demonstrated.
In this paper, we propose to use negative feedback to

accurately regulate activity of components so they can meet
their output downstream demand, achieving robustness with
respect to uncertain open-loop (i.e., in the absence of feedback)
output production rates. Figure 1B shows a scheme of this
feedback architecture, which closely mimics the structure of a
typical negative feedback circuit in electrical or mechanical
systems. The output y of component S binds to a downstream
target L, which represents the demand for y; we design a
negative feedback pathway to use excess y (not bound to L) to
reduce its own production rate: thus, the magnitude of the
regulatory signal is proportional to the “error” between the
circuit output concentration and its actual demand. If, in turn, L
is the output of another circuit, it is conceivable that a negative
feedback loop in each individual module would help matching
production and demand in the overall system. With analysis
and experiments we show that this expectation is correct, and
negative autoregulation yields matching output fluxes in both
circuits.
The two-module system is implemented using in vitro

transcriptional circuits,20,23,24 a versatile toolbox to program
and build dynamic behaviors using nucleic acid reaction
networks. Within the general context of cell-free systems,25

this platform allows to rapidly engineer molecular functions in a
controlled environment with reduced uncertainty. We designed
two synthetic genes to transcribe RNA outputs that bind to
form a complex; each RNA species is also designed to
downregulate its own production through promoter displace-
ment.20 Thus, excess of either species modulates the genes’
activity and achieves matched promoter activity levels. The
product formation reaction and the inhibitory pathways are
systematically engineered by optimizing nucleic acid sequence
complementarity domains, using publicly available software
packages.26,27 We build a predictive ordinary differential
equation (ODE) model that captures the dynamics of the
system and can be used to numerically assess the scalability of
this architecture to larger sets of interconnected genes. Finally,
with numerical simulations, we contrast the performance of our
negative autoregulation scheme with the behavior of a cross-
activation architecture, which is less scalable and results in
slower response times. This work builds on preliminary
numerical analysis and experiments on transcription matching

synthetic systems.28−31 (Preliminary results related to this
manuscript were published in a series of conference manu-
scripts. The two-genelet transcription rate matching system was
described in Franco et al.,28 which includes preliminary
numerical analysis and data; a parametric numerical analysis
contrasting the negative and positive feedback schemes was
shown in Franco et al.29 Finally, the simple model for the
system and the scalability of its performance were initially
considered in Giordano et al.30) We foresee that systematic use
of similar negative feedback architectures will play a major role
in the scalability of in vitro biomolecular systems, including
logic,32 dynamic,24 and self-assembly networks.6,33

■ RESULTS
Negative Feedback Can Modulate Activity to Meet

Downstream Demand. We begin by considering a simple
model problem: a molecule R is produced by species T, and
binds to a target L.

⇀ + + ⇀ ·
β

T T R R L R L,
k

These reactions may represent, for instance, RNA or protein
production followed by binding of the product to a
downstream binding site or ligand. In the absence of any
regulatory pathway feeding back to T information regarding the
effective “consumption” of R by the target L, the production
and demand of R are not automatically matched: thus, an
excess of unused R may accumulate in solution for regimes
where the demand does not exceed the maximum production
rates. However, if we program a reaction

+ ⇀ *
δ

T R T
whereby species T bound to R becomes an inactive species T*,
we introduce a negative feedback mechanism that is propor-
tional to the unused amount of [R] ∝ [Rtot] − [R·L], thus
proportional to the error between production and demand. The
scheme is represented in Figure 2A. Assuming that the
concentration of the “demand” species L is constant, that the
total amount of T is constant ([T] + [T*] = [Ttot]), and finally
that inactive T* spontaneously reverts to its active state at a

certain rate α, T* ⇀
α
T, the system is described by the following

set of ODEs:

α δ= − −T
t

T T T R
d[ ]

d
([ ] [ ]) [ ][ ]tot

(1)

β δ= − −R
t

T T R k L R
d[ ]

d
[ ] [ ][ ] [ ][ ]

(2)

For illustrative purposes, we numerically simulate these
differential equations, choosing nominal parameters [Ttot] =
100 nM, α = 3 × 10−4/s, β = 0.1/s, k = 2 × 10−3/M·s, δ = 5 ×
102/M·s; these concentrations and rates are within a realistic
range for in vitro reaction systems.24,25 In Figure 2, we explore
the steady state behavior of the system as a function of the
feedback parameter δ, the total amount of load L, and the total
concentration of generating species T. First, as shown in Figure
2B, we note that a suitably high feedback rate δ reduces the
steady state fraction of unused output [R]/[Rtot] (output not
bound to its load): this means waste in the system is reduced.
In addition, for a given, large δ, a significant variation in load
results in a moderate variation in the fraction of unused output:
this behavior is consistent with the role of high feedback in
reducing load sensitivity in retroactivity theory.34 In Figure 2C,
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we observe that in the presence of feedback the activity of the
generating species, defined as [T]/[Ttot], is modulated by the
demand L. Finally, Figure 2D shows that the presence of
negative feedback yields closed loop activity levels that (given a
certain demand) are robust with respect to uncertainty in [Ttot],
which is a simple open-loop knob to scale the production rate
of R.
Matching Output Fluxes of Interconnected Devices.

In many practical cases, several molecular species in a network
bind stoichiometrically to form an overall product. For instance,
these species could be RNA strands6 or proteins35 self-
assembling in a nanostructure. To avoid excess production and
accumulation of any participating species, we can use the
negative feedback scheme described above. For simplicity, we
begin by considering a network where two generating species
T1 and T2 produce assembling outputs that self-inhibit
according to the following reactions:

⇀ + ⇀ * ⇀ + ⇀ *

+ ⇀

β δ β δ
T T R T T T R T

R R P

, ,
k

1 1 1 1 2 2 2 2

1 2

1 1 2 2

where P is an assembled product, and again, we assume that the
total amount of the generating species is conserved, [Ti

tot] = Ti
+ Ti*, i = 1,2. The dynamics of [T1] and [T2] are thus described
by ODEs identical to eq 1, while the dynamics of [Ri] become

β δ= − − =
R
t

T R T k R R i
d[ ]

d
[ ] [ ][ ] [ ][ ], 1, 2i

i i i i i i j

Example solutions to these ODEs are shown in Figure 4A,
where for the two subsystems we chose identical parameters,
consistent with our previous simulations at Figure 2 (α1 = α2 =

α = 3 × 10−4/s, and similarly defined β = 0.1/s, k = 2 × 10−3/
M·s, δ = 5 × 102/M·s).
Expressions for the nullclines of the system are derived in

section 2.1 of the Supporting Information (SI), the equilibria
(intersections of the nullclines) are numerically evaluated as a
function of the negative feedback reaction. At steady state, the
concentration of active T1 is nearly identical to the active
concentration of T2. Figure 4E, however, shows that this
property breaks down when the negative feedback rate δ is too
low; while a high δ guarantees matched activity levels, it also
causes an overall lower activity level for the system and pushes
down the production of the P = R1·R2 complex. (We define
mean steady state activity as the mean active [Ti] during the last
hour of a 10 h trajectory simulation.)
We also ask if, at a stationary regime, the dynamic behaviors

of R1 and R2 are similar. We find that the flux of both outputs
are identical when the active concentrations [T̅1] and [T̅2] are
related as follows (cf. section 2.1 of the SI):

α
α β

̅ = ̅ +
+

−T T T T( )2 1 2
tot

1
tot

(3)

where for simplicity we assumed α1 = α2 = α, β1 = β2 = β, and
δ1 = δ2 = δ. Thus, when β is sufficiently large relative to α, the
flux of the two outputs is matched. The steady state flux
mismatch is plotted as a function of δ in Figure 3F. We observe

Figure 2. (A) Scheme of negative feedback where output R not bound
to the target load L is used to downregulate its production. (B) The
steady state fraction ([Rfree]/[Rtot]) of unused R as a function of the
downstream load is reduced using a high negative feedback rate δ. (C)
The steady state activity ([T]/[Ttot]) of the genelet as a function of
the downstream load is reduced by an increase in the negative
feedback rate δ. (D) The steady state activity of the genelet as a
function of the total genelet concentration is increased using a higher
downstream load. In panels B and D, we considered δ = 0, 5, 50, 5 ×
102, 5 × 103, 5 × 104, 5 × 105/M·s. In panel D, the nominal
concentration of [Ttot] is 100 nM, and the load was varied as [L] = 1,
10, 102, 103, 104 nM.

Figure 3. Our two-device negative feedback architecture.

Figure 4. (A−D) Numerical simulations showing example trajectories
for the two-component negative feedback architecture. (A) Time
course of active T1 and T2. (B) Time course of total produced outputs
R1 and R2. (C) Time course of unbound R1 and R2. (D) Time course
for the flux mismatch in the production of total R1 and R2. (E) Steady
state activity of T1 and T2 as a function of the negative feedback
parameter δ. (F) Mismatch in the flux of R1 and R2 as a function of δ.
The dark circle in panels E and F marks the nominal conditions used
for the time courses plotted in panels A−D.
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again that flux matching is lost for low values of δ. (The flux
mismatch is averaged over the last hour of a 10 h trajectory
simulation.)
Experimental Results: Negative Autoregulation Balances

RNA Transcription Rates in a Two-Gene Artificial Network.
We implemented experimentally the two-species model
problem described above using in vitro transcriptional circuits.20

A sketch of the reactions for subsystem 1 is in Figure 5, where
we highlight the regulatory domains of nucleic acid species, the
main chemical reactions occurring, and the simple model
pathways to which they correspond. Two short, linear genetic
switches, or genelets, correspond to species T1 and T2, activated

by species A1 and A2; the genelets’ outputs are the RNA
transcripts R1 and R2. Transcription is carried out by T7 RNA
polymerase. The transcripts are designed to bind and form an
inert RNA complex P = R1·R2. (Since the focus of this work is
the investigation of the effects of feedback, the structure of P
and its functionality as a stand alone complex are neglected.)
Genelets have a nicked T7 bacteriophage promoter sequence
that can be displaced by toehold-mediated branch migration.36

We design the RNA output of each genelet to be
complementary to the portion of the promoter that can be
displaced (activator strand Ai): therefore, free RNA in solution
displaces the activator and self-inhibits its own production

Figure 5. Summary scheme of DNA species and enzymes used to implement experimentally our negative feedback system for RNA production
matching. Only subsystem 1 is represented (subsystem 2 is specular to subsystem 1). Complementary domains are indicated with the same color.
RNA species R1 and R2, transcribed by active genelets T1 and T2, are designed to be complementary (dark red and dark blue domains), but also to
function as self-inhibiting species. The orange-dark red domains in R1 indicate complementarity to the nicked portion of the promoter, activator A1,
which is displaced by free R1 (in excess with respect to R2) through toehold-mediated branch migration. The complex R1·A1 is degraded by RNase H,
which releases in solution A1; thus, A1 and T1 bind, recovering the genelet activity. Genelet activity can be tracked using a fluorophore-quencher pair
(green and black dot positioned on T1 and A1). Gray boxes map the main pathways in this system to the simplified reactions of our model problem.

