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Abstract— When facing the global health threat posed by an
infectious disease, predictive mathematical models are crucial
not only to understand and forecast the epidemic evolution, but
also to plan effective control strategies that contrast the disease
and its spread in the population. This tutorial aims to give a
broad overview of the fundamental developments enabled by
systems-and-control methodologies in modelling and controlling
epidemiological dynamics across scales, from infection dynam-
ics within hosts to contagion dynamics between hosts. The first
part is focused on modelling and control of infectious diseases in
the host, capturing the dynamic interplay between pathogens
and the immune system, and discussing control strategies to
design tailored therapies and treatments to optimally clear the
infection. The second part deals with the spread of contagion
between hosts: epidemic dynamics are modelled resorting to
networked systems where the nodes represent individuals and
the links represent interactions that can lead to contagion,
and a comparison to compartmental models is carried out.
The third part surveys multi-scale models and multi-pronged
approaches to contrast the spread of infectious diseases: a
holistic perspective is adopted, including behavioural and socio-
economic aspects along with public health issues, to discuss
optimal epidemic control across scales.

I. INTRODUCTION

Infectious diseases are a global health threat: the world has
recently faced outbreaks of Ebola, SARS, MERS, tropical
diseases, monkeypox, and the HIV and COVID-19 pan-
demics. Mathematical models are crucial to monitor, predict,
prevent and control epidemics. This tutorial surveys the
fundamental developments in modelling and controlling in-
fectious diseases, seen as complex phenomena that embrace
multiple scales, from the microscopic scale of infection
dynamics within a host (the interplay between pathogens and
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immune system at the individual level) to the macroscopic
scale of contagion between hosts (the epidemic spreading of
the disease between individuals at the population level).
The three tutorial contributions focus on diverse aspects to
offer a well-rounded illustration of control-theoretic methods
to model and control infectious diseases across scales.

Mathematical models of viral spread processes have been
analysed for over 200 years, with one of the earliest
treatments presented by Bernoulli in his pioneering work
on smallpox infection dynamics [1]. In [2], [3], Kermack
and McKendrick laid the foundations for mean-field com-
partmental models, still widely used today [4]–[8]. These
models assume that every subject, or agent, lies in a single
compartment, or subgroup, of a well-mixed population at any
given time; the compartments are associated with different
stages of the disease and can include susceptible, exposed,
asymptomatic (infected), (symptomatic) infected, recovered,
and/or immunised population groups, as well as vaccinated,
quarantined, hospitalised. Classic epidemiological mod-
els are the SIS (susceptible-infected-susceptible) and SIR
(susceptible-infected-recovered) models, with renewed in-
terest in SEIR (susceptible-exposed-infected-recovered) and
SAIR (susceptible-asymptomatic-infected-recovered) models
due to COVID-19 [9]–[13]. More detailed compartmental
models capture specific infectious disease dynamics, in-
cluding e.g. the effect of non-pharmaceutical interventions
(NPIs), such as physical distancing, testing and contact trac-
ing [14], [15], and of mass vaccination [16]. The SIDARTHE
model [15], [16] emphasises the role of asymptomatic trans-
mission, which often eludes diagnosis, and the different
severity of symptoms in different individuals, potentially
leading to hospitalisation, intensive care unit (ICU) admis-
sion, or death.

While compartmental models assume that the agents in the
population are well-mixed, a large and growing body of work
considers the spread of epidemics over complex and realistic
network structures that capture the actual contact patterns in
society [17]–[20]. Understanding how dynamical contagion
processes evolve across different network structures (the rates
at which they spread as a function of network structure, and
how multiple viral types and multiple network layers affect
the spread process dynamics) leads to a greater understanding
as to how to contain and mitigate future viral outbreaks.

To combat an infectious disease, it is also fundamental
to treat the infection in each host: mechanistic models of
the interplay between the disease and the immune system
[21]–[26], and the available drugs, need to be developed
to design optimal therapies that mitigate the infection with



the smallest possible side effects. The optimal planning of
antiviral treatments for HIV [27]–[29] (and, similarly, of
cancer therapies [30]–[32]) have been recently addressed.

Control of infectious diseases is a multidisciplinary field
linking the application of engineering principles, mathemat-
ical modelling, medicine, and biology to address healthcare
challenges. Models are crucial to (i) unveil the mecha-
nisms of epidemic phenomena at all scales, from in-host
infection dynamics to between-host contagion dynamics, (ii)
forecast their evolution with parameters estimated based on
the available data [33], and (iii) plan optimal therapies to
mitigate the infection in the individual host [27], and devise
optimal control strategies [34]–[50] to curb the contagion
between hosts, resorting to multi-pronged interventions [51]–
[53] that are both pharmaceutical (drugs and vaccines) and
non-pharmaceutical (use of personal protective equipment,
physical distancing, travel bans, lockdown) [42], [54]–[60].

Public measures, essential to contain the contagion, need
to be carefully planned to maximise their effectiveness and
account for opinion-driven adherence to guidelines, treat-
ments and vaccination. The interplay between contagion
and opinion-driven behaviours can be captured by coupling
epidemic dynamics with opinion dynamics describing how
the attitude towards responsible behaviour evolves in the
population, driven by the individual perception of danger,
thus affecting the spread of the infection [61]–[66].

A. Modelling and Control of Infectious Diseases in the Host

The contribution by Esteban A. Hernandez-Vargas and
Alejandro H. González aims to present interdisciplinary tools
to tackle infectious diseases at the host level. Detailed con-
tributions of key players of the immune system to infectious
diseases as well as their respective interactions will be
discussed. Parameter fitting procedures to adjust parameters
based on experimental data will be developed. Consequently,
mathematical models will serve to perform stability analysis
and control strategies for personalized therapies based on
in-hosts models for several viral infections. Concepts as
the critical fraction of susceptible/non-infected cells (under
which the infection can no longer increase) can be fully
understood and used in more general control objectives if
put in terms of the equilibrium sets and their stability. Based
on classical Lyapunov methods, a full characterization of the
dynamical behaviour of the target-cell models under control
actions will be discussed. Furthermore, based on the concept
of virus spreadability, antiviral effectiveness thresholds are
determined to establish whether a given treatment will be
able to clear the infection. Also, it is shown how to simul-
taneously minimize the total fraction of infected cells while
maintaining the virus load under a given level. Parameter
fitting, modelling, and control applications are discussed.

B. Epidemic Process Dynamics over Networks

The contribution by Carolyn L. Beck and Xiaoqi Bi
discusses a family of mathematical models that have been
proposed to capture the dynamic behavior of epidemic pro-
cesses over networks, allowing for an agent-based perspec-

tive of spread process dynamics. Networked epidemic mod-
els are introduced and compared to traditional compartmental
epidemiological models, focusing on stability analyses for
examples from both model types. Compartmental epidemio-
logical models assume that the agents in the population are
well-mixed, implying that the underlying contact network
between the subjects is a complete graph. Over the past two
decades, there has been a broad study of epidemic processes
over more complex and more realistic network structures
than complete graph structures [18]–[20], [67]. To account
for network structure among individuals or subgroups of a
population, an agent-based perspective is used, where we
assume each agent is represented by a node in the network,
and the edges between the nodes represent the strength of the
interaction between agents. Agents, or nodes, may represent
either individuals or subgroups in the population.