Figure 6. (A) Experimental fluorimetry data showing several time courses of our system, measured for different total concentrations of genelets.
Experiments were run in triplicates. Error bars indicate the standard deviation at each time point. Once activators are added, both genelets become
fully active. Addition of enzymes initiates production of R1 and R2, which rapidly form a complex; excess of either species is expected to downregulate
its own genelet activity. For example, in the top left panel [T1

tot] is present in solution at a concentration which is twice that of [T2
tot]: as expected,

excess R1 inactivates T1 to activity levels comparable to [T2
tot]. (B) This plot summarizes the behavior of the time courses at panel A, by showing the

ratio of total genelet concentration ([Ti
tot]/[Tj

tot], for i = 1, 2 and j = 2, 1) versus the steady state ratio of active genelet concentration ([Ti·Ai]/[Tj·
Aj], for i = 1, 2 and j = 2, 1). (The total concentration of activators is always identical to the concentration of templates.) In a wide range of
conditions the steady state activity of the genelets always achieves a 1:1 ratio, thus matching production and demand of the RNA outputs.
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bringing the genelet in an “off” state. Degradation in the system
is introduced by RNase H, which hydrolyzes RNA in DNA/
RNA complexes. DNA strands were systematically designed by
thermodynamic analysis using the Winfree lab DNA design
toolbox for MATLAB, Nupack,27 and Mfold.37 Sequences were
optimized to yield free energy gains favoring the desired
reactions, and to avoid unwanted secondary structures and
crosstalk. For example, we ensured that the R1·R2 complex
formation reaction be more favorable than the self-inhibition
reaction: because roughly twice as many base-pairs are
complementary in the R1·R2 complex relative to the Ri·Ai

(inhibition) complex, the ΔG of formation of R1·R2 is ≈
−110 kcal/mol, twice as large (in absolute value) as the ΔG of
formation of Ri·Ai, which is ≈ −41 kcal/mol. Strand sequences
and complete reaction schematics are in section 1 of the SI.
We expect the feedback scheme to downregulate the

production of either RNA species when in excess with respect
to the other. For instance, if the concentration of genelet 1 is
twice the concentration of genelet 2, in the absence of
regulation the concentration of R1 produced will clearly exceed
that of R2. However, in the presence of negative feedback, we
expect to observe downregulation of the active gene 1 to
achieve concentrations close to the active concentration of gene
2. This expectation is quantitatively plausible, since the
promoters used in both genelets are identical and their activity
is thus similar. We can easily verify this hypothesis by labeling
the 5′ end of the nontemplate strand of each genelet with a
fluorescent dye, and by labeling the corresponding activator
strand with a quencher on the 3′ end. Inactive templates will
emit a high fluorescence signal, while the signal of active
templates will be quenched (Figure 5, green and black dots
respectively represent fluorophores and quenchers). For
instance, when A1 is stripped off active T1, the T1 fluorescence
signal will increase. However, to improve the clarity of our
plots, fluorescence traces reported here are processed to show a
high measured signal in correspondence to a high genelet
activity. In our experiments, the total amount of activators is
stoichiometric to the total amount of templates; for brevity, we
will just indicate the total concentration of Ttot, with the
understanding that [Ai

tot] = [Ti
tot].

Figure 6A shows the behavior of the system in the scenario
described above, that is, when the total concentration of the
two genelets is in a 2:1 ratio. As soon as enzymes are added in

solution and transcription is initiated, the formation of complex
R1·R2 is limited by the lower production rate of gene 2 (present
in a lower amount). Thus, excess R1 reduces its own production
by displacing its activator from the genelet, and balances the
active concentration of the two genes to be practically identical.
Thus, the steady state ratio of active genelets is close to one.
Dashed lines in the figure are numerical traces generated by a
detailed model comprised of several differential equations,
whose parameters were fitted to the collected data.
We repeated this experiment for a variety of genelet ratios,

keeping the concentration of one of the genelets constant and
varying the concentration of the other gene. The steady state
ratio of the active genelets was close to one in all cases (our
complete data sets are in section 1.6 of the SI). Figure 6B
summarizes this experimental assay and shows that our negative
autoregulation scheme guarantees matched production and
demand in a wide range of conditions. While we ran
experiments exploring total genelet ratios up to 3:1, our
detailed numerical model of the system predicts that the
genelet activity is matched also for larger ratios (Figure S4 in
the SI file shows that a matching activity ratio close to one is
achieved for ratios of up to 10:1).
When the concentration of genelets varies over time, the

negative feedback scheme handles a change in demand by
automatically adapting the amount of each active genelet.
Figure 7A shows that abrupt changes in the total concentration
of one of the genelets are followed by an adjustment in the
concentration of the excess species to guarantee a matched flux
of the RNA products. We estimated the total amount of each
RNA species produced during this experiment by gel
electrophoresis, verifying that their production rate is adapted
and their concentration is in a 1:1 stoichiometry.

Mathematical Modeling. We built a model for the in vitro
two-gene flux matching system, starting from a complete list of
reactions involving the nucleic acid and enzyme species. Using
the law of mass action, we derived a set of ordinary differential
equations (ODEs) which were numerically solved using
MATLAB. The list of reactions (reported in section 2.2 of
the SI) includes both the designed interactions among species,
and some of the expected undesired reactions. Specifically, we
include reactions of (weak) transcription for genelets in an off
state. In addition, our design specifications result in an
undesired binding domain between Ti and Rj, which is

Figure 7. (A) We varied the total concentration of genelets over time, maintaining activators and templates stoichiometric. Experiments were run in
triplicates. The system shows adaptation: when the concentration [T2

tot] is increased to 100 nM, we observe an increase in the activity level for T1,
which was previously half-repressed. Further increase in the concentration [T1

tot], however, only marginally changes the activity levels, because the
activity of T2 is nearly at maximal levels. (B) We sampled our time course experiments over time, and estimated the concentration of R1 and R2
through gel electrophoresis. The two concentrations remain comparable despite the changes in total genelet concentrations, further supporting our
hypothesis that this negative feedback scheme matches production and demand by regulating genelet activity.
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considered a further off state of the genelet. Such complex is a
substrate for RNase H and the RNA strand is degraded by the
enzyme, releasing the genelet activation domain. The tran-
scription efficiency of an RNA-DNA promoter complex is very
low.24 We are aware of other sources of uncertainty when
modeling genelet systems, including transcription bursting and
RNA polymerase activity decay phenomena, abortive tran-
scription, and partial RNase H mediated degradation of RNA−
DNA hybrids: these phenomena result in the accumulation of
short RNA species in the system that can be considered “waste”
and may interfere with the desired dynamics. We found that
these events play an important role in complex dynamical
systems such as oscillators,23,24 whose temporal behavior is
highly sensitive to variations in the enzyme characteristics
(which change from batch to batch) and notoriously difficult to
model quantitatively. However, the experimental outcomes of
our negative autoregulation system were satisfactorily captured
by a detailed model that did not include the aforementioned
phenomena. The deviation of our model predictions from the
data measured in the adaptation experiments at Figure 7 are
likely to be caused by the unmodeled accumulation of waste
species in the system.
Our ODE model was simultaneously fitted to the fluorimetry

data shown in Figure 6 and in Figure S2 of the SI file. The fitted

parameters were then used to predict the adaptive behavior of
the system shown in Figure 7 and to explore the ability of the
system to operate at total genelet ratios up to 10:1 (SI, Figure
S4).

Scalability and Alternative Architectures. The size of
synthetic biological circuits, from metabolic networks38 to
molecular computers,32,39 is rapidly increasing to include
hundreds of components. Thus, we ask if our negative feedback
scheme is scalable to a larger number of interconnected
modules. For instance, our two-gene circuit, where two RNA
outputs interact to form a complex, could be extended to n
genes whose outputs assemble in a single product. From a
practical perspective, formation of cotranscriptional self-
assembled RNA structures has been demonstrated6 in the
absence of any regulatory pathways for transcription;
stoichiometric imbalances caused by transcriptional delay of
long RNA strands were compensated by manually tuning the
concentration of genes. The use of feedback could automati-
cally tune the genes’ activity and regulate the stoichiometry of
RNA components, thus improving the yield of correctly
assembled structures.
We also ask if alternative feedback mechanisms can achieve

production and demand matching in molecular devices.
Positive feedback can easily generate instability in conventional

Figure 8. We explore the scalability of our two-device network by looking at three limit cases where n devices are interconnected through their
binding outputs. (A) Single product interconnection. (B) Neighbor interconnection. (C) Handshake interconnection.

Figure 9. Sensitivity of Ti percent activity, Ti response time, and flux mismatch between pairs of outputs Ri, with respect to the negative feedback rate
δ and the spontaneous reactivation α. (A) Single product interconnection. (B) Neighbor interconnection. (C) Handshake interconnection. Pink
squares mark the system behavior in nominal conditions.
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engineered systems and is thus carefully avoided by systems
and control engineers. In contrast, positive feedback is
commonly found in biology, in particular in gene networks10

in the context of autoregulation11 or within more complex
motifs.40,41 Motivated by Savageau’s theory of positive
autoregulation being common for proteins in high demand,11,12

we consider an alternative architecture for matching production
and demand that is based on cross activation.
Scalability. To investigate how the performance of negative

autoregulation would scale in the context of a network
composed by n molecular devices, we identified three canonical
topologies for the output interactions. We say that two devices
are interconnected if their outputs bind or assemble to form
one or more products. Our two-gene network can immediately
be scaled up to what we can call a “single product” topology
(Figure 8A) with n participating species. When more than one
assembled product is generated, we identify two limit cases: (1)
the output of each device participates in at most two products,
creating a “neighbor” topology (Figure 8B); (2) the output of
each device participates in n − 1 products, generating a
“handshake” topology (Figure 8C). From an input/output
perspective, we expect that the neighbor and handshake
topologies can be rendered equivalent to the single product
architecture, by designing appropriate downstream interactions
among the network complexes. For example, complexes created
by interacting pairs of outputs (neighbor topology) may further
interact with one another and generate a single output assembly
(single product).
We ask if, in all these possible topologies, our negative

autoregulation scheme can still help modulate the activity of
each device in order to match production and demand of each
output. With numerical simulations we explored the behavior of
up to four-component networks for each of the topologies
described above. The simple model of ODEs (1)-(2) can be
straightforwardly modified to model each topology, as reported
in section 3.1 of the SI.
Simulation results show that negative feedback is still

effective in regulating the devices activity: it reduces both
steady state activity of Ti and the mean flow mismatch. The
evolution over time of each species is very similar to the one
shown in Figure 4A for the case of two molecular devices;

example time trajectories for n = 4 are reported section 3.1 of
the SI.
From a network design perspective, it is interesting to

explore the performance of different interconnection topologies
as a function of key parameters such as the feedback strength, δ,
and the rate of spontaneous gene activation, α. For illustrative
purposes, in Figure 9 we compare the performance of our three
feedback topologies for n = 4 within a range of values for δ and
α. In each panel, a pink square marks the system behavior in
nominal conditions, kij = 2 × 103/M·s for the handshake/
neighbor topology, k = 6 × 103/M·s for the single product
topology, δi = 5 × 103/M·s, αi = 3 × 10−4/s, βi = 1 × 10−2/s.
An imbalance in the production rates of Ri is created by setting
[Ti](0) = [Ti

tot], while [Ri](0) = 0, choosing [T1
tot] = 100 nM,

[T2
tot] = 200 nM, [T3

tot] = 300 nM, [T4
tot] = 150 nM. We report

the percent steady state activity level of Ti, defined as [Ti]/
[Ti

tot] × 100, and the flux mismatch for each pair of outputs:
each point in these graphs corresponds to the behavior of each
subsystem averaged over the last hour (stationary behavior) of
a 10 h numerical simulation. We also report the response time
of Ti, computed as the time it takes for the active Ti trajectory
to go from ([Ti(0)] − 10%Δ) to ([Ti(0)] − 90%Δ), where Δ
is the difference between its initial value [Ti(0)] and its steady
state value.
Referring to Figure 9, we can see that the steady state activity

of Ti is higher for neighbor (Figure 9B) and handshake (Figure
9C) topologies; nevertheless, for all topologies the steady state
activity of Ti decreases when δ increases, and it increases when
α increases. The sensitivity of steady state Ti activity with
respect to α is lowest in the single product topology: this may
be regarded as a benefit or a flaw of the system, depending on
the downstream demand for the overall product complex (P =
ΠiRi). The lowest flux mismatch is achieved in the single
product topology (Figure 9A). However, for low values of
negative feedback rate δ this topology yields a much slower
response time for Ti, relative to the neighbor and handshake
structures. For large spontaneous gene activation rate α the
response time decreases in the neighbor/handshake topologies,
but it increases in the single product topology. Thus, while the
single product topology is more effective in matching
production and demand of each output Ri, its response time
is large relative to other topologies, and more sensitive to α.

Figure 10. (A) Positive feedback architecture to match production and demand of interconnected devices. (B) Numerical simulation showing the
time course of T1 and T2. (C) Steady state activity of T1 and T2 as a function of the positive feedback parameter δ. (D) Mismatch in the flux of R1
and R2 as a function of δ. The dark circle in panels C and D marks the nominal conditions used for the time course plotted in panel B.
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Alternative Positive Feedback Architecture. We explore
numerically the performance of a two-device system where
excess outputs cross-activate their production, rather than self-
inhibit. This scheme is expected to increase the overall network
output production rate, due to mutual activation of the
generating species. Figure 10A shows a sketch of the system we
consider. Two generating species T1 and T2 create outputs R1
and R2, which bind to form a product P = R1·R2. Free molecules
of Ri, not incorporated in P, generate a positive loop by binding
to inactive Tj and activating it:

+ * ⇀ ⇀ *
δ α

R T T T T,i j j i i
ij i

where again Ti* is an inactive complex and [Ti
tot] = [Ti] + [Ti*].