Assuming a total of n agents in a population model, spread
processes can be described in a probabilistic framework by
large Markov process models that provide the probability of
each agent transitioning from one disease state to another,
for example from susceptible to infected, and/or to recovered
states, and back. These probabilities are determined by the
infection, healing and/or recovery rates, in addition to the
underlying network graph structure, and model the stochastic
evolution of such processes. For SIS processes, these Markov
process models will have dimension 2n, and dimension 3n

for SIRS models. As a result these models are difficult, if not
intractable, to analyze, thus it is typically assumed the num-
ber of agents is large enough that mean-field approximations
(MFAs) are valid, derived by taking expectations over the
infection transition rates of the agents, followed by evaluation
of the limiting behavior of the expectation dynamics as the
time interval of interest decreases to zero [68]. For agents
interconnected via a graph with a weighted adjacency matrix,
the use of MFA models to describe the dynamical behavior of
an epidemic process over a network is now largely accepted
under the assumption that the population size is large and
relatively constant, along with additional independence as-
sumptions, and can provide upper bounds on probabilities of
infection for the agents at any given time [68], [69]. Network-
dependent ordinary-differential-equation (ODE) continuous-
time SIS models have been studied extensively [18], [68],
[70] and [71] also considers time-varying networks. Discrete
time versions of MFA models are in [72]–[74].

Most stability studies of epidemic process dynamics ana-
lyze the system equilibria and determine the convergence be-
havior of these processes near isolated equilibria, specifically
searching conditions for the existence of and convergence
to either the disease-free (healthy state) or a non-disease-
free (endemic state) equilibrium. For the networked SIS
model, for example, when the condition for the disease-free
equilibrium (DFE), which depends on the parameters of the
model, does not hold, then there exists another equilibrium,
i.e., an endemic equilibrium, that is (almost) globally asymp-
totically stable [73], [75]–[78]. Similar differential equation-
based models for SIR processes have also been studied; an
analysis of equilibria and convergence properties for static-



network SIR models is given in [17]. Exact Markovian
process dynamics for SIR epidemics are discussed in [79].

C. Multi-Pronged Interventions to Contrast Epidemics

The contribution by Francesca Calà Campana and Giulia
Giordano presents a holistic viewpoint on epidemics that
spans across multiple scales and includes opinion dynamics
and socio-economic aspects along with public health issues.

Control theory provides a convenient mathematical frame-
work to plan interventions that contain the contagion [18].
Mathematical tools such as bifurcation theory and Lyapunov
theory can characterise the different possible qualitative
behaviours of epidemic phenomena and determine the role
played by the various model parameters in the spread of
contagion. Hence, a suitable manipulation of these param-
eters allows to control the dynamics. Several measures to
contrast epidemics are discussed in the literature; see [33]
and the references therein for a recent survey. NPIs are often
the only available strategy to contrast new pathogens, for
which no drugs or vaccines yet exist. However, physical
distancing and lockdown have relevant social and economic
costs; hence, they should be adopted at carefully chosen
moments [80], with a pre-emptive approach [81], and for
limited time periods [82]. On the other hand, pro-active
testing and contact-tracing [83] need to cope with the limited
availability of reagents and testing infrastructures. In the
presence of constraints, trade-offs, and possibly conflicting
multi-objective goals, optimal control theory [34]–[50] sug-
gests approaches to reduce the burden of an epidemic by
determining the optimal allocation of limited resources (e.g.
reagents or vaccines), or the optimal implementation of NPIs.

Yet, the countermeasures are not always adopted widely
by the population. Adherence to restrictions and vaccination
campaigns is driven by the individual opinions that determine
the actual behaviours, which in turn affect the spread of con-
tagion. To capture such intertwined dynamics, behavioural
epidemiology [61]–[66] couples human behaviour with the
transmission and control of an infectious disease: the infor-
mation on the spread of the disease, obtained e.g. via mass
media or social networks, is summarised by the information
index (a concept that extends the modelling approach in
[84], which captures the behavioural response of individuals
to the prevalence of the disease), and influences individual
behaviours and willingness to vaccinate.

Finally, an all-encompassing perspective is offered by
interdisciplinary multi-scale epidemic models that integrate
epidemiology, immunology, economy, sociology and math-
ematics [85]. Holistic multi-scale models [86]–[96] capture
both in-host infection dynamics, at the individual level, and
between-host contagion dynamics, at the population level,
thus considering the mutual interplay between immunologi-
cal and epidemiological phenomena. The enormous complex-
ity of these models and the scarcity of suitable datasets [96]–
[98] pose noteworthy challenges to the systematic imple-
mentation of multi-scale models. However, the simultaneous
understanding of infection and contagion dynamics, as well
as of their coupling, is crucial to enable the rigorous design

of mathematical control approaches for effective disease
suppression, or mitigation, across scales.

II. MODELLING AND CONTROL
OF VIRAL INFECTIONS IN THE HOST

A. Modelling In-Host Infections

Mathematical models of infectious diseases have been
developed at different scales [99]. While between-hosts
models are central to support public health strategies [15],
within-host models are important to capture the dynamics of
different pathogens and their respective interactions with the
immune system. Furthermore, control theoretical tools can
serve to schedule therapies [100], [101].

In this tutorial, we will introduce how mathematical mod-
elling and control theory can serve to evaluate dose-response
and predict the effect-time courses resulting from specific
treatment. We will give a very brief introduction to the
immune system and the most used mathematical models to
represent in-host infections.

The immune system can be divided into innate and
adaptive. When a pathogen, such as a virus or bacterium,
is recognized by the innate immune system, fast and non-
specific mechanisms take place to clear the pathogen. Then,
the adaptive immune responses are tailored to clear specif-
ically the pathogen or infected cells. Further reference for
immunology can be found in [102]. To avoid harming the
host, the immune system has regulatory mechanisms to
regulate itself. Fig.1 illustrates the basic connections between
the immune system to clear a pathogen in the host.

Mechanistic models can help us to mimic infectious dis-
eases and their respective biological mechanisms. Models
can be either pedagogical tools to understand and predict
disease progression or objects of further experiments. Model
selection is a central part of modelling that can be performed
by fitting the models to experimental data and comparing the
models’ goodness-of-fit criterion.

To perform parameter fitting using experimental data and
models based on ordinary differential equations or partial
differential equations, the reader can use the python module
PDEparams [103]. This can provide a flexible interface for
different parameter analysis such as computation of likeli-
hood profiles [104], parametric bootstrapping and confidence
intervals [105], along with direct visualization of the results.

Adaptive
Immune System

Innate 
Immune System

pathogen

Fig. 1: Immune System Components. Pointed arrows represent activation,
while hammer-headed arrows represents inhibition.



How to formulate mechanistic models for infectious dis-
eases in the host? Experimental data enable mathematical
modeling, model parameters are estimated for model can-
didates using experimental data, along with mathematical
and biological concepts depending on the model application
[106], and parameter uncertainty is dealt with in order to
enable robust model predictions that can then be compared
with experimental data. However, multiple model structures
can give the same fit for a given data set. Thus, a model
selection criterion such as the Akaike Information Criterion
(AIC) [107] can be used to select, based on the complexity,
the model that has the best fit for the data. Parameter
uncertainty is evaluated by parameter confidence intervals
and sensitivity analysis. This is relevant to show the relation
between parameters and their respective influence on the
model outcome. Once model parameter distributions are
inferred, models can be tested towards new knowledge of the
observed process and guiding the design of new experiments.

B. Target-Cell-Limited Model for In-Host Acute Infection

The most used mathematical model to represent viral
dynamics in the host is the target cell-limited model. While
simple in its structure, the target cell-limited model has
served to describe several viral diseases [108], among which
are HIV [109], hepatitis [110], influenza [111], ebola [112],
zika [113], and SARS-CoV-2 [114], [115]. A detailed ref-
erence for modelling of viral dynamics can be found in
[116]. The following ordinary differential equations (ODEs)
describe the target cell model:

U̇(t) = −β(t)U(t)V (t), U(0) = U0, (1a)

İ(t) = β(t)U(t)V (t)− δI(t), I(0) = I0, (1b)

V̇ (t) = pI(t)− cV (t), V (0) = V0, (1c)

where the state variables are uninfected target or suscep-
tible cells U(t) [cell/mm3], infected cells I(t) [cell/mm3],
and virus V (t) [copies/mL], at time t. The parameter β(·)
[mL.day−1/copies] is the infection rate of healthy U cells
by external virus V , δ [day−1] is the death rates of I , p
[(copies.mm3/cell.mL).day−1] is the viral replication, and c
[day−1] is degradation (or clearance) rate of the virus V . A
numerical example of the target cell-limited model is shown
in Fig. 2. An exponential growth takes places in infected cells
and viral load; then, due to the limited amount of target cells,
infected cells and viral load decrease.

Remark 1: The immune system is not explicitly repre-
sented in model (1). However, the parameters δ and c are
adjusted to clinical data, which can be considered an indirect
representation of the immune system to clear infected cells
and fast the viral clearance.

System (1) is positive under positive initial conditions. We
denote x(t) := (U(t), I(t), V (t)) the state vector and X =
R3

≥0 the state constraints set. The infection time is t = 0,
i.e., V (0) = V0, I(0) = I0 = 0 and U(0) = U0, where V0

is a small amount of virus at t = 0. U0 > 0 represents the
total number of susceptible cells in a healthy state.

Remark 2: The infection rate β is in general time-varying,

since this parameter is affected by the immune system and
antiviral treatments (control actions). While the antivirals
do not eliminate directly the virus, they can inhibit the
replication cycle; that is, parameters β and p are reduced.
Both parameters affect the reproduction number (defined
next) in the same way [117].

To account for the effect of the immune system or antiviral
treatments, it is assumed that β(·) ∈ Ωβ , where Ωβ is the
set of functions β(·) : R≥0 → R>0 such that β(t) ∈ [β, β],
for t ∈ [ti, tf ], and β(t) = β, for t ∈ [0, ti)∪ (tf ,∞], being
0 < ti < tf < ∞ the starting and ending treatment time. tf
is assumed to be finite since acute infection treatments are
always finite-duration treatments. 0 < β < β are the minimal
and maximal values of the infection rate, respectively. β and
β represent the untreated and fully treated infection rate,
respectively; the case β = 0 is not considered since antivirals
have a limited effect on the infection rate. Fig.3 shows an
illustration of β(t) representing the potential effect of the
immune system and antivirals.

Although the solution of (1) for t ≥ 0 is unknown (even
for a fixed β), we can make some simple analysis to gain
some insight into the general system behavior. According to
[117], if c is much larger than δ, system (1) can be approx-
imated by U̇(t) ≈ −β(t)U(t)V (t), V̇ (t) ≈ (β(t)pc U(t) −
δ)V (t), I(t) = c

pV (t). Then, since U(t) > 0 for all t ≥ 0,
conditions for V to decrease at some t > 0 are given by
U(t) < cδ

β(t)p . Furthermore, U0 = U(0) > cδ
β(0)p = cδ

βp
(since

otherwise there is no an infection) and, according to (1.a)
U(t) is decreasing for all t ≥ 0. Then, since β(t) ≤ β for
all t ≥ 0, once U(t) crosses cδ

βp
from above, it cannot longer

be greater than cδ
β(t)p (i.e., cδ

β(t)p ≥ cδ
βp

for all t ≥ 0), and V

cannot longer grow (once U(t) < cδ
βp

it can be considered
that the virus would no longer spread in the host ([117]),
since there is no future time instants for which V̇ > 0). This
threshold value for U is denoted as the critical susceptible
cells threshold

U∗ :=
cδ

βp
, (2)

and it can be seen as the counterpart of the ‘herd immunity’
in the epidemiological SIR-type models [118].

1) Equilibria and Stability: A control equilibrium is, by
definition, an equilibrium of the system (1) associated to any
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Fig. 2: Target cell limited model simulation. Model initial conditions
U(0) = 106, I(0) = 0, and V (0) = 10 were considered. Model
parameters du = 0.01, β = 10−7, δ = 2, p = 100, and c = 24 were
assumed.



Fig. 3: General form of β(·) ∈ Ωβ .

control action β(·) ∈ Ωβ . However, in our case, the control
action is a finite-duration signal, so equilibria (i.e., states
at which the system can remain indefinitely) can only be
considered for t ≥ tf , where β(t) = β (because of the form
of β(·) ∈ Ωβ , the system behavior before tf is, by definition,
at a transient regime). This is equivalent to defining the open-
loop equilibrium of (1) with β(t) = β that, by zeroing the
differential equations, is given by:

Xs := {(U, I, V ) ∈ X : U ∈ [0, U0], I = 0, V = 0}. (3)

This set can be divided into two subsets: X st
s := {(U, I, V ) ∈

X : U ∈ [0, U∗], I = 0, V = 0} and X un
s := {(U, I, V ) ∈

X : U ∈ (U∗, U0], I = 0, V = 0}, which allows us to state
the following fundamental Theorem of stability:

Theorem 1: Consider the system (1) constrained by X ,
with β(·) ∈ Ωβ . Then, the set X st

s is the unique asymp-
totically stable equilibrium set (i.e., the smallest attractive
and the largest locally ϵ − δ stable set), with a domain of
attraction (DOA) given by X\X un

s , while X un
s is unstable.

Proof: See [115].
Fig. 4 shows phase portrait plots of the system (1), corre-
sponding to different states x(tf ), for t > tf .

2) Infection final size and viral load peak: Stationary vs
transient behavior: The fact that tf is finite and β(t) = β
for t > tf allows us to state some basic final conditions for
the system (1). By defining U∞ := limt→∞ U(t), V∞ :=
limt→∞ V (t) and I∞ := limt→∞ I(t), we know that V∞ =
I∞ = 0 while U∞ is given by:

U∞ := −U∗W (−U(tf )

U∗ e−
1

U∗ (U(tf )+I(tf )+
δ
pV (tf ))), (4)

where W (·) is the Lambert function (see [117] for de-
tails). This way, U∞ is an explicit function of the sys-
tem parameters (β, δ, p, c) and the states at tf , x(tf ) =
(U(tf ), I(tf ), V (tf )), but not of β(·) (i.e., β(t) affect U∞
only trough x(tf )).

According to well-known results (see [119], for the case of
SARS-CoV-2) the two main indexes describing the severity
and infectiousness of the disease are the infection final size
(IFS), which indicates the amount of infected (dead) cells at
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the end of the infection an so the probability for the host to
develop co-infections and related side effects, and the viral
load peak (V LP ), which indicates both, the severity of the
disease and also the infectiousness of the host (ability to
transmit the virus to other hosts). These two indexes are
defined as:

IFS := U0 − U∞, (5)
V LP := max

t∈[0,∞)
V (t), (6)

and the objective of a potential control strategy (i.e., limited
antiviral treatment schedules that reduce as long as possible
the side effects) is to reduce as long as possible these two
indexes.

The following Lemma, which establishes conditions to
minimize the IFS and the area under the curve of the viral
load AUCV L :=

∫∞
0

V (τ)dτ (which is related to the V LP )
for any β(·) ∈ Ωβ , sheds some light on the control problem.

Lemma 1: Consider the system (1) constrained by the
positive set X , with β(·) ∈ Ωβ . Then, the only way to
minimize IFS and AUCV L is by implementing a control
β(t) such that (U(tf ), I(tf ), V (tf )) ≈ (U∗, 0, 0) (i.e., the
system approaches the steady state corresponding to U =
U∗, at tf ). Furthermore, the infimum for the IFS and the
AUCV L are given by IFSmin = U0 −U∗ and AUCmin

V L =
p
cδ (U0 − U∗), respectively.