The total amount of Ri is [Ri
tot] = [Ri] + [Tj] + [P]. We now

assume that Ti naturally reverts to its inactive state with rate αi.
The corresponding differential equations are

α δ= − + −
T
t

T R T T
d[ ]

d
[ ] [ ]([ ] [ ])i

i i ji j i i
tot

β δ= − − −
R
t

T k R R R T T
d[ ]

d
[ ] [ ][ ] [ ]([ ] [ ])i

i i i j ij i j j
tot

(4)

The above differential equations were solved numerically.
For illustrative purposes, our choice of parameters is consistent
with the numerical study of the negative feedback circuit: α1 =
α2 = 3 × 10−4 /s, β1 = β2 = 0.01/s, δ1 = δ2 = 5 × 102/M·s, and k
= 2 × 103/M·s. The total amount of templates was chosen as
[T1

tot] = 100 nM, [T2
tot] = 200 nM. The initial conditions of

active [Ti] are set as [T1](0) = 0 nM and [T2](0) = 200 nM,
while [R1](0) = [R2](0) = 0. As a function of the positive
feedback strength (for simplicity we picked δ = δ1 = δ2), the
steady state amount of active Ti clearly increases (we define our
steady state as the mean active [Ti] during the last one hour of
a 10 h trajectory simulation), as shown in Figure 10C. We
compute the flux of Ri again as the derivative of the total
amount of [Ri

tot] = [Ri] + [RiTj] + [P]. The flux mismatch
between R1 and R2 is defined again as the absolute value of the
difference between the two fluxes; the average flux mismatch
over the last hour of a 10-h simulation is plotted as a function
of δ in Figure 10D. Unlike the negative feedback architecture
(cf. Figure 4D), the flux mismatch is not monotonically
decreasing as a function of δ; however, a sufficiently large
positive feedback yields matching fluxes and, as expected,
higher activity levels relative to the negative feedback scheme
(Figure 10C and D).
We examined the nullclines and derived flux matching

conditions for the positive feedback architecture as done for the
negative feedback scheme; the complete derivations are in
section 4.1 of the SI. Again, we find that the circuit has, for a
certain range of parameters, the ability to match the flux of
outputs Ri by upregulating the production of output in lack.
Because the production rate of Ri is limited by the finite
maximal amount of activatable Ti (whose maximum active
concentration equals [Ti

tot]), the positive feedback loops cannot
yield instability (i.e. uncontrolled increase) in the amount of
unbound Ri. However, we observed that an overall upregulation
of Ti activity results in slower response time for the circuit.
We explored the performance of the cross-activation scheme

in the context of the larger-scale interconnection schemes
considered in the previous section (Figure 8). First, we have to
remark that a cross-activation scheme scales poorly with the
number of devices in the network. The number of required

regulatory reactions nreg is equal to the product of three factors:
the number of devices n, the number nP of complexes generated
by each device, and the number nr of reactions required to form
each product (nreg = nnPnr). Thus, n(n − 1) regulatory reactions
are required in the single product and handshake topologies,
while 2n reactions are required in the neighbor topology. In
contrast, the negative autoregulation scheme requires n
regulatory reactions regardless of the chosen output inter-
connection topology. Nevertheless, we evaluated the perform-
ance of this scheme for a 3-device network, for which
handshake and neighbor topologies coincide. In section 5.4
of the SI, we report a steady state analysis with respect to δ and
α which mirrors the analysis done for the negative feedback
architecture. We find that increasing the positive feedback rate
δ increases the percent activity of each Ti in all topologies;
interestingly, for the handshake/neighbor topologies the flux
mismatch is worsened with a large δ. The response time for
each Ti is generally large (above 30−50 min), and improves for
large α and δ.
This positive feedback architecture may be implemented

using transcriptional circuits as done for the negative feedback
system. We propose a plausible design scheme in Section 4.2 of
the SI, together with numerical simulations listing all the
expected reactions. While plausible, this design suffers from
undesired self-inhibition pathways unavoidable with the
proposed design. Preliminary experiments on this system31

(not reported in this manuscript) highlight the need for
improved reaction mechanisms with tighter control over such
undesired reactions.

■ DISCUSSION

We have described the use of negative feedback as a mechanism
to match production and demand in biochemical networks, and
we provided an experimental demonstration of its effectiveness
using a synthetic transcriptional system in vitro.20,23,24 We
identified “demand” as a target ligand or binding site that
sequesters the output of a molecular device: in the context of
our implementation, we considered artificial “genelets” whose
RNA outputs bind to downstream target RNA species. In the
absence of regulation, uncertainty in the demand or in the
production rate of the molecular device output can cause
imbalances between the concentration of available and
consumed output. This imbalance can in turn result in
accumulation of undesired reactants in a network, and result
in malfunction of a device otherwise performing well in
isolation. We show that negative autoregulation provides
several advantages, in particular minimization of unused output
of a device and robustness of its activity level relative to
uncertainty in the output production rate. We also find that
negative feedback helps reduce the sensitivity of the available
output fraction with respect to uncertain downstream “load”
(demand) concentration: these results are consistent with the
role of negative feedback in retroactivity theory.34 However,
unlike the typical retroactivity theory setting, we consider a
“consumptive” load binding mechanism (i.e. the load binds
irreversibly to the output), and we do not include an output
amplification “gain” as part of our feedback scheme. We note
that the use of a transcriptional circuit to provide RNA “fuel” to
a downstream DNA load was previously explored,42 albeit
without including an explicit feedback mechanism to
autoregulate the RNA production rate; the mechanism of
output/load interaction was subject to RNase H degradation

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb400157z | ACS Synth. Biol. 2014, 3, 589−599596



modeled with Michaelis−Menten dynamics, which provides
implicit negative feedback.
The ability of negative feedback to automatically tune activity

as a function of downstream demand is particularly relevant
when the outputs of multiple devices interact to create possibly
complex functionalities or assemblies. Uncertainty and
variability of molecular demand would be significant challenges
that careful open-loop tuning of each device would not address.
We considered a minimal, two-elements network where the
outputs interact to form a product, and excess of either output
is designed to downregulate its own production. We designed a
transcriptional network where the RNA transcripts of two
synthetic genes are complementary and bind to form an inert
product; however, excess of either RNA species self-inhibits by
promoter displacement. Our assays show that, as expected,
negative feedback balances production and demand in the
synthetic genes, leveling their activity to comparable levels.
Finally, through numerical analysis we examined the scalability
of our system to networks of n devices, identifying three
possible topologies of output interconnection. Negative
autoregulation still guarantees a matched flux of outputs for
all considered topologies. By comparing the performance of
different interconnection schemes, we can see that topologies
with a larger number of interconnections achieve faster
response times; moreover, for these topologies, compared to
single product interconnection, genelet steady state activity and
relative flux mismatch are more easily tunable for each device as
a function of the negative feedback reaction rates.
Through numerical simulations we contrasted negative

autoregulation with a cross-activation scheme. Our analysis
suggests that this positive feedback scheme is effective in
matching and maximizing production rates within a network,
and it would be thus appropriate for products in high
demand.11 However, its experimental implementation using
transcriptional networks is challenging (as discussed in section
4.2 of the SI) due to the presence of undesired self-inhibitory
interactions not easily avoidable by design; these unwanted
reactions may be eliminated using “translator” DNA gates.43,44

Again through simulations, we showed that our cross-activation
scheme can achieve matched production and demand in larger
networks, but the number of required regulatory pathways
scales poorly with the number of devices. In addition, our
analysis for networks with 2 and 3 interconnected devices
highlights that positive feedback slows down the network
response time (relative to a negative autoregulation-based
network with consistent parameters). This observation agrees
with the slow response time introduced by positive feedback in
transcriptional control of gene expression,45 and with the delay-
inducing behavior of feedforward loops.45

Our experimental implementation using transcriptional
circuits shows the viability of the negative autoregulation
scheme in the context of in vitro networks.25 Transcriptional
circuits have been used as a toolbox to build a variety of devices
including toggle switches,20 memory elements,46 oscillators,23,24

and a variety of other network motifs.42,47 These circuits are
easily programmable and expandible: regulatory interactions are
designed through nucleic acid strand displacement and
hybridization cascades, whose thermodynamics and kinetics
can be predictably tuned by optimizing their base pair content48

with a variety of software toolboxes.26,27 Rationally pro-
grammed nucleic acid networks can be easily interfaced with
an array of ligands and physical signals through aptamers.49,50

Thus, the significance of our experimental implementation goes

beyond the proof of a principle: systematic use of negative
autoregulation in the context of complex synthetic in vitro DNA
networks will improve their robustness and adaptability to
uncertainty in the environment. In particular, our scheme may
be immediately used in the context of regulated, cotranscrip-
tional production of RNA self-assembled structures,6,7 where
mismatched production and demand of components can favor
the formation of incorrect complexes.
The bottom-up construction of dynamic molecular devices is

a tremendous opportunity to both improve our understanding
of natural biological functions and create new, artificial
biotechnologies. Negative feedback has been widely used to
design and tune the dynamics of synthetic in vitro devices such
as oscillators and bistable systems.20,23,24,51,52 We envision that
negative feedback will also be needed to guarantee functionality
when multiple devices are integrated in large scale networks,
possibly requiring hierarchical, layered feedback loops akin to
modern networked control systems.8 Negative autoregulation
mechanisms similar to the architecture described in this work
will be useful not only to automatically match production and
demand of individual biochemical production processes,53,54

but also to guarantee modular and adaptive input-output
behaviors of components within a complex interconnected
system.

4. METHODS

DNA Oligonucleotides and Enzymes. All the strands
were purchased from Integrated DNA Technologies, Coralville,
IA. Genelets were labeled with TAMRA and Texas Red at the
5′ and of their nontemplate strands; activators were labeled
with the IOWA black RQ quencher at the 3′ end. For
transcription experiments we used the T7Megashortscript kit
(#1354), Ambion, Austin, TX, which includes a proprietary T7
RNA polymerase enzyme mix. E. coli RNase H was purchased
from Ambion (#2292).

Oligonucleotide Sequences. Sequences are reported in
section 1.2 of the SI file.

Transcription. Genelet templates were annealed with 10%
(v/v) 10× transcription bufferpart of the T7Megashortscript
kit (#1354)from 90 to 37 °C for 1 h 30 min at a
concentration 5−10× the target concentration. The DNA
activators were added to the annealed templates from a higher
concentration stock, in a solution with 10% (v/v), 10×
transcription buffer, 7.5 mM each NTP, 4% (v/v) T7 RNA
polymerase, and 0.44% (v/v) E. coli RNase H. Each
transcription experiment for fluorescence spectroscopy was
prepared for a total target volume of 70 μL. Samples for gel
studies were quenched using a denaturing dye (80%
formamide, 10 mM EDTA, 0.01 g XCFF).

Data Acquisition. Fluorescence was measured at 37 °C
every two minutes with a Horiba/Jobin Yvon Fluorolog 3
system. Excitation and emission maxima for TAMRA were set
to 559 and 583 nm, respectively, according to the IDT
recommendation; for Texas Red the maxima for the spectrum
were set to 598−617 nm. Raw fluorescence data Φ(t) were
converted to estimated switch activity by normalizing with
respect to maximum fluorescence Φmax (measured before
adding activators and enzymes) and to minimum fluorescence
Φmin (measured after adding activators and before adding
enzymes):
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For the adaptation experiments, normalization was done by
measuring maximum and minimum fluorescence levels at the
beginning of the experiment, and assuming that the maximum
fluorescence level scales linearly with the change in total
fluorescently labeled strands, while the minimum is not
significantly affected by that variation. We used the formula:
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where α is a factor that scales the total amount of template as it
varies in the experiment.
Denaturing polyacrylamide gels (8% 19:1 acrylamide:bis and

7 M urea in TBE buffer, 100 mM Tris, 90 mM boric acid, 1
mM EDTA) were run at 67 °C for 45 min with 10 V/cm in
TBE buffer. Samples were loaded using Xylene Cyanol FF dye.
For quantitation, denaturing gels were stained with SYBR Gold
(Molecular Probes, Eugene, OR; #S-11494). As a reference, we
used a 10-base DNA ladder (Invitrogen, Carlsbad, CA; #1082-
015). Gels were scanned using the Molecular Imager FX
(Biorad, Hercules, CA) and analyzed using the Quantity One
software (Biorad, Hercules, CA).
Numerical Simulations. Numerical simulations were run

using MATLAB (The MathWorks). Ordinary differential
equations were integrated using the ode23 routine. Data fitting
was performed using the fmincon routine. Details on the data
fitting procedure are in section 1.6.4 of the SI.

■ ASSOCIATED CONTENT
*S Supporting Information
Detailed information on materials, experimental methods,
numerical simulations and additional references. This material
is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: efranco@engr.ucr.edu.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors thank Jongmin Kim, Paul W. K. Rothemund,
Franco Blanchini, and Erik Winfree for their feedback. In
particular, we thank Erik Winfree for sharing laboratory
facilities. This work has been supported by the National
Science Foundation through grants CCF-0832824 (“The
Molecular Programming Project”) and CMMI-1266402, and
by the Institute for Collaborative Biotechnologies through grant
W911NF-09-0001 from the U.S. Army Research Office.

■ REFERENCES
(1) Purnick, P. E., and Weiss, R. (2009) The second wave of
synthetic biology: From modules to systems. Nat. Rev. Mol. Cell Biol.
10, 410−422.
(2) Dong, H., Nilsson, L., and Kurland, C. G. (1995) Gratuitous
overexpression of genes in Escherichia coli leads to growth inhibition
and ribosome destruction. J. Bacteriol. 177, 1497−1504.
(3) Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z., and
Hwa, T. (2010) Interdependence of cell growth and gene expression:
Origins and consequences. Science 330, 1099−1102.

(4) Dunlop, M. J. (2011) Engineering microbes for tolerance to next-
generation biofuels. Biotechnol. Biofuels 4, 32.
(5) Pitera, D. J., Paddon, C. J., Newman, J. D., and Keasling, J. D.
(2007) Balancing a heterologous mevalonate pathway for improved
isoprenoid production in Escherichia coli. Metab. Eng. 9, 193−207.
(6) Afonin, K. A., Bindewald, E., Yaghoubian, A. J., Voss, N.,
Jacovetty, E., Shapiro, B. A., and Jaeger, L. (2010) In vitro assembly of
cubic RNA-based scaffolds designed in silico. Nat. Nanotechnol. 5, 676−
682.
(7) Delebecque, C. J., Lindner, A. B., Silver, P. A., and Aldaye, F. A.
(2011) Organization of intracellular reactions with rationally designed
RNA assemblies. Science 333, 470−474.
(8) Åstrom, K. J. and Murray, R. (2010) Feedback Systems: An
Introduction for Scientists and Engineers, Princeton University Press,
Princeton, NJ.
(9) Shen-Orr, S. S., Milo, R., Mangan, S., and Alon, U. (2002)
Network motifs in the transcriptional regulation network of Escherichia
coli. Nat. Genet. 31, 64−68.
(10) Alon, U. (2007) An Introduction to Systems Biology: Design
Principles of Biological Circuits, Chapman & Hall/CRC, Boca Raton,
FL.
(11) Savageau, M. A. (1977) Design of molecular control
mechanisms and the demand for gene expression. Proc. Natl. Acad.
Sci. 74, 5647−5651.
(12) Shinar, G., Dekel, E., Tlusty, T., and Alon, U. (2006) Rules for
biological regulation based on error minimization. Nature 103, 3999−
4004.
(13) Becskei, A., and Serrano, L. (2000) Engineering stability in gene
networks by autoregulation. Nature 405, 590−593.
(14) Austin, D., Allen, M., McCollum, J., Dar, R., Wilgus, J., Sayler,
G., Samatova, N., Cox, C., and Simpson, M. (2006) Gene network
shaping of inherent noise spectra. Nature 439, 608−611.
(15) Nevozhay, D., Adams, R. M., Murphy, K. F., Josic,́ K., and
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1 Experimental implementation of a two-gene flux match-
ing system based on negative autoregulation: Materials
and methods

1.1 Reactions and domains design

A graphical sketch of the domain-level design for the self-repression interconnection is shown in
Figure S1 A. The RNA outputs of each genelet are designed so that:
1) Each RNA output has a domain complementary to its activator strand.
2) The two RNA species are also complementary.
These specifications introduce a binding domain between Ti and Rj, which is considered another
off state, as shown in Figure S1 B. Such a complex is a substrate for RNase H and the RNA
strand is degraded by the enzyme, releasing the genelet activation domain. We assume that the
transcription efficiency of an RNA-DNA promoter complex is very low. This hypothesis was not
experimentally challenged for this specific system; however data shown in Franco et al. [2011],
Supplementary Information, show that this assumption is valid for other genelets with the same
promoter domain.

The design of a self-inhibiting genelet was first characterized in Kim [2007]. The circuit design
proposed here, with two-domain RNA transcripts, was originally presented in Franco et al. [2008].

DNA strands were designed by thermodynamic analysis using the Winfree lab DNA design
toolbox for MATLAB, Nupack Zadeh et al. [2011] and Mfold Zuker and Stiegler [1981]. The
strands were optimized to yield free energy gains favoring the desired reactions, and to avoid
unwanted secondary structures and crosstalk. Further constraints on the length and structure
of the strands, which can affect the transcription efficiency and fidelity, were taken into account
referring to Kim [2007], Chapter 3.4.

1.2 Oligonucleotide sequences

Due to technical constraints of the supplier IDT DNA, T1 − nt and T2 − nt were shortened with
respect to the nominal design to have a length of 125 bases. The strands used in the experiments
are those denoted below as “Short”. These modifications did not alter the regulatory domains
of the transcripts R1 and R2. Also the full length of the main transcription products was not
affected, as verified by gel electrophoresis in Figure S2 B.
T1-nt Full (134-mer) 5’-CTA ATG AAC TAC TAC TAC ACA CTA ATA CGA CTC ACT ATA
GGG AGA AAC AAG AAC GAC ACT AAT GAA CTA CTA CTA CAC ACC AAC CAC AAC TTT
ACC TTA ACC TTA CTT ACC ACG GCA GCT GAC AAA GTC AGA AA-3’ (not synthesized)
T1-nt Short (125-mer) 5’-Tamra-CT AAT GAA CTA CTA CTA CAC ACT AAT ACG ACT CAC
TAT AGG GAG AAA CAA GAA CGA CAC TAA TGA ACT ACT ACT ACA CAC CAA CCA CAA
CTT TAC CTT AAC CTT ACT TAC CAC GGC AGC TGA CAA-3’
T1-t (107-mer) 5’-TTT CTG ACT TTG TCA GCT GCC GTG GTA AGT AAG GTT AAG GTA
AAG TTG TGG TTG GTG TGT AGT AGT AGT TCA TTA GTG TCG TTC TTG TTT CTC
CCT ATA GTG AGT CG-3’
A1 (35-mer) 5’-TAT TAG TGT GTA GTA GTA GTT CAT TAG TGT CGT TC-3’
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Figure S1: General reaction scheme representing a transcriptional circuit implementation of the
two-gene negative feedback scheme for flux matching. Complementary domains have the same
color. Promoters are in dark gray, terminator hairpin sequences in light gray. The RNA output of
each genelet is designed to be complementary to its corresponding activator strand. The two RNA
species are also complementary. A. Desired self-inhibition loops. B. Undesired cross-hybridization
and RNase H mediated degradation of the RNA-template complexes.
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T2-nt Full (126-mer) 5’-GGT TAA GGT AAA GTT GTG GTT GTA ATA CGA CTC ACT ATA
GGG AGA AAC AAG TAA GTA AGG TTA AGG TAA AGT TGT GGT TGG TGT GTA GTA
GTA GTT CAT TAG TGT CGT TCC TGA CAA AGT CAG AAA-3’ (not synthesized)
T2-nt Short (126-mer) 5’-TexasRed-GG TTA AGG TAA AGT TGT GGT TGT AAT ACG ACT
CAC TAT AGG GAG AAA CAA GTA AGT AAG GTT AAG GTA AAG TTG TGG TTG GTG
TGT AGT AGT AGT TCA TTA GTG TCG TTC CTG ACA AAG TCA GAA-3’
T2-t (99-mer) 5’-TTT CTG ACT TTG TCA GGA ACG ACA CTA ATG AAC TAC TAC TAC
ACA CCA ACC ACA ACT TTA CCT TAA CCT TAC TTA CTT GTT TCT CCC TAT AGT GAG
TCG-3’
A2 (35-mer) 5’-TAT TAC AAC CAC AAC TTT ACC TTA ACC TTA CTT AC-3’
R1 (95-mer) 5’ - GGG AGA AAC AAG AAC GAC ACU AAU GAA CUA CUA CUA CAC ACC
AAC CAC AAC UUU ACC UUA ACC UUA CUU ACC ACG GCA GCU GAC AAA GUC AGA AA
-3’
R2 (87-mer) 5’-GGG AGA AAC AAG UAA GUA AGG UUA AGG UAA AGU UGU GGU UGG
UGU GUA GUA GUA GUU CAU UAG UGU CGU UCC UGA CAA AGU CAG AAA -3’

1.3 DNA oligonucleotides and enzymes

All the strands were purchased from Integrated DNA Technologies, Coralville, IA IDT. T1− nt is
labeled with TAMRA at the 5′ end, T2−nt is labeled with Texas Red at the 5′ end, both activators
A1 and A2 are labeled with the IOWA black RQ quencher at the 3′ end. The transcription buffer
mix was prepared prior to each experiment run (two to four samples) using the T7 Megashortscript
kit (#1354), Ambion, Austin, TX which includes the T7 RNA polymerase enzyme mix, the
transcription buffer, and rNTPs utilized in the experiments. E. coli RNase H was purchased from
Ambion (#2292).

1.4 Transcription protocol

The templates were annealed with 10% (v/v) 10× transcription buffer from 90◦C to 37◦C for 1
h 30 min at a concentration 5–10× the target concentration. The DNA activators were added
to the annealed templates from a higher concentration stock, in a solution with 10% (v/v), 10×
transcription buffer, 7.5 mM each NTP, 4% (v/v) T7 RNA polymerase, and .44% (v/v) E. coli
RNase H. Each transcription experiment for fluorescence spectroscopy was prepared for a total
target volume of 70 µl. Samples for gel studies were quenched using a denaturing dye (80%
formamide, 10 mM EDTA, 0.01g XCFF).

1.5 Data acquisition and processing

The fluorescence was measured at 37◦C every two minutes with a Horiba/Jobin Yvon Fluorolog 3
system. Excitation and emission maxima for TAMRA were set to 559 nm and 583 nm, respectively,
according to the IDT recommendation; for Texas Red the maxima for the spectrum were set to
598–617 nm. Slit widths were set to 2 nM for excitation and 4 nM for emission. The raw
fluorescence data Φ(t) were converted to estimated switch activity by normalizing with respect
to maximum fluorescence Φmax(measured before adding activators and enzymes) and to minimum
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fluorescence Φmin (measured after adding activators and before adding enzymes):

[TiAi](t) = [T toti ] ·
(

1− Φ(t)− Φmin

Φmax − Φmin

)
.

For the adaptation experiments, normalization was done by measuring maximum and minimum
fluorescence levels at the beginning of the experiment, and assuming that the maximum flu-
orescence level scales linearly with the change in total fluorescently labeled strands, while the
minimum is not significantly affected by that variation. We used the formula:

[TiAi](t) = α[T toti ] ·
(

1− Φ(t)− Φmin

αΦmax − Φmin

)
,

where α is a factor that scales the total amount of template as it varies in the experiment.
Denaturing polyacrylamide gels (8% 19:1 acrylamide:bis and 7 M urea in TBE buffer, 100 mM

Tris, 90 mM boric acid, 1 mM EDTA) were run at 67◦C for 45 min with 10 V/cm in TBE buffer.
Samples were loaded using Xylene Cyanol FF dye. For quantitation, denaturing gels were stained
with SYBR Gold (Molecular Probes, Eugene, OR; #S-11494). In the control lane a 10-base
DNA ladder (Invitrogen, Carlsbad, CA; #1082-015) was utilized. The DNA ladder 100 bp band
was used as a control to roughly estimate the concentrations of the RNA species in solution in
Figure S5 E and F. Gels were scanned using the Molecular Imager FX (Biorad, Hercules, CA)
and analyzed using the Quantity One software (Biorad, Hercules, CA).

1.6 Characterization assays

This section reports experimental results and numerical fits. All experiments were run in trip-
licates: mean and error bars (standard deviation) are shown in each figure, together with the
simulated traces (dashed lines) from our fitted model. The full derivation for the model fitted to
the data is in Section 2.2.

1.6.1 Genelets in isolation

Figure S2 A shows the behavior of the two genelets in isolation: we can verify that each genelet
self-inhibits after the enzymes are added. (For details on the data normalization procedure,
refer to Section 1.5.) The concentration of RNA present in solution can be measured through
gel electrophoresis, as shown in Figure S2 B: lanes 1 and 2 show that free RNA in solution is
effectively absent.