Lemma 1 is a strong result concerning any kind of control
action β(·) ∈ Ωβ . It says that there is only one way
to arbitrarily approach the unique infimum of the IFS
and AUCV L and this depends on the state at the end
of the treatment, x(tf ), not on the form of β(t). This
means that among all the possible β(·) ∈ Ωβ fulfilling
the condition (U(tf ), I(tf ), V (tf )) ≈ (U∗, 0, 0), one can
select the one that maintains the V LP under a given upper
bound (established according the disease severity and host
infectiousness), since only the integral of V is fixed (i.e.,



AUCV L = AUCmin
V L ) but not its peak.

From a pure dynamic point of view, one can say that
minimizing the IFS and the AUCV L is independent of
keeping the V LP arbitrary low. Even more, minimizing the
IFS and AUCV L is a stationary objective, while keeping
V LP arbitrary low is a transient one.

C. Control Strategies to Tailor Antiviral Therapies

The following definition formalizes the control objectives
of the problem under study:

Definition 1 (Control objectives): The control objective
for the closed-loop (1) consists in (i) minimizing the IFS,
and (ii) keeping the V LP under a given upper bound Vmax

(determined by the severity of the disease and the host
infectiousness), while minimizing, as long as possible, the
total amount of administered antiviral (to avoid drug side
effects).
Thus, the control problem consists in finding a function
β(·) ∈ Ωβ accounting for the control objective in Definition
1. In view of the dynamic analysis made in the previous
sections, we can pose the following optimal control prob-
lem Popt(U(0), I(0), V (0), U∗, Vmax;β(·)) that, in contrast
to many other strategies, take advantage of the station-
ary/transient distinction for each of the objectives:

min
β(·)

J(β(·)) =
∫ T

0
[β − β(t)]dt

subject to the system (1) and:
(U(t), I(t), V (t)) ∈ X , V (t) ≤ Vmax, t ∈ [0, T ],
U(T ) = U∗, V (T ) ≤ Vdet, β(·) ∈ Ωβ ,

where T > tf is a large enough time that covers the whole
dynamic of the infection. Conditions V (t) ≤ Vmax forces
variable V (τ) to be smaller than the externally imposed
maximum Vmax at every time t ∈ [0, T ], while constraints
and U(T ) = U∗ and V (T ) ≤ Vdet, where Vdet is a small
detectable virus variable (usually 100 [copies/mL]), force
variable U(t) to be equal to U∗ at the end time T , at a quasi
steady state condition (i.e., with V (T ) approaching zero).
The key point of Problem Popt is that the clinical objectives
(i.e., controlling the IFS and the V LP ) are imposed by con-
straints while only the objective of minimizing the antiviral
is achieved by optimality, so the competition between them
is avoided.

Remark 3: It can be shown that Problem Popt is well-
posed and properly accounts for the control objectives in
Definition 1. Furthermore, any other optimization problem,
i.e., the one minimizing V (t) (or U(t) = U∗) along
T , without terminal constraints, will necessarily produce a
suboptimal solution, since this way the control objectives
compete one to each other in the cost function.

1) Numerical Simulations: Here we simulate a virtual pa-
tient, denoted as patient A, whose parameters were estimated
in [114], [119]. Figure 5 (upper panel, dashed blue and red
lines), shows the open-loop system time evolution, which
consists in using β(t) ≡ β (no treatment is a particular
case of β(·) ∈ Ωβ), while Figure 5 (lower panel, dashed
blue lines) shows the phase portrait in the plane U, V . As
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Fig. 5: U (blue), V (red) and β (black) time evolution (left), and
phase portrait (upper panel, blue), corresponding to open loop
(dashed line) and optimal control (solid line). The model parameters
are given by β = 1.35×10−7, δ = 0.61, p = 0.2 and c = 2.4. The
initial conditions are given by: U0 = 4 × 108 [cell/mm3], I0 = 0
[cell/mm3] and V0 = 0.31 [copies/mL]. Furthermore, the critical
value for the susceptible cells is U∗ = 5.44× 107 [cell/mm3] and
Vmax = 4.5326× 106 [copies/mL].

predicted, Uol
∞ is (significantly) smaller than U∗ (IFSol =

U0 −Uol
∞ = 3.9974× 108 [cell/mm3]), while the peak of V

is given by V LP ol = 1.5064 × 107 [copies/mL] (the viral
load is considered undetectable under the detectable value of
Vdet = 100 [copies/mL]).

Figure 5 (lower panel, solid blue and red lines) shows also
the optimal control system time evolution, considering a β(t)
(left, solid black lines) obtained from Popt. The time horizon
T was selected to be 32.8 [days] while the maximal allowed
VLP is given by Vmax = 4.5326 × 106 (30 % of V LP ol).
As it can be seen, the control objectives are reasonably
approached, with IFSopt = 3.4723× 108 [cell/mm3] (80 %
of IFSol), V LP opt = Vmax = 4.5326 × 106 [copies/mL],
while the total amount of antiviral is minimized.

Note that β(·) separates the control objectives over time:
first, it handles the V LP (from t≈ 8 to t≈ 17 days) and,
once V cannot further increase, it tries to reach U(T )≈U∗,
at steady-state, to minimize IFS. Although not simulated
here, it can be shown that any other optimization problem, for
instance the one minimizing the viral load along the time (as



it is usually done in the literature), systematically produces
a suboptimal performance, avoiding the achievement of the
control objectives.

Remark 4: A better description of the control would be
considering the system (1) with the pharmacokinetic and
pharmacodynamic of a particular antiviral, which includes
also the impulsive nature of the doses (pill intakes) that affect
parameter β and p, as it is shown in [115] for the case of
SARS-CoV-2. However, the optimality concepts introduced
in this tutorial are not altered.

III. MODELLING AND ANALYSIS OF EPIDEMICS
OVER NETWORKS: AN OVERVIEW

We discuss the modelling, analysis and estimation of
epidemic dynamics for a selection of traditional compart-
ment models, and networked models. After providing an
overview of classic epidemiological compartment models, we
present their networked versions that explicitly account for
underlying human contact, transportation, and/or community
interaction networks that affect the transmission of epidemic
processes, focusing on the SIS and SAIR models. Then
we discuss stability and convergence analysis results for
some compartmental as well as networked epidemic process
models, highlighting the main differences.

1) Notation and Background: Given two vectors x1, x2 ∈
Rn, x1 ≥ x2 indicates each element of x1 is greater than
or equal to the corresponding element of x2, x1 > x2

indicates each element of x1 is greater than or equal to the
corresponding element of x2 and x1 ̸= x2, and x1 ≫ x2

indicates that each element of x1 is strictly greater than the
corresponding element of x2. Given a matrix M ∈ Rn×n,
the spectral radius of M is ρ(M). Also, mij indicates the
i, jth entry of M . The notation diag(·) refers to a diagonal
matrix with the argument on the diagonal; [n] refers to the
set {1, . . . , n}. The identity matrix is denoted by I , the all-
ones vector by 1, and the all-zeros vector by 0; we assume
I , 1, and 0 have the appropriate dimensions whenever used.
E[·] denotes the expected value of the argument and Pr[·]
the probability of the argument.

A matrix X ∈ Rn×n is reducible if there exists a
permutation matrix T such that T−1XT =

(
Y Z
0 W

)
,

where Y and W are square matrices, or if n = 1 and X = 0.
A real square matrix is called irreducible if it is not reducible.

Network structures and graphs: A directed graph, or
digraph, is a pair G = (V, E), with set of nodes V and set of
edges E ⊆ V × V . Given G, we denote an edge from node
i ∈ V to node j ∈ V by (i, j). Node i ∈ V is a neighbor of
node j ∈ V if and only if (i, j) ∈ E . When (i, j) ∈ E if and
only if (j, i) ∈ E , the graph is undirected. The in-neighbor
set of node j is Nj = { i | (i, j) ∈ E}. For a graph with
n nodes, we associate an adjacency matrix W ∈ Rn×n with
entries wij ∈ R≥0, where wij = 0 if and only if (i, j) /∈ E .
For undirected graphs, the adjacency matrix is symmetric.

A path is a collection of nodes {i1, . . . , iℓ} ⊆ V such
that (ik, ik+1) ∈ E for all k ∈ [ℓ− 1]. A digraph is strongly
connected if there exists a path between any two nodes in V .

If the digraph is strongly connected, the adjacency matrix is
irreducible. An undirected graph is connected if it contains a
path between any two nodes in V . A digraph is weakly con-
nected if, when every edge in E is viewed as an undirected
edge, the resulting graph is a connected undirected graph. A
directed or undirected graph is disconnected if it contains at
least two isolated subgraphs. Throughout, when G is directed,
we assume it is either strongly or weakly connected; when
G is undirected, we assume it is connected.

A. Compartmental Models and Their Stability Analysis

Compartmental models comprise separately identified seg-
ments of the population, which are assumed to reside in
one of a fixed number of disease-states at each point in
time. For these models, the basic reproduction number
(BRN), often defined as a stability threshold denoted R0,
serves as a metric that captures the “seriousness” of viral
spread and is considered the fundamental threshold value in
epidemiology [120]. The BRN R0 is the expected number of
secondary infections arising from one individual throughout
their entire infectious period, and it can be used to evaluate
the effectiveness of an action aimed at mitigating the disease
spread. To stop the spreading, we want R0 < 1; because of
the nonlinear nature of spread dynamics we can also allow
R0 = 1. We now introduce SIS, SIRS, and SAIRS model
structures and evaluate the BRN thresholds in terms of their
dynamic stability property.

1) SIS Model: The simplest compartmental model is the
SIS model [3], given by

Ṡ(t) = −βS(t)I(t) + γI(t),

İ(t) = βS(t)I(t)− γI(t),
(7)

where S(t) is the susceptible fraction of the population, I(t)
is the infected fraction, β represents the rate of infection,
or contact between susceptible and infected segments of
the population, and γ represents the healing or recovery
rate of the population. The model assumes a homogeneous
population with no vital dynamics (i.e., infection and healing
are assumed to occur at faster rates than birth and death
processes), and the population size is assumed to remain con-
stant and mix over a trivial network, that is, over a complete
graph structure. These statements imply S(t) + I(t) = 1;
Ṡ + İ = 0, and a certain percentage of those infected
will become susceptible again (following recovery). SIS
models capture the disease dynamics of recurrent bacterial
and fungal infections.

For the SIS model (7), the BRN is given by R0 = β/γ,
which is the ratio of the infection to healing rates. The
disease-free equilibrium (DFE), with I = 0, is globally
asymptotically stable if, and only if, R0 ≤ 1. In fact,
rewriting the second equation of (7) using the identity S(t) =
1− I(t) gives

İ(t) = β(1− I(t))I(t)− γI(t) = γ

(
β

γ
− 1

)
I(t)− βI2(t). (8)

This differential equation is bounded above by the lin-
earized subsystem; with the linear part zero (that is, when



R0 = 1) the nonlinear part alone leads to global asymptotic
stability (GAS), and thus we have that R0 ≤ 1 provides
a sufficient condition for GAS (this holds from all initial
conditions for I , but what is relevant is the system behavior
for initial conditions I(0) ∈ [0, 1]). Necessity follows from
the fact that when R0 > 1 the linear part is unstable.

When R0 > 1, the endemic state of the SIS model is

Ie = 1− γ

β
> 0.

Defining the equilibrium shifted variable Ĩ := I − Ie leads
to the differential equation (for Ĩ):

˙̃I = −βIeĨ − βĨ2 ,

and from a similar argument as above, it follows that Ĩ = 0
is globally asymptotically stable. Hence, translating to the
original variable I , Ie is the globally asymptotically stable
endemic equilibrium of the SIS model dynamics whenever
R0 > 1 and I(0) > 0.

2) SIR Model: A slightly more complex model, in which
an agent may remain in a state of complete recovery for
some duration of time prior to returning to the susceptible
state, is the SIR model [3], given by

Ṡ(t) = −βS(t)I(t) + δR(t),

İ(t) = βS(t)I(t)− γI(t),

Ṙ(t) = γI(t)− δR(t),

(9)

where β is the transmission rate parameter for person-to-
person contact, γ is the recovery rate, δ is the rate at which
immunity recedes following recovery, and R(t) is the recov-
ered fraction of the population. Precisely, this is an SIRS
model, used when acquired immunity is only temporary, as
e.g. with noroviruses and some common cold viruses; setting
δ = 0 gives an SIR model, used for the dynamics of diseases
for which permanent acquired immunity results following
infection, as e.g. with measles or mumps.

For the SIRS model (9), again R0 = β/γ. In fact, the same
approach as in (8) for the SIS model leads to two coupled
differential equations:

İ = −(γ − β)I − βRI − βI2,

Ṙ = γI − δR.
(10)

When δ > 0, the DFE is Ie = Re = 0, Se = 1 (eventually
all recovered become susceptible again, and now remain
susceptible since Ie = 0). Linearizing around this DFE leads
to the Jacobian matrix

Je =

[
β − γ 0
γ −δ

]
,

which is Hurwitz if and only if β−γ < 0 (i.e., R0 < 1) and
δ > 0. This condition also leads to GAS of the DFE since
the two nonlinear terms in the differential equation for I are
negative, driving I to zero globally, which also drives R to
zero because of the −δR term.

If δ = 0, we cannot use the same argument for lineariza-
tion around I = R = 0, since there is now no positive

feedback term from the R group to S group. However, for
comparison, assume for the moment that linearization around
I = R = 0 makes sense, which is valid when δ is very small
and positive, and hence one can consider SIR stability as a
limiting case of SIRS stability. Again the Hurwitz condition
is satisfied if and only if β − γ < 0, i.e. R0 < 1. This
condition also leads to GAS by the argument used in the
SIRS case. In this case we can let R0 = 1 and establish
GAS of the DFE, since İ = −βRI − βI2; with R being
nonnegative, we have GAS.

As a further result of linearization, if R0 > 1, then for
each respective model the DFE is unstable.

Returning to the DFE for the SIR model (with δ = 0), we
have the coupled ODEs:

İ = −(γ − β)I − βRI − βI2,

Ṙ = γI.
(11)

The equilibrium state in this case is Ie = 0, Re = 1,1 with
R positive throughout, except for I(0) = 0, and the right-
hand-side of the ODE for I negative whenever I(0) ̸= 0,
and R0 ≤ 1; hence, the DFE is GAS if and only if R0 ≤ 1.

Conversely, when R0 > 1, there is no endemic equilib-
rium, because if the right hand side of the equation for I in
(11) is set to zero, for I ̸= 0 it leads to I = 1−R− (γ/β),
which is positive only if R+(γ/β) < 1, but there is no such
limiting R value since R increases with positive I .

For SIRS, setting the right-hand-sides of the coupled
ODEs in (10) equal to zero leads to a unique solution (for
I ̸= 0):

R∗ = γ(β−γ)
β(γ+δ) , I∗ = δ(β−γ)

β(γ+δ)

which are both positive whenever R0 > 1. Since I∗+R∗ =
1−(γ/β), the endemic equilibrium state of S is independent
of δ. See [8] and the references therein for further discussions
on stability and endemic equilibria of SIS and SIR models.