1.6.2 Interconnected genelets

When the two genelets are present in solution in stoichiometric amount, their RNA outputs bind
quickly to form a double-stranded complex, and therefore the feedback loops become a secondary
reaction (by design thermodynamically less favorable than the R1 · R2 complex formation). As
shown in Figure S2 C, the two genelets only moderately self-repress. The total RNA concentration
in solution is high, as shown in the denaturing gel in Figure S2 B, lanes 3 and 4.

When the templates [T tot1 ] and [T tot2 ] are in different ratios, the system behavior is shown
in Figure S3. We can plot the resulting initial active template ratio (which corresponds to the
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Figure S2: A. Experimental data showing the isolated active genelet concentrations as a function
of time: the self-inhibition reaction turns the switches off, and the RNA concentration in solution
is negligible, as verified in the gel electrophoresis data in panel B, lanes 1 and 2 (samples taken at
steady-state after 2 h). Dashed lines represent numerical trajectories of equations (5), using the
fitted parameters in Table S2. B. Denaturing gel image: lanes 1 and 2 show that the switches in
isolation self-inhibit and no significant transcription is measured. Lanes 3 and 4 show the total
RNA amount in samples from the experiment shown at panel C, taken at steady-state after 2 h.
When the genelets are in stoichiometric amount, their flow rates are already balanced and there
is only moderate self-inhibition.
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total template ratio) versus the steady-state one: we find that the system behaves symmetrically
and the steady-state ratio is close to one across all the initial ratios. Therefore, given open loop
transcription rates that differ across a factor of 1–3, these results suggest that the system robustly
matches the flux of R1 and R2.

1.6.3 Flux adaptation

If the concentration of [T toti ] and [Atoti ] is changed over time, the steady-state concentration of
active genelets adjusts as shown in Figure S5 A and B. Samples from this set of experiments were
analyzed using a denaturing gel: the results are shown in Figure S5 C and D (corresponding to
the traces in Figure S5 A and B, respectively) and show the total RNA amount in solution and
that [Rtot

1 ] ≈ [Rtot
2 ], as desired (Figure S5 E and F). The RNA concentrations were estimated

using the DNA ladder as a reference. We are aware that this method may result in inaccurate
absolute concentration estimates for RNA: however, our objective here is to compare the evolution
over time of the relative RNA concentrations. Thus, inaccuracy in the determination of the
absolute amount of RNA produced does not affect the measured outcome of our experiments.
The adjustment of genelet activity becomes progressively slower over time: the third round of
adaptation is consistently slower than the previous two. We attribute this slower adaptation to
various phenomena: 1) Decrease of activity of enzymes over time; 2) Accumulation of incomplete
degradation products from RNase H hydrolization of RNA in RNA-DNA hybrids: these products
can be up to 7–8 bases long, and may interfere with the desired inhibition pathways; 3) Abortive
transcription of RNA, which could also potentially bind to regulatory domains of DNA activators.
Our hypothesis of accumulation of short products over time is validated by the gels shown in
Figure S5 C and D (below 60 bases, part of the gel that is not shown, a similar smear is visible).

1.6.4 Data fitting

We derived a system of ordinary differential equations (ODEs) starting from mass action kinetics,
as described in Section 2.2. The ODE system was numerically fitted using MATLAB (The Math-
Works) to fluorescence data in Figures S2 and S3. Only a subset of the parameters was fit using
the MATLAB fmincon routine. We fit the total RNA polymerase and RNase H concentrations
and the rates kTiAi

, kTiAiRi
, kAiRi

, kR1R2 , kRiTj , and the parameters kcatONii
and kcatHij

. This
specific subset of parameters was chosen because experimental outcomes are chiefly affected by
branch migration rates (which are tunable by design of the toehold lengths), enzyme concentra-
tion, and enzyme catalytic rates. The concentration and composition of the transcription enzyme
mix for the T7 Megashortscript kit are not disclosed by Ambion, but available literature suggests
that additional enzymes, such as pyrophosphatase, are present in the mix, Milburn et al. [U. S.
Patent 5256555, 1993]. We neglected reactions associated with the possibly unknown amount
of pyrophosphatase in the mix. The concentration of RNase H is also not disclosed by Ambion;
we did not run separate experiments to fit exclusively the degradation rate parameters. A table
reporting all the parameters is in Section 2, Tables S1 and S2.
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Figure S3: Concentration of active genelets over time at different total templates concentration.
The concentration of activators is always stoichiometric to the amount of corresponding template.
Dashed lines in all the figures correspond to numerical simulations for model (5), using the
parameters in Table S2.
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Figure S4: A: Plot summarizing the data shown at Figure S3, overlaid with the predictions of the
numerical model (5), using fitted parameters shown in Table S2. B: Predicted initial versus final
genelets activity for ratios up to 10:1, according to our model (5) and parameters at Table S2.

2 Modeling and numerical analysis: two-gene flux match-
ing system

2.1 Simple model system: derivation of nullclines and rate matching
conditions

T1 T2
R1

R2

Figure S6: Our two-gene
negative feedback architec-
ture

We consider a system composed of two generating species T1
and T2, whose products R1 and R2 interact to form a complex
P = R1 · R2. We introduce negative autoregulation to minimize
the concentration of product that is not used to form the output
complex (Figure S6). Free molecules of Ri, i = 1, 2, bind to active
Ti, thereby inactivating it:

Ri + Ti
δi
⇀T ∗i ,

T ∗i
αi
⇀ Ti,

where T ∗i is an inactive complex. We assume that T toti = Ti + T ∗i , and that T ∗i naturally reverts
to its active state with a first-order rate αi. The total amount of Ri is [Rtot

i ] = [Ri] + [T ∗i ] + [P ].
The corresponding differential equations are:

d[Ti]

dt
= αi ([T

tot
i ]− [Ti])− δi [Ri][Ti],

d[Ri]

dt
= βi [Ti]− k [Ri][Rj]− δi [Ri][Ti]. (1)

For illustrative purposes, these differential equations are solved numerically. The parameters
chosen are: α1 = α2 = 3 · 10−4 /s, β1 = β2 = 0.01 /s, δ1 = δ2 = 5 · 102 /M/s, and
k = 2 · 103/M/s. An imbalance in the production rates of R1 and R2 is created by setting
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Figure S5: A and B. Fluorescent traces showing the adaptation of the active fraction of genelets,
when the total amount of templates is varied over time. C and D. Samples from the experiments
shown in panels A and B, respectively, were analyzed with gel electrophoresis. E and F show the
concentrations of RNA species, estimated from the gel samples.
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[T1](0) = [T tot1 ] = 100 nM and [T2](0) = [T tot2 ] = 200 nM, while [R1](0) = [R2](0) = 0. The
overall result of this feedback interconnection is that the mismatch in the flow rate of R1 and
R2 is reduced, as shown in Figure S7. The flow rate is defined as the derivative of [Rtot

i ]. The
flow rate mismatch is defined as the absolute value of the difference between the two flows. The
effect of changing the feedback strength, for simplicity chosen as δ1 = δ2, is shown in Figure S8:
the figure shows the mean active fraction of [Ti] and the mean flow mismatch, averaged over the
last two hours of a trajectory simulated for 10 hours.
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Figure S7: Numerical simulation showing the solution to the two-gene negative feedback archi-
tecture for flux matching modeled with equations (1). The flow mismatch between R1 and R2

is shown in the bottom-right panel.
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Figure S8: Numerical simulation showing genelet activity and mismatch over a range of values
for the negative feedback parameter δ.

It is possible to examine the nullclines relating T1 and T2, and find the equilibria T̄1 and T̄2
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as intersection of these nullclines:

Ṫi = 0 =⇒ Ri =
αi(T

tot
i − Ti)
δiTi

,

Ṙi = 0 =⇒ Ri =
βiTi

kRj + δiTi
.

To simplify the derivation, we set δ1 = δ2 = δ, β1 = β2 = β, α1 = α2 = α. Equating the two
expressions for Ri, we get the following equations (for i = 1, 2 and j = 1, 2):(α

δ

)2
k

(
T toti − Ti

Ti

)(
T totj − Tj

Tj

)
+ α(T toti − Ti)− βTi = 0.

We can find an expression of the nullclines by introducing a change of variables u =
(
T tot
1 −T1
T1

)
and v =

(
T tot
2 −T2
T2

)
, and defining φ1 = ψ1 =

(
α
δ

)2
k, φ2 = αT tot1 , ψ2 = αT tot2 , φ3 = βT tot2 , and

finally ψ3 = βT tot1 :

u2(φ1v) + u(φ1v + φ2 − φ3
1

1 + v
)− φ3

1

1 + v
= 0, (2)

v2(ψ1u) + v(φ1u+ ψ2 − ψ3
1

1 + u
)− ψ3

1

1 + u
= 0. (3)

The roots of the equations above represent the nullclines of the system. Because all the
parameters in these equations are positive, there is always a single root. The nullclines are
numerically solved, for varying δ, in Figure S9.

A condition for flow matching at steady-state can be derived as follows:

Ṙ1 − Ṙ2 = 0,

β1T1 − δ1T1R1 = β2T2 − δ2T2R2.

Substituting the expressions for R1 and R2 that can be derived by setting Ṫ1 = 0 = Ṫ2, we get:

β1T̄1 − α1(T
tot
1 − T̄1) = β2T̄2 − α2(T

tot
2 − T̄2).

Taking α1 = α2 = α, β1 = β2 = β we get:

T̄2 = T̄1 +
α

α + β
(T tot2 − T tot1 ). (4)

The flow matching condition above is shown in Figure S9, orange line (also shown in the main
paper). If β � α, i.e., the production of Ri is much faster than the generating species Ti
inactivation rate, then the condition can be rewritten as:

T̄1 ≈ T̄2.
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Figure S9: Nullclines computed for different values of negative feedback rate δ, and flux matching
condition (orange)

2.2 Differential equations modeling the experimental implementation

Based on our design specifications and the resulting molecular interactions, we built a model for
the system starting from the list of occurring chemical reactions. The switches Ti and Tj can have
three possible states: the on state where activator and template are bound and form the complex
TiAi; the off state given by free Ti; the off state represented by Rj bound to Ti forming TiRj.
An off state still allows for RNAP weak binding and transcription. Throughout this derivation,
the dissociation constants are omitted when assumed to be negligible. It is hypothesized that
the concentration of enzymes is considerably lower than that of the DNA molecules, allowing the
classical steady-state assumption for Michaelis-Menten kinetics.

Branch migration and hybridization reactions among nucleic acids are, for i ∈ {1, 2}, j ∈ {2, 1}:

Activation Ti +Ai
kTiAi
⇀ Ti ·Ai

Inhibition Ri + Ti ·Ai
kTiAiRi
⇀ Ri ·Ai + Ti

Annihilation Ri +Ai
kAiRi
⇀ Ri ·Ai

Output formation Ri +Rj
kRiRj
⇀ Ri ·Rj

Undesired hybridization Rj + Ti
kRjTi
⇀ Rj · Ti.
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The enzymatic reactions are, for i ∈ {1, 2}, j ∈ {2, 1}:

Transcription: on state RNAP + Ti ·Ai
k+ONii
⇀
↽

k−ONii

RNAP · Ti ·Ai
kcatONii

⇀ RNAP + TiAi +Ri

Transcription: off state RNAP + Ti
k+OFFii
⇀
↽

k−OFFii

RNAP · Ti
kcatOFFii

⇀ RNAP + Ti +Ri

Transcription: off state RNAP +Rj · Ti
k+OFFji
⇀
↽

k−OFFji

RNAP ·Rj · Ti
kcatOFFji

⇀ RNAP +Rj · Ti +Ri

Degradation RNaseH +Ri ·Ai
k+Hii
⇀
↽
k−Hii

RNaseH ·Ri ·Ai
kcatHii
⇀ RNaseH +Ai

RNaseH +Rj · Ti
k+Hji
⇀
↽
k−Hji

RNaseH ·Rj · Ti
kcatHji
⇀ RNaseH + Ti.

Using the law of mass action, we derive the following ODEs:

d

dt
[Ti] =− kTiAi

[Ti] [Ai] + kTiAiRi
[Ri] [Ti · Ai]− kRjTi [Rj] [Ti] + kcatHji [RNaseH ·Rj · Ti],

d

dt
[Ai] =− kTiAi

[Ti] [Ai]− kAiRi
[Ri] [Ai] + kcatHii [RNaseH ·Ri · Ai],

d

dt
[Ri] =− kRiRj

[Ri] [Rj]− kTiAiRi
[Ri] [Ti · Ai]− kRiTj [Ri] [Tj]− kAiRi

[Ri] [Ai]

+ kcatONii [RNAP · Ti · Ai] + kcatOFFii [RNAP · Ti] + kcatOFFji [RNAP ·Rj · Ti],
d

dt
[Ri ·Rj] = + kRiRj

[Ri] [Rj],

d

dt
[Rj · Ti] = + kRjTi [Rj] [Ti]− kcatHji[RNaseH ·Rj · Ti].