3) SEIR and SAIR Model: To explicitly capture the incu-
bation period from time of exposure to the virus, to the time
that symptoms and associated viral shedding are present, an
SEIR (or SEIRS) model may be used. Allowing that the
recovered population may become susceptible again after a
period of immunity, we have the SEIRS model:

Ṡ(t) = −βS(t)I(t)) + δR(t),

Ė(t) = βS(t)I(t))− σE(t),

İ(t) = σE(t)− γI(t),

Ṙ(t) = γI(t)− δR(t),

(12)

where β is the transmission rate from agent-to-agent contact
between susceptible and infected, after which the agent is
considered exposed, σ is the transition rate from exposed to
infected, γ is the recovery rate, and δ represents the rate at
which immunity recedes.

The SEIR(S) model captures the delay between time
of exposure and when an agent becomes simultaneously

1This not an equilibrium state in the true sense of the notion, since once
R = 1 it stays there, which is not captured by the smooth right-hand-side
of the differential equation above.



symptomatic and infectious, but does not capture disease
spread by infectious but asymptomatic agents. For COVID-
19, the SEIR models have been adapted to reflect the state
of being both asymptomatic and infectious, leading to the
SAIRS compartment model:

Ṡ(t) = −βS(t)(A(t) + I(t)) + δR(t),

Ȧ(t) = βqS(t)(A(t) + I(t))− σA(t)− κA(t),

İ(t) = β(1− q)S(t)(A(t) + I(t)) + σA(t)− γI(t)

Ṙ(t) = κA(t) + γI(t)− δR(t),

(13)

where β is the rate of infection or contact, now
amongst susceptible, asymptomatic-infected and infected-
symptomatic individuals; σ is the rate of progression from
asymptomatic to symptomatic infected; κ and γ are the
recovery rates for asymptomatic and infected-symptomatic
individuals, respectively; δ is the rate at which recovered
individuals become susceptible again (i.e., lose acquired
immunity to the disease) and δ = 0 if the acquired immunity
is permanent. The SAIR model captures the case of being
both asymptomatic and infectious, and possibly recovering
without ever exhibiting symptoms. The parameter q, and the
(1 − q) term, represent the probabilities (or fractions) of
susceptible individuals transitioning, respectively, to A and I
states from S. These models may be further generalized, e.g.,
by allowing for different β values between S and A states,
and S and I states. No general vital dynamics are included
in these models, thus S(t) +A(t) + I(t) +R(t) = 1.

While (13) models the type of asymptomatic-but-
infectious state that may occur e.g. with COVID-19, there are
other variations on SAIR model structures, such as those first
proposed by [121] for dengue virus epidemics, where being
asymptomatic one year may lead to more severe infections
from dengue virus strains in following years.

To consider its stability, by using S(t) = 1−A(t)−I(t)−
R(t), the SAIRS model (13) can be written as

Ȧ(t) = qβ(1−A(t)− I(t)−R(t))(A(t) + I(t))
−σA(t)− κA(t)

İ(t) = (1− q)β(1−A(t)− I(t)−R(t))(A(t) + I(t))
+σA(t)− γI(t)

Ṙ(t) = κA(t) + γI(t)− δR(t).

(14)

Assuming δ > 0 we consider linearization about the DFE
point at Ae = Ie = Re = 0, Se = 1, which implies that all
recovered become susceptible again and remain susceptible
since Ie = 0; this gives us the Jacobian matrix

Je =

 βq − σ − κ βq 0
β(1− q) + σ β(1− q)− γ 0

κ γ −δ

 .

Applying [122, Theorem 4.7], eigenvalue analysis and the
Routh-Hurwitz criterion shows that the SAIRS model is GAS
at the DFE when

R0 := max

(
β

γ + σ + κ
,
β(qγ + (1− q)κ+ σ)

γ(σ + κ)

)
< 1.

We can further compute an endemic equilibrium point
for (14), strictly assuming non-permanent immunity: δ >

0. Setting Ȧ(t), İ(t), Ṙ(t) to 0, we obtain the endemic
equilibrium, which can be written as

 Se

Ae

Ie

Re

 =


Ψ
βΦ

qδγ(βΦ−Ψ)
βΦ(δΦ+Ψ)

δ((1−q)κ+σ)(βΦ−Ψ)
βΦ(δΦ+Ψ)

Ψ(βΦ−Ψ)
βΦ(δΦ+Ψ)

 =


Ψ
βΦ

qδγC
βΦD

δ((1−q)κ+σ)C
βΦD

ΨC
βΦD

 (15)

by denoting Ψ = γ(κ + σ) and Φ = qγ + (1 − q)κ + σ,
where both Ψ > 0 and Φ > 0, and further defining C =
βΦ − Ψ = β(qγ + (1 − q)κ + σ) − γ(κ + σ) and D =
δΦ+Ψ = δ(qγ + (1− q)κ+ σ) + γ(κ+ σ) > 0.

Then, computing the Jacobian around the equilibrium


− (κ+σ)

(
(1−q)κ+σ)

)
Φ − qδC

D
qΨ
Φ − qδC

D − qδC
D

(γ+σ)
(
(1−q)κ+σ)

)
Φ − (1−q)δC

D − qγ(γ+σ)
Φ − (1−q)δC

D − (1−q)δC
D

κ γ −δ

 .

allows us to derive global asymptotic stability conditions
by applying the Routh-Hurwitz criterion.

B. Networked Models

Networked models capture the scenario where numerous
groups, or agents, are interconnected via a contact graph
or a more general interconnection network, defined by a
weighted adjacency matrix, W = {wij}, where element wij

quantifies the strength of the connection from agent j to
agent i. If we assume as before large and constant population
sizes (and some independence conditions), then compartment
models can be extended to describe the dynamics of epidemic
processes evolving over networks of subgroups or agents in
the population.

For networked models, we can also derive threshold values
that play an important role in characterizing stability of the
spread dynamics around equilibria. Now the thresholds admit
the interpretation of being the expected number of healthy
agents or nodes in a susceptible population that become
infected due to the state of infection at neighboring nodes.

1) SIS Model: Denoting by pi(t) ∈ [0, 1] the fraction
of the subpopulation at node i infected at time t, or the
probability of node i being infected at any time t, we can
derive the following differential equation representing the
evolution of the pi’s, for i ∈ [n],

ṗi(t) = (1− pi(t))β

n∑
j=1

wijpj(t)− γpi(t) , (16)

where β > 0 and γ > 0 are as defined previously, and wij

are the non-negative edge weights between the agents/nodes.
One way to derive the model in (16) is to use a mean

field approximation of a 2n state Markov chain model that
captures the networked SIS dynamics. Specifically consider
the 2n-state Markov chain [68] where each state of the chain,
Yk(t), corresponds to a binary-valued string x of length n,
where the ith agent is either infected or susceptible, indicated
by xi = 1 or xi = 0, respectively, and the state transition
matrix, Q̄, is defined by



q̄kl =



γ, if xi = 1, k = l + 2i−1

β

n∑
j=1

wijxj , if xi = 0, k = l − 2i−1

−
∑
l ̸=j

q̄jl, if k = l

0, otherwise,

(17)

for i ∈ [n]. Here a virus is propagating over a network
structure defined by wij , with n agents or possibly n
groupings of agents; β and γ are the homogeneous (same
for each node) infection and healing rate, respectively. The
state vector y(t) is defined by

yk(t) = Pr[Yk(t) = k], (18)

with
2n∑
k=1

yk(t) = 1. The Markov chain evolves according to

dy⊤(t)

dt
= y⊤(t)Q̄. (19)

Alternatively, let Xi(t) be the random variable represent-
ing whether the ith agent is infected or not (while xi is the
ith entry of the binary string associated with each state of the
2n Markov chain), and consider the probabilities associated
with node i being healthy (Xi = 0) or infected (Xi = 1) at
time t+∆t, given Xi(t):

Pr(Xi(t+∆t) = 0|Xi(t) = 1, X(t)) = γ∆t+ o(∆t),
P r(Xi(t+∆t) = 1|Xi(t) = 0, X(t)) = β

∑n
j=1 wijXj∆t+ o(∆t).