(5)

The molecular complexes appearing at the right-hand side of these equations can be expressed
using mass conservation:

[Ti · Ai] = [T toti ]− [Ti]− [Rj · Ti], [Ri · Ai] = [Atoti ]− [Ai]− [Ti · Ai].

We assume that binding of enzymes to their substrate is faster than the subsequent catalytic
step, and that the substrate concentration is larger than the total amount of enzyme. These
assumptions allow us to use the standard Michaelis-Menten quasi-steady-state expressions. The
Michaelis-Menten coefficients can be immediately defined; for instance, for the ON state of the

template, define: kMONii =
k−ONii+kcatONii

k+ONii

. Then we find:

[RNAP tot] =[RNAP ]

(
1 +

[T1 ·A1]

kMON11
+

[T1]

kMOFF11
+

[T2 ·A2]

kMON22
+

[T2]

KMOFF22
+

[R2 · T1]

kMOFF21
+

[R1 · T2]

kMOFF12

)
,

[RNaseHtot] =[RNaseH]

(
1 +

[R1 ·A1]

kMH11
+

[R2 ·A2]

kMH22
+

[R2 · T1]

kMH21
+

[R1 · T2]

kMH12

)
.
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We can easily rewrite these equations as [RNAP ] = [RNAP tot]
P

and [RNaseH] = [RNaseHtot]
H

,
with a straightforward definition of the coefficients P and H. Finally:

[RNAP · Ti · Ai] =
[RNAP tot] [Ti · Ai]

P · kMONii

,

[RNAP ·Rj · Ti] =
[RNAP tot] [Rj · Ti]

P · kMOFFji

,

[RNAP · Ti] =
[RNAP tot] [Ti]

P · kMOFFii

,

[RNaseH ·Ri · Ai] =
[RNaseH tot] [Ri · Ai]

H · kMHii

,

[RNaseH ·Rj · Ti] =
[RNaseH tot] [Rj · Ti]

H · kMHji

,

which can be substituted in equations (5). We note that our numerical fits result in an estimated
RNAP concentration of about 100 nM: thus, in a subset of our experiments the substrate and
enzyme concentrations are actually comparable, breaking down one of the assumptions required
for a quasi-steady-state approximation. Nevertheless, our model overall captures the system
dynamics satisfactorily.

The nonlinear set of equations (5) was solved numerically using MATLAB ode23 routine.

Preliminary numerical analysis Prior to designing DNA strands and testing the system with
wet lab experiments, we ran numerical simulations using equations (5) using parameters reported
in Table S1. These parameters are consistent with those in Kim et al. [2006], which were fitted
from data obtained on a transcriptional system with identical promoter/branch migration design
specifications and sequence content; thus, we refer the reader to Kim et al. [2006] for an accurate
discussion and comparison to other branch migration, transcription, and degradation parameters
found in the literature. Figure S10 shows the system trajectories that correspond to zero initial
conditions for [Ai] and [Ri], while the complexes [T1A1] = [T tot1 ] = 100 nM, [T2A2] = [T tot2 ] = 50
nM, [Atot1 ] = 100 nM and [Atot2 ] = 50 nM. (The simulation first allows for equilibration of all
the DNA strands in the absence of enzymes. Only the portion of trajectories after addition of
enzymes is shown.) The total concentration of enzymes was assumed to be [RNAP tot] = 80
nM and [RNaseH tot] = 8.8 nM, consistent with typical volumes used in our experiments and
with enzyme stock concentrations of about 1–1.25 µ M Kim and Winfree [2011], Franco et al.
[2011]. An example of our numerical simulation results is shown in Figure S10. The behavior of
the system proved to be consistent with the traces obtained for the simple model system shown
at Figure S7.

Data fitting results As already indicated in Section 1.6.4, equations (5) were fitted to all
fluorescence data in Figures S2 and S3 simultaneously, using MATLAB routine fmincon. Only
a subset of the parameters was fit: the total RNA polymerase and RNase H concentrations, and
the rates kTiAi

, kTiAiRi
, kAiRi

, kR1R2 , kRiTj , and the parameters kcatONii
and kcatHij

. Table S2
lists the results of the data fit; Table S3 reports the constraints used in the fitting procedure.
Our fits indicate that the hybridization and branch migration rates fitting these experiments are
higher than what found in Kim et al. [2006], Franco et al. [2011]. In particular, the binding rate of
the RNA species is higher than expected; hybridization rates for complementary RNA strands of
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Figure S10: Numerical simulation for equations (5). Parameters are chosen as in Table S1.
[T tot1 ] = [Atot1 ] = 100 nM, [T tot2 ] = [Atot2 ] = 50 nM, [RNAP tot] = 80 nM, and [RNaseH tot] = 8.8
nM. These results are consistent with those of the simple model proposed in equations (1), and
analyzed numerically in Figure S7.
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Table S1: Preliminary Simulation Parameters for Equations (5)

Units: [1/M/s] Units: [1/s] Units: [M ]

kTiAi = 4 · 104 kcatONii = 0.06 kMONii = 250 · 10−9

kTiAiRi = 5 · 104 kcatOFFii = 1 · 10−3 kMOFFi = 1 · 10−6

kAiRi = 5 · 104 kcatOFFij = .5 · 10−3 kMOFFij = 1 · 10−6

kRiTj = 1 · 104 kcatHii = .1 kMHii = 50 · 10−9

kRiRj = 1 · 106 kcatHji = .1 kMHji = 50 · 10−9

Units: [M ] Units: [M ]

[RNAP tot] = 80 nM [RNaseHtot] = 8.8 nM

similar length have (to our knowledge) not been assessed before. The expected concentrations of
RNA polymerase and RNase H and their kcat values are also higher than in previous studies Kim
et al. [2006], Franco et al. [2011], where lower hybridization rates were attributed to the presence
of incomplete degradation products from RNase H hydrolization of DNA/RNA hybrids. These
short products, known to have length up to 7–8 bases, may interfere with desired regulatory
pathways Kim and Winfree [2011]. Because the activity and efficiency of off-the-shelf enzymes
is known to considerably vary from batch to batch Kim and Winfree [2011], it is reasonable to
hypothesize that the RNA polymerase and RNase H batches used in this set of experiments had
particularly high activity and low occurrence of incomplete transcription/degradation which can
slow down other reactions. Indeed, the accumulation of these incomplete products over time may
be the reason for slower dynamics observed in our adaptation experiments in Figure S5.

Table S2: Fitted Parameters for (5); other parameters were left unvaried with respect to Table S1

.

Units: [1/M/s] Units: [1/s]

kTiAi = 6.6 · 105 kcatON11 = 0.1, kcatON22 = 0.09

kT1A1R1 = 0.7 · 105, kT2A2R2 = 0.6 · 105 kcatHii = .09

kA1R1 = kA2R2 = 4.4 · 105 kcatH21 = .03, kcatH12 = .02

kRiRj = 4.9 · 106

Units: [M ] Units: [M ]

[RNAP tot] = 100 nM [RNaseHtot] = 20 nM
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Table S3: Fitting constraints for parameters in Table S2.

Parameter Lower Bound Upper Bound

kTiAi 103 5 · 105

kTiAiRi 103 5 · 105

kAiRi 103 5 · 105

kRiRj 103 5 · 105

kcatONii 0.01 0.1

kcatHii 0.001 0.1

[RNAP tot] 15 · 10−9 100 · 10−9

[RNaseHtot] 5 · 10−9 20 · 10−9
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3 Modeling and numerical analysis: Scalability of the neg-
ative feedback scheme for flux regulation

3.1 Simple model system

We consider now n generating species Ti, outputting interacting products Ri, and we explore dif-
ferent feedback interconnection topologies. Initial studies on scalability were outlined in Giordano
et al. [2013]. ODEs were derived using mass action kinetics and used for numerical simulation
of three– and four–component networks. Negative autoregulation is implemented, as for smaller
networks, with a self–repression scheme: when an output is in excess relative to the effectively
used amount, it down–regulates its own production rate.

Ri + Ti
δi
⇀T ∗i ,

T ∗i
αi
⇀ Ti,

where T ∗i is an inactive complex. We assume that [T toti ] = [Ti] + [T ∗i ] and that T ∗i spontaneously
reverts to its active state with a first-order rate αi. The corresponding differential equation
describing the template dynamics is the same regardless of the topology:

d[Ti]

dt
= αi ([T

tot
i ]− [Ti])− δi [Ri][Ti], i = 1, ..., n.

Depending on the chosen interaction/binding topology for the products Ri, we find that the
system exhibits different behaviors, as shown in the following sections.

3.1.1 Single product topology

A single product topology occurs when a single complex P is formed by the simultaneous inter-
action of all the n outputs:

n∑
i=1

Ri
k
⇀P.

The corresponding differential equations are

d[Ri]

dt
= βi [Ti]− δi [Ri][Ti]− k

n∏
i=1

[Ri],

d[P ]

dt
= k

n∏
i=1

[Ri]

and the total amount of Ri is [Rtot
i ] = [Ri]+[T ∗i ]+[P ]. Figure S11 shows the numerical solutions

to the ODEs for n = 3 and n = 4. Even though the initial total amounts of Ti are different,
the concentration of active Ti (bottom left panel) gradually decreases and the flow mismatches
(namely the differences in absolute value between any two production rates, shown in the bottom
right panel) are considerably reduced with a fast time response. We can notice that the response
is slower in the case of 4 interconnected species. The quantity of produced Ri (upper left panel)
is of course increasing. With respect to the other topologies, as we will see, the single product
topology leads to a much higher amount of free Ri (upper right panel), which can be considered
waste because it is not used in the product formation.
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Figure S11: Example traces from numerical simulations: single product topology, negative feed-
back scheme.
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3.1.2 Handshake and neighbor topologies

A network of n generating species Ti may be designed to produce different subcomponents,
that may later assemble into a larger product. In this scenario, we can take two extreme cases:
the neighbor topology, when each output participates in at most two subcomponents, and the
handshake topology, when each output participates in n− 1 subcomponents. We thus have the
generation of pairwise products Pij; in the handshake case i, j = 1, ..., n, j 6= i, while in the
neighbor case i = 1, ..., n, j = i − 1, i + 1 and when i = 1, i − 1 = n, when i = n, i + 1 = 1,
to close the loop. It is worth noticing that, in the case n = 3, the two topologies coincide. The
reactions corresponding to product generation are

Ri +Rj
kij
⇀ Pij,

which lead to the following ODEs:

d[Ri]

dt
= βi [Ti]− δi [Ri][Ti]−

∑
j

kij [Ri][Rj],

d[Pij]

dt
= kij [Ri][Rj].

The total amount of Ri is [Rtot
i ] = [Ri] + [T ∗i ] +

∑
j[Pij]. Figure S12 shows the numerical

solutions to the ODEs for n = 3, and for n = 4 in the handshake connection case. As for the
single product topology, even though we initially have different total amounts of active Ti, the
concentration of active Ti decreases and the flux mismatches are considerably reduced with a fast
time response. Although the quantity of produced Ri is increasing, the feedback control reduces
and keeps bounded the amount of free Ri, which can be considered waste.

3.1.3 Parameters

The parameters chosen in our simulations are: kij = 2 · 103 /M/s for the handshake/neighbor
topology and k = 6 ·103/M/s for the single product topology, δi = 5 ·103 /M/s, αi = 3 ·10−4 /s,
βi = 1 · 10−2 /s, [T tot1 ] = 100 nM, [T tot2 ] = 200 nM, [T tot3 ] = 300 nM, [T tot4 ] = 150 nM. An
imbalance in the production rates of Ri is created by setting [Ti](0) = [T toti ], while [Ri](0) = 0.

3.1.4 Performance overview of the different topologies as a function of key parame-
ters

We numerically explored the behavior of the different network topologies for n = 4 as a function
of the feedback parameter δ and of the rate of activation α. Figures S13, S14 and S15 show the
network response in terms of active percentage of Ti ([Ti]/[T

tot
i ] ·100), flow mismatch (computed

as in the previous cases) and response time (defined as the time it takes for the active Ti trajectory
to go from [Ti(0)]− 10%∆ to [Ti(0)]− 90%∆, where ∆ is the difference between its initial value
[Ti(0)] and its steady state value). We solved the differential equations for a time span of 10
hours and averaged the trajectories for active Ti and for the computed mismatch over the last
simulation hour. δ varies logarithmically from a tenth to a thousand times its nominal value; α
varies from a hundredth to five times its nominal value. In each figure, pink squares mark the
nominal behavior of the system (all parameters are identical to those listed in Section 3.1.3).
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Figure S12: Example traces from numerical simulations: handshake/neighbor topologies, negative
feedback scheme.
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Figure S13: Simulations for the negative feedback, single product topology: parameter sensitivity
analysis.