Letting ∆t go to zero and taking expectations gives us

Ė(Xi(t)) = E

(1−Xi(t))β

n∑
j=1

wijXj(t)

− γE(Xi(t)). (20)

Using the above equation, the identities Pr(z) = E(1z),
pi(t) = Pr(Xi(t) = 1), (1 − pi(t)) = Pr(Xi(t) = 0),
and approximating Pr(Xi(t) = 1, Xj(t) = 1) by pi(t)pj(t)
(which inaccurately assumes independence) gives (16).

For both interpretations of the model to be well defined,
each state pi(t) must remain in the domain [0, 1] for all t ≥ 0.
This well-posedness result is straightforward to show.

Lemma 2: If pi(0) ∈ [0, 1], for all i ∈ [n], then pi(t) ∈
[0, 1], for all t ≥ 0, i ∈ [n].

To perform a stability analysis, we first recall the general
network structure, also known as the n-intertwined Markov
model.

Following [123], we describe the networked SIS infection
model over a directed graph (digraph) G = (V, E) with n
nodes, where V is the set of nodes, and E is the set of edges.
Each node in the network has two states: infected or cured.
The curing and infection of a given node i ∈ V are described
by two independent Poisson processes with rates γi and βi,
respectively. Throughout, we assume that γi > 0 and βi > 0.
The transition rates between the healthy and infected states
of a given node’s Markov chain depend on its curing rate
as well as the infection probabilities among its neighbors.
A mean-field approximation is introduced to “average” the

effect of infection probabilities of the neighbors on the
infection probability of a given node. This approximation
yields a dynamical system that describes the evolution of
the probability of infection of node i ∈ V , as described next.

Let pi(t) ∈ [0, 1] be the infection probability of node
i ∈ V at time t ≥ 0, and let p(t) = [p1(t), . . . , pn(t)]

⊤.
Also, let Γ = diag(γ1, . . . , γn), P (t) = diag(p(t)), and
B = diag(β1, . . . , βn). The n-intertwined Markov model is
prescribed by the mapping Φ : Rn → Rn, where

ṗ(t) = Φ(p(t)) := (W⊤B−Γ)p(t)−P (t)W⊤Bp(t). (21)

When p(0) ∈ [0, 1]n, p(t) ∈ [0, 1]n, for all t > 0.
We characterize the set of equilibria of the dynamical

system (21) in terms of the basic reproduction number
(BRN), denoted by R0, introduced earlier in the context of
the compartmental SIS model, whose counterpart in the case
of networked SIS as above is the expected number of infected
nodes produced in a completely susceptible population due
to the infection of a neighboring node. For the n-intertwined
Markov model, the BRN is R0 = ρ(Γ−1W⊤B) [124].
For connected undirected graphs, the DFE is the unique
equilibrium for the n-intertwined Markov model when R0 ≤
1; when R0 > 1, in addition to the disease-free equilibrium,
an endemic equilibrium, denoted by p⋆, emerges [68]. In fact,
it is shown that p⋆ ≫ 0. We call a strictly positive endemic
state strong. When p⋆ > 0, we call it a weak endemic state. A
recursive expression for the endemic state p⋆ is provided in
[124], which is shown to depend on the problem parameters
only: W , γi, βi, i ∈ V . The steady-state equation evaluated
at p⋆ is given by

W⊤Bp⋆ = (I − P ⋆)−1Γp⋆, (22)

where P ⋆ = diag(p⋆). Since γi > 0, then p⋆i < 1, for all
i ∈ V , and (I − P ⋆)−1 exists.

A necessary and sufficient condition for the stability of the
disease-free equilibrium is given in the following proposition.

Proposition 1: [70], [125] Suppose G = (V, E) is a
strongly connected digraph. The DFE of (16) is asymptoti-
cally stable with domain of attraction [0, 1]n if and only if
R0 ≤ 1.
The BRN provides a sharp threshold for the stability of the
disease-free equilibrium, as in the compartmental SIS model.
Further results when G is not strictly assumed to be a digraph,
and when the network interconnection structure may be time-
varying, are in [18] and [71], respectively.

To provide concrete results on local and global asymp-
totic stability of an endemic state over strongly connected
digraphs, we first note the existence of a unique endemic
state for (21).

Proposition 2: [70] Let G = (V, E) be a strongly con-
nected digraph. Then, a unique strong endemic state p⋆ ≫ 0
exists if and only if R0 > 1.

The following result on stability of the endemic state is
proven by using positive systems theory and properties of
Metzler matrices (a real square matrix X is Metzler if its
off-diagonal entries are nonnegative).

Theorem 2: [123] Let G = (V, E) be a strongly connected



digraph, and assume that p(0) ̸= 0. If R0 > 1, then the
strong endemic state p⋆ is globally asymptotically stable,
with convergence being exponential locally.

Global stability of the endemic equilibrium was recently
shown under slightly stronger assumptions [126]. Consider-
ing multiple virus strains over multi-layer networks leads to
notably more complex stability conditions [78], [127].

2) SIR Model: Denoting the probability of node i being
infected by pi(t) ∈ [0, 1] and being recovered by ri(t) ∈
[0, 1], respectively at any time t, we obtain the following
differential equations governing the evolution of the pi’s and
ri’s:

ṗi = (1− pi − ri)β
∑n

j=1 wijpj − γpi,

ṙi = γpi.
(23)

For the networked SIR model to be well defined, the
states and their sum must remain in [0, 1], which is again
straightforward to show. Extensions of the SIS subpopulation
derivation to the SIR model are in [128], [129].

To analyze stability, we first consider the continuous time
model in (23). We appeal to a result by [17] which assumes
homogeneous virus spread. Recall that si(t) = 1 − pi(t) −
ri(t) for all i ∈ [n].

Theorem 3: [17] Consider the model in (23) with homo-
geneous spread, β > 0, γ > 0, W irreducible, pi(0) > 0 for
some i, and si(0) > 0 for all i ∈ [n]. For t ≥ 0, let λmax(t)
and vmax(t) be the dominant eigenvalue of the non-negative
matrix diag(s(t))W and the corresponding normalized left
eigenvector, respectively. Then, for all i ∈ [n],

i) t → si(t) is monotonically decreasing, for all t ≥ 0,
ii) the set of equilibrium points is the set of pairs (s∗,0),

for any s∗ ∈ [0, 1]n,
iii) limt→∞ pi(t) = 0,
iv) there exists t̄ such that βλmax(t) < γ for all t ≥ t̄, and

the weighted average t → vmax(t̄)
⊤x(t), for t ≥ t̄, is

monotonically and exponentially decreasing to zero.
3) SAIR Model: Model (13) can also be extended to

reflect contact network structures. Assuming heterogeneous
infection, healing, and transition rates for each of the network
nodes yields

ṡi(t) = −βisi(t)
(∑n

j=1 wij(aj(t) + pj(t))
)
+ δiri(t)