In all network topologies, a large negative feedback parameter δ yields a lower mismatch and
decreases the response time; however, large δ clearly reduces the steady state activity of Ti. In
the handshake and neighbor topologies, a larger value of the spontaneous reactivation parameter
α yields higher Ti steady state activity, a larger mismatch, and a shorter response time. On the
contrary, in the single product topology larger α, despite yielding higher Ti steady state activity,
dramatically increases the response time, while the mismatch does not monotonically increase.
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Figure S14: Simulations for the negative feedback, handshake topology: parameter sensitivity analysis.
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Figure S15: Simulations for the negative feedback, neighbor topology: parameter sensitivity analysis.
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4 Positive feedback architecture for a two-gene system.
Modeling and a viable experimental implementation

4.1 Simple model system: derivation of nullclines and rate matching
conditions

T1 T2
R1

R2

Figure S16: Our two-gene
positive feedback architec-
ture

As done for the negative feedback architecture, we consider a
system composed of two generating species T1 and T2, whose
products R1 and R2 interact to form a complex P = R1 ·R2. We
devise a positive feedback interconnection where product in excess
upregulates the product in shortage (Figure S16). Free (and thus,
in excess) molecules of Ri bind to inactive Tj and activate it:

Ri + T ∗j
δij
⇀ Tj

Ti
αi
⇀ T ∗i ,

where again T ∗i is an inactive complex and [T toti ] = [Ti] + [T ∗i ]. The total amount of Ri is
[Rtot

i ] = [Ri] + [Tj] + [P ]. We now assume that Ti naturally reverts to its inactive state with rate
αi. The corresponding differential equations are

d[Ti]

dt
= −αi [Ti] + δji [Rj]([T

tot
i ]− [Ti]),

d[Ri]

dt
= βi [Ti]− k [Ri][Rj]− δij [Ri]([T

tot
j ]− [Tj]). (6)

This system was initially considered in Franco [2012]. The above differential equations were
solved numerically. The parameters were chosen for illustrative purposes as α1 = α2 = 3·10−4 /s,
β1 = β2 = 0.01 /s, δ1 = δ2 = 5 ·102 /M/s, and k = 2 ·103/M/s. The total amount of templates
was chosen as [T tot1 ] = 100 nM, [T tot2 ] = 200 nM. The initial conditions of active [Ti] are set as
[T1](0) = 10 nM and [T2](0) = 160 nM, while [R1](0) = [R2](0) = 0. Example traces are shown
in Figure S17 (a modified version of this figure is also in the main paper). Each product’s flux
rate is defined again as the derivative of [Rtot

i ]. The flux mismatch is defined as the absolute
value of the difference between the two flux rates. The effect of changing the feedback strength,
where for simplicity δ1 = δ2, is shown in Figure S17 B and C, which plots the active fraction of
[Ti] and the flux mismatch averaged over the last one hour of a 10 hours simulation. The right
panel in Figure S17 seems to indicate that the flux mismatch of the two circuits is minimized for
a certain range of δ around the nominal value of δ = 5 · 102.

The nullclines of the system in the T1-T2 space can be calculated as done for the negative
feedback design. Taking equations (6), we find:

Ṫj = 0 =⇒ Ri =
αjTj

δij(T totj − Tj)
,

Ṙi = 0 =⇒ Ri =
βiTi

kRj + δij(T totj − Tj)
.
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To simplify the derivation, we set δ12 = δ21 = δ, β1 = β2 = β, α1 = α2 = α. Equating the two
expressions for Ri, we get the following equations (for i = 1, 2 and j = 1, 2):(α

δ

)2
k

(
Ti

T toti − Ti

)(
Tj

T totj − Tj

)
+ αTi − βTj = 0. (7)

We can find an expression of the nullclines by introducing a change of variables z =
(

T1
T tot
1 −T1

)
and w =

(
T2

T tot
2 −T2

)
, and defining φ1 = ψ1 =

(
α
δ

)2
k, φ2 = αT tot1 , ψ2 = αT tot2 , φ3 = βT tot2 , and

finally ψ3 = βT tot1 :

z2(φ1v) + z(φ1w + φ2 − φ3
w

1 + w
)− φ3

w

1 + w
= 0, (8)

w2(ψ1z) + w(φ1z + ψ2 − ψ3
z

1 + z
)− ψ3

z

1 + z
= 0. (9)

The roots of the equations above represent the nullclines of the system. Because all the
parameters in these equations are positive, there is always a single root. The nullclines are
numerically solved, for varying δ, in Figure S18. A condition for flow matching at steady-state
can be derived as follows:

Ṙ1 − Ṙ2 = 0,

β1T1 − δ21R1(T
tot
2 − T2) = β2T2 − δ12R2(T

tot
1 − T1).

Substituting the expressions for R1 and R2 that can be derived by setting Ṫ1 = 0 = Ṫ2, we get:

β1T̄1 −
δ21
δ12

α2T̄2 = β2T̄2 −
δ12
δ21

α1T̄1.

Taking α1 = α2 = α, β1 = β2 = β, and δ12 = δ21 = δ we get:

T̄2 = T̄1. (10)

This flow matching condition is shown in Figure S18 in the red dashed line. Decreasing α
(inactivation rate for the generating species) or increasing δ (speed of the positive feedback),
with respect to the nominal values chosen here, causes the equilibrium of the system to be
pushed toward the upper right corner of Figure S18. Moreover, when decreasing α or increasing
δ the system reaches equilibrium on a timescale in the order of several dozens of hours. Explicit
tradeoffs on the effects of α and δ may be found by further analysis on the nullclines and on the
locus of equilibria in equation (7).

4.2 A possible experimental implementation of a two-gene positive
feedback scheme

The experimental implementation of our positive feedback scheme using transcriptional networks
presents several challenges. Here we present its general idea. A viable strand design scheme is in
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Figure S18: Numerical simulation: nullclines of the positive feedback scheme (6) in the T1-
T2 plane, calculated for different values of δ finding the roots of equations (8) and (9). The
equilibrium corresponding to the set of nominal parameters (trajectories in Figure S17 A) is
circled in black. The flow matching condition (10) is shown in the orange line. The flow matching
condition is satisfied by the equilibria T̄1 and T̄2 for δ = 5 · 103.
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Figure S19 A. Both genelets are constitutively inhibited by a DNA inhibitor Ii. Each RNA output
Ri is designed to bind to the inhibitor Ij (domains indicated as qj-aj-tj), thereby releasing the
activator Aj for binding to Tj. Because Ri should also cover the active domain of Rj in the
formation of P , then Ri must also be complementary to Ai (domains t′i-a

′
i-q
′
i): therefore, this

design is structurally affected by binding of RNA to templates (as for the self-repressing circuit),
and by RNA-mediated self-inhibition loops, as shown in the reaction scheme in Figure S19 C.
The entity of these design pitfalls depends on the length and sequences of the complementarity
domains shared by Ri and Rj. For instance, we could avoid inserting in the RNA species the
toehold sequences t1, t′1, t2, and t′2 to minimize the self inhibition; however, this would facilitate
the formation of complexes Ai · Ii ·Rj that would slow down the release of Ai.

Preliminary experiments on this design, reported in Franco [2012], show that the issues de-
scribed above are significant. In particular, the design could be improved if the self-inhibition
pathways were minimized: this was attempted, without conclusive success, by increasing the
concentration of DNA inhibitors, the concentration of RNase H, and by lengthening the length
of toeholds for Ai and Ii. Experiments also highlighted the possibility of “leaky” transcription of
inhibited switches. We refer the reader to Franco [2012], Chapter 1, for further details. Here,
we only describe our numerical analysis, which suggests that the scheme has the ability to match
transcription rates of two cross-activating genelets when we choose plausible reaction parameters.

4.2.1 Modeling

To construct a dynamic model for the cross-activating circuit represented in Figure S19 A, we
start from a list of all the chemical reactions that can occur,

Activation Ti + Ai
kTiAi→ Ti · Ai

Inhibition Ti · Ai + Ii
kTiAiIi→ Ti + Ii · Ai

Annihilation Ai + Ii
kAiIi→ Ai · Ii

Release Ri + Aj · Ij
kRiAjIj
→ Ri · Ij + Ai

Annihilation Ri + Ij
kRiIj
→ Ri · Ij

Output formation Ri +Rj
kRiRj
→ Ri ·Rj

Undesired interactions Ri + Ai
kRiAi→ Ri · Ai

Ri + Tj
kRiTj
→ Ri · Tj



Supplementary Information Appendix - Experiments, Data Processing and Modeling 31

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

R1

P

T1 on

T1 off T2 off

T2 on

A1

RNAP

R
N

as
eH

RNAP

!

R
N

as
eH

!

!

A1•I1
R2 R1

I1 I2

R2•I1 R1•I2

A

a1’

a1t1

t1’ a1’ q1’

a2’

a2t2

t2’ a2’ q2’

a2 t2q2 t1’ a1’ q1’ ! R2a2’t2’ q2’t1a1q1

t1’ a1’ q1’

t1a1q1 a2 t2q2A2

a2 t2q2

!

! A2•I2t2’ a2’ q2’

a2t2

q2’ a2’ t2’t1’a1’q1’

t1a1q1

a1t1

a2 t2q2 t1’ a1’ q1’

a2’ t2’q2’ t1 a1 q1

!

!

T1 off
a1’

!

!

T2 off

a2’

a2’

a2

!

!

T2 offa2’

RNaseH

!!

!

!

T1 offa1’

a1

R2 R1

RNaseH

A1
!

!
A2

B

C
!

R2
a2’t2’ q2’t1a1q1

!

!

!

a2’

a2t2
RNaseH

!

!

!
A2

! R2a2’t2’ q2’t1a1q1
!

a2t2

!
A2

a2t2

T2 off

T2 onRNAP

!

!t2’ a2’ q2’

a2t2

A2•I2

! R2a2’t2’ q2’t1a1q1
!

a2t2

RNaseH

Figure S19: General reaction scheme of the transcriptional circuits implementation for the positive
feedback scheme in Figure S16. Complementary domains are represented with the same color.
Promoters are colored in dark gray, while hairpin terminator sequences are in light gray. A. Desired
cross-activation loops. The activation reaction arrows are colored in red. B. Undesired cross-
activation and RNase H-mediated degradation of the RNA-template complexes. C. Undesired
self-inhibition. The inhibition pathway in cyan arrows nominally should not occur, since there
is no exposed toehold to favor it. However, this reaction has been observed in preliminary
experiments not shown in this manuscript and is therefore also included in the models.
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Transcription: on state RNAP + Ti · Ai
k+ONii→
←

k−ONii

RNAP · Ti · Ai
kcatONii→ RNAP + Ti · Ai +Ri

Transcription: off state RNAP + Ti

k+OFFi→
←

k−OFFi

RNAP · Ti kcatOFFi→ RNAP + Ti +Ri

RNAP +Ri · Tj
k+OFFij
→
←

k−OFFij

RNAP ·Ri · Tj
kcatOFFij
→ RNAP +Ri · Tj +Rj

Degradation RNaseH +Ri · Ij
k+HIj
→
←
k−HIj

RNaseH ·Ri · Ij
kcatHIj
→ RNaseH + Ij

RNaseH +Ri · Ai
k+HAi→
←

k−HAi

RNaseH ·Ri · Ai
kcatHAi→ RNaseH + Ai

RNaseH +Ri · Tj
k+HTj
→
←

k−HTj

RNaseH ·Ri · Tj
kcatHTj
→ RNaseH + Tj.

The resulting set of ordinary differential equations is:

d

dt
[Ti] =− kTiAi

[Ti] [Ai]− kRjTi [Rj] [Ti] + kTiAiIi [Ti · Ai] [Ii] + kcatHTi
[RNaseH ·Rj · Ti],

d

dt
[Ai] =− kTiAi

[Ti] [Ai]− kAiIi [Ai] [Ii]− kRiAi
[Ri] [Ai] + kcatHAi

[RNaseH ·Ri · Ai],

d

dt
[Ii] =− kAiIi [Ai] [Ii]− kTiAiIi [Ti · Ai] [Ii]− kRjIi [Rj] [Ii] + kcatHIi

[RNaseH ·Rj · Ii],

d

dt
[Ri] =− kRiAjIj [Ri] [Aj · Ij]− kRiRj

[Ri] [Rj]− kRiTj [Ri] [Tj]− kRiIj [Ri] [Ij]− kRiAi
[Ri] [Ai]

+ kcatONii
[RNAP · Ti · Ai] + kcatOFFi

[RNAP · Ti] + kcatOFFji
[RNAP ·Rj · Ti],

d

dt
[Ri · Tj] = + kRiTj [Ri] [Tj]− kcatHTj

[RNaseH ·Ri · Tj],

d

dt
[Ri ·Rj] = + kRiRj

[Ri] [Rj].

(11)

As previously done for the self-inhibiting circuit model, we can express the enzyme-substrate
complexes using the Michaelis-Menten approximation. For the RNAP substrate, for instance, we
find:

[RNAP · Ti ·Ai] =
[RNAP tot](

1 +
∑

i,j
[Ti·Ai]
kMONii

+ [Ti]
kMOFFi

+
[Ri·Tj ]
kMOFFij

) . (12)

Analogous expressions can be derived for all other complexes.
Equations (11) are numerically solved using the MATLAB ode23s solver. Table S4 shows the

parameters used for the simulations. Such generic parameters are consistent with those in Kim
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et al. [2006]. For simplicity we assume that the two sub-circuits are symmetric and have the
same binding rates. We check the behavior of the system by creating an imbalance in the total
concentration of inhibitors: [T tot1 ] = [Atot1 ] = 50 nM, [T tot2 ] = [Atot2 ] = 100 nM, while [I tot1 ] = 20
nM and [I tot2 ] = 120 nM. The simulation first allows for equilibration of all the DNA strands in
the absence of enzymes. The plot shows the trajectories after addition of the enzymes, whose
total concentration is assumed to be [RNAP tot] = 80 nM and [RNaseH tot] = 8.8 nM, based on
typical experimental conditions. As noted before for the self-inhibitory scheme, the concentration
of RNAP is not negligible relative to the total amount of genelets present and therefore the
Michaelis-Menten approximation may not be accurate in this case. The simulation results are
shown in Figure S20 and are consistent with the traces obtained for the simple model system
shown at Figure S17 A: the templates cross–activate and reach an equilibrium where the flow of
total RNA is matched. A comparison between the performance of the transcriptional negative
and positive feedback circuits models was also done in Franco and Murray [2008].

Table S4: Parameters for the Initial Numerical Analysis of the Cross Activating Circuit

Units: [1/M/s] Units: [1/s] Units: [M ]

kTiAi = 4 · 104 kcatONii = 0.06 kMONii = 250 · 10−9

kTiAiIi = 5 · 104 kcatOFFi = 1 · 10−3 kMOFFi = 1 · 10−6

kAiIi = 5 · 104 kcatOFFij = 1 · 10−3 kMOFFij = 1 · 10−6

kRjAiIi = 5 · 105 kcatHIi
= 0.1 kMHIi

= 50 · 10−9

kRiIi = 5 · 105 kcatHTi
= 0.1 kMHTi

= 50 · 10−9

kRiTj = 1 · 103 kcatHAi
= 0.1 kMHAi

= 50 · 10−9

kRiAi = 1 · 103

kRiRj = 2 · 105

5 Numerical scalability analysis of our simplified positive
feedback scheme model for flux regulation

Here we report the mathematical models for positive feedback topologies in the case of n gener-
ating species Ti. This numerical study was initially outlined in Giordano et al. [2013]. The ODE
systems were derived using mass action kinetics and used for the numerical simulation of the
proposed topologies in the case of three–component networks. Positive feedback is implemented,
as for smaller networks, with a cross–activation scheme: when an output is in excess (not used
in the product formation), it increases the generation rate of all the other outputs it forms a
product with:

Ti
αi
⇀ T ∗i ,



Supplementary Information Appendix - Experiments, Data Processing and Modeling 34

0 100 200 300
0

10

20

30

40

50

Time (min)

[n
M

]

 

 

T
1
 on T

2
 on

0 100 200 300
0

100

200

300

Time (min)

[n
M

]

 

 

Free R
1

Free R
2

0 100 200 300
0

2

4

6

Time (min)

[µ
M

]

 

 
R

1
 total

R
2
 total

0 100 200 300
0

5

10

15

20

25

Time (min)
[n

M
/m

in
]

 

 

Flow mismatch

Figure S20: Numerical simulation for equations (11). Parameters are chosen as in Table S4.
[T tot1 ] = [Atot1 ] = 50 nM, [T tot2 ] = [Atot2 ] = 100 nM, while [I tot1 ] = 20 nM, and [I tot2 ] = 120
nM. [RNAP tot] = 80 nM and [RNaseH tot] = 8.8 nM. These numerical results are in general
consistent with those obtained for the simple model (6), shown in Figure S17 A.

where T ∗i is an inactive complex. We assume that [T toti ] = [Ti]+[T ∗i ] and that the active complex
Ti naturally inactivates with a first order rate αi.

5.1 Single product topology

In a single product topology, a single complex P is concurrently formed by all the n outputs:

n∑
i=1

Ri
k
⇀P.

The corresponding differential equations are

d[Ti]

dt
= −αi [Ti] + δi ([T

tot
i ]− [Ti])

∏
j 6=i

[Rj]

d[Ri]

dt
= βi [Ti]− k

n∏
i=1

[Ri]− δi [Ri]
∏
j 6=i

([T totj ]− [Tj])

d[P ]

dt
= k

n∏
i=1

[Ri]

(13)

and the total amount of Ri is [Rtot
i ] = [Ri] +

∑
j 6=i[Tj] + [P ]. The simulation results, in Figure

S21 (a), show that also this feedback strategy is effective. The concentrations of active Ti
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asymptotically decrease and flow mismatches reduce, yet the time response is slower than in the
negative feedback case. With respect to negative feedback, there is also a higher Ri production.

5.2 Handshake and neighbor topologies

Subcomponents generation is expressed by the reaction Ri+Rj
kij
⇀ Pij and positive feedback acts

on gene i due to gene j: Ri + T ∗j
δij
⇀ Tj. The differential equations are

d[Ti]

dt
= −αi [Ti] +

∑
j

δij [Rj]([T
tot
i ]− [Ti])

d[Ri]

dt
= βi [Ti]−

∑
j

kij [Ri][Rj]−
∑
j

δji [Ri]([T
tot
j ]− [Tj])

d[Pij]

dt
= kij [Ri][Rj]

(14)

and the total amount of Ri is [Rtot
i ] = [Ri]+

∑
j[Tj]+

∑
j[Pij]. We remind that the two topologies

coincide in the case n = 3. The simulation results are shown in Figure S21 (b). The concentration
of active genes decreases and the flux mismatches are reduced, but the response time is still longer
than in the negative feedback architecture. Moreover, there is a higher Ri production than in
the negative feedback case. We can note that the handshake/neighbor connection generates less
waste (unused Ri) than the single product interconnection.

5.3 Parameters

For the numerical solution, the parameters chosen are: kij = 2 · 103 /M/s for the hand-
shake/neighbor topology and k = 6 · 103/M/s for the single product topology, δij = 50 /M/s,
αi = 3 · 10−4 /s, βi = 1 · 10−2 /s, [T tot1 ] = 100 nM, [T tot2 ] = 200 nM, [T tot3 ] = 300 nM. An
imbalance in the production rates of Ri is created by setting [Ti](0) = [T toti ], while [Ri](0) = 0.

5.4 Performance overview of the different topologies as a function of
key parameters

Using Figures S23 and S24 as a support, we can compare the performance of the positive feedback
strategy for networks with n = 3. These topologies are shown in Figure S22; for n = 3 the
handshake and neighbor topology coincide, Figure S22 B.

We numerically analyzed the network response in terms of active percentage of Ti, mean
flow mismatch and response time, defined as previously done for negative feedback topologies.
We solved the differential equations for a time span of 10 hours and averaged the trajectories
for active Ti and for the computed mismatch over the last simulation hour. We examined the
sensitivity to variations in δ, the feedback strength, and in α, the rate of spontaneous inactivation
of Ti: δ varies from a hundredth to a hundred times its nominal value; α varies from a hundredth
of its nominal value to twice its nominal value, and up to five times its nominal value in the
response time analysis. In each figure, a pink square highlights the system behavior when the
nominal parameters in Section 5.3 are adopted.
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Figure S21: Example traces from numerical simulations: positive feedback scheme.
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Figure S22: A: Single product topology. B: Handshake/neighbor interconnection.
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Figure S23: Positive feedback, single product topology: parameter sensitivity analysis.
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Figure S24: Positive feedback, neighbor/handshake topology: parameter sensitivity analysis.

In all network topologies, an increase in the spontaneous inactivation parameter α yields a
lower mismatch, decreases the response time and considerably reduces the steady state activity of
Ti. In the handshake/neighbor topology, an increase in the positive feedback parameter δ yields a
significantly higher Ti steady state activity and a larger mismatch; in the single product topology,
instead, the steady state activity of Ti is quite low and almost insensitive to variations in δ and
the mismatch is almost independent of δ. When δ increases, the response time decreases in the
single product topology, while it does not have a monotone behavior in the handshake/neighbor
topology.



Supplementary Information Appendix - Experiments, Data Processing and Modeling 39

References

Integrated DNA technologies: http://www.idtdna.com. URL http://www.idtdna.com.

E. Franco. Analysis, design, and in vitro implementation of robust biochemical networks. PhD
thesis, California Institute of Technology, 2012.

E. Franco and R. M. Murray. Design and performance of in vitro transcription rate regulatory
circuits. In Proceedings of the IEEE Conference on Decision and Control, 2008.

E. Franco, P.-O. Forsberg, and R. M. Murray. Design, modeling and synthesis of an in vitro
transcription rate regulatory circuit. In Proceedings of the American Control Conference, 2008.

E. Franco, E. Friedrichs, J. Kim, R. Jungmann, R. Murray, E. Winfree, and F. C. Simmel. Timing
molecular motion and production with a synthetic transcriptional clock. Proceedings of the
National Academy of Sciences, 108(40):E784–E793, 2011.

G. Giordano, E. Franco, and R. M. Murray. Feedback architectures to regulate flux of components
in artificial gene networks. In Proceedings of the American Control Conference, 2013.

J. Kim. In vitro synthetic transcriptional networks. PhD thesis, California Institute of Technology,
2007.

J. Kim and E. Winfree. Synthetic in vitro transcriptional oscillators. Molecular Systems Biology,
7:465, 2011.

J. Kim, K. S. White, and E. Winfree. Construction of an in vitro bistable circuit from synthetic
transcriptional switches. Molecular Systems Biology, 1:68, 2006.

S. Milburn, M. Goldrick, and M. Winkler. Compositions and methods for increasing the yields of
in vitro RNA transcription and other polynucleotide synthetic reactions, U. S. Patent 5256555,
1993.

J. N. Zadeh, C. D. Steenberg, J. S. Bois, B. R. Wolfe, M. B. Pierce, A. R. Khan, R. M. Dirks, and
N. A. Pierce. NUPACK: analysis of nucleic acid systems. Journal of Computational Chemistry,
32:170–173, 2011.

M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences using thermody-
namics and auxiliary information. Nucleic Acids Research, 9(1):133–148, 1981.

http://www.idtdna.com

	Experimental implementation of a two-gene flux matching system based on negative autoregulation: Materials and methods
	Reactions and domains design
	Oligonucleotide sequences
	DNA oligonucleotides and enzymes
	Transcription protocol
	Data acquisition and processing
	Characterization assays
	Genelets in isolation
	Interconnected genelets
	Flux adaptation
	Data fitting


	Modeling and numerical analysis: two-gene flux matching system
	Simple model system: derivation of nullclines and rate matching conditions
	Differential equations modeling the experimental implementation

	Modeling and numerical analysis: Scalability of the negative feedback scheme for flux regulation
	Simple model system
	Single product topology
	Handshake and neighbor topologies
	Parameters
	Performance overview of the different topologies as a function of key parameters


	Positive feedback architecture for a two-gene system. Modeling and a viable experimental implementation
	Simple model system: derivation of nullclines and rate matching conditions
	A possible experimental implementation of a two-gene positive feedback scheme
	Modeling


	Numerical scalability analysis of our simplified positive feedback scheme model for flux regulation
	Single product topology
	Handshake and neighbor topologies
	Parameters
	Performance overview of the different topologies as a function of key parameters