ȧi(t) = βiqsi(t)
(∑n

j=1 wij(aj(t) + pj(t))
)
− (σi + κi)ai(t)

ṗi(t) = βi(1 − q)si(t)
(∑n

j=1 wij(aj(t) + pj(t))
)
+ σiai(t) − γipi(t)

ṙi(t) = κiai(t) + γip(t) − δiri(t)
(24)

Here, si(t) and ai(t) may be the probabilities of individual
i, or the fractions of the subpopulation i, being respectively
susceptible or asymptomatic at a given time t, and pi(t)
and ri(t) are interpreted the same as in the SIR model.
The parameters are as defined for the compartmental SAIR
model. Note that si(t) = 1 − ai(t) − pi(t) − ri(t) for all
i ∈ [n], and the usual well-posedness result can be stated,
which we now provide in the most general form:

Lemma 3: Consider the model in (24) and assume for all
i, j ∈ [n], we have βi, γi, δi, σi, δi, wij ≥ 0, 0 ≤
q ≤ 1. Suppose si(0), ai(0), pi(0), ri(0) ∈ [0, 1], and si(0)+

ai(0) + pi(0) + ri(0) = 1 for all i ∈ [n]. Then, for all t ≥ 0
and i ∈ [n], we have si(t), ai(t), pi(t), ri(t) ∈ [0, 1] and
si(t) + ai(t) + pi(t) + ri(t) = 1.

We now evaluate equilibria and their stability properties
for the networked SAIR(S) models. First we consider the
case with permanent immunity, i.e., δ = 0. Given si(t) =
1 − ai(t) − pi(t) − ri(t) for all t ≥ 0, i ∈ [n], the system
can be represented in matrix form as:

ȧ(t) = [q(I −A(t)− P (t)−R(t))BW − Σ−K]a(t)
+q(I −A(t)− P (t)−R(t))BWp(t)

ṗ(t) = [(1− q)(I −A(t)− P (t)−R(t))BW +Σ]a(t)
+[(1− q)(I −A(t)− P (t)−R(t))BW − Γ]p(t)

ṙ(t) = Ka(t) + Γp(t)−∆r(t),

(25)

with a(t) = [a1(t), . . . , an(t)]
⊤, p(t) = [p1(t), . . . , pn(t)]

⊤,
r(t) = [r1(t), . . . , rn(t)]

⊤, and n × n matrices A(t) =
diag(ai(t)), P (t) = diag(pi(t)), R(t) = diag(ri(t)), B =
diag(βi), K = diag(κi), Γ = diag(γi), Σ =
diag(σi), ∆ = diag(δi), and adjacency matrix W .

Setting ȧ(t), ṗ(t), ṙ(t) to 0, we can compute the equilib-
rium state where ae = pe = 0, re = rc, where rc is any non-
negative constant vector with elements rci < 1. Linearizing
the system (25) at the equilibrium (ae, pe, re), we obtain the
3n× 3n system Jacobian matrix, Je, given by

 q(I −Rc)BW − Σ−K q(I −Rc)BW 0
(1− q)(I −Rc)BW + σ (1− q)(I −Rc)BW − Γ 0

K Γ −∆

 ,

whose analysis leads to a set of constraints on the spectrum
of the weighting matrix W . An alternative Lyapunov stability
analysis approach leverages a quadratic Lyapunov function
V = a⊤B−1a+ p⊤B−1p, for which

V̇ ≤ a⊤[qW−B−1(Σ+K)]a+p⊤[(1−q)W−b−1Γ]p+a⊤(W+B−1Σ)p.
(26)

For GAS, we require V̇ < 0 for all t ≥ 0, which after the
application of the Rayleigh quotient leads us to the following
sufficient condition for the DFE.

Theorem 4: For the system (25), the DFE (ae, pe, re) =
(0, 0, rc) is globally asymptotically stable (GAS) when[

qW 1
2
W

1
2
W (1− q)W

]
≺

[
B−1(Σ +K) − 1

2
B−1Σ

− 1
2
B−1Σ B−1Γ

]
, (27)

where ≺ denotes relative definiteness of the matrices.

The theorem provides a test that bounds the maximum eigen-
value of the q-scaled adjacency matrix W in terms of the
minimum eigenvalue of a matrix consisting of diagonal block
entries of ratios of healing and transition rates (κi, γi and σi)
to infection rates (βi); this generalizes the R0 threshold to
allow for heterogeneous infection parameters over multiple
infection compartments, in the networked SAIRS model.

Remark 5: For a slightly simpler spread process model,
e.g. a networked SIRS model, a sufficient condition for
convergence to the DFE is λmax(W ) < λmin(B

−1Γ) =
mini(γi/βi) = mini(1/R0i).



IV. HOLISTIC MODELS AND MULTI-PRONGED
INTERVENTIONS TO CONTRAST EPIDEMICS

We adopt here a holistic approach aimed at integrating
interdisciplinary perspectives into epidemiological models,
so as to be able to design optimal approaches to man-
age epidemics also in the presence of possibly conflicting
multi-objective goals, related e.g. to public health, social
and psychological well-being, economic growth. We discuss
approaches to design effective interventions to contain the
epidemic spread, with a special focus on optimal control, and
we highlight the importance of taking into account human
behaviour, which is influenced by the epidemic evolution
and at the same time affects the spread of the contagion
depending on the individual adherence to restrictions and
to vaccination, based on opinions and beliefs that evolve ac-
cording to the available information. We then illustrate multi-
scale epidemiological models that bridge the microscopic,
immunological scale dissected by in-host models in Section
II and the macroscopic, epidemiological scale captured by
the between-host models in Section III. The complexity and
relevance of enabling the design of coordinated epidemic
control across scales make multi-scale epidemiological mod-
elling a challenging and fascinating research direction [130].

A. Modelling the Effect of Containment Measures

The multifaceted types of pharmaceutical and non-
pharmaceutical interventions that can be adopted [33] to
contrast the spread of an infectious disease can be embedded
in the models in multiple ways. The most common NPI
is the quarantine of diagnosed infected individuals, which
can be modelled by including specific compartments in the
epidemic model [14], [15], [131]; if a non-negligible fraction
of infected population is undetected, or diagnosed with delay,
non-diagnosed groups are included in the models [15]. Then,
the transmission rate for contacts between a susceptible
and a non-quarantined infected is much higher than the
transmission rate for contacts between a susceptible and
a quarantined infected. Preventive quarantine of the whole
population (namely, lockdown) is the most extreme measure
in terms of physical distancing [132]. The effect of tightening
and loosening such measures can be modelled by enforcing
time-varying transmission parameters in epidemic models
[15], [41], [133]: in the models discussed in Section III,
the transmission rate β is thus replaced by a time-varying
β(t), which can also be written as β − u(t) to emphasise
the role of the control. Also demographic properties of a
given population and seasonality of some diseases lead to an
(uncontrolled) time-varying infection rate [134], [135].

Governments often introduce long-range travel bans or
local mobility restrictions that are effectively captured by
multi-patch or meta-population models, accounting for the
heterogeneity of the epidemic evolution in distinct geograph-
ical areas, or different age classes, and for the mobility of
individuals [136]–[140]. In these networked models, each
node represents the local dynamic evolution of the epidemic
phenomenon, typically through a compartmental model, and

the interconnections represent population mobility that cou-
ples contagion dynamics at a larger scale. Capturing the
hierarchical levels of the epidemic phenomenon at various
spatial scales (city, province, region, country, continent) is
crucial to plan coordinated interventions with a national or
continental perspective [52], [53]. Epidemiological models
with a spatial structure can show how mobility restrictions
influence the final size of the outbreak [141].

Mass testing, along with contact tracing that aims at
identifying and isolating infected individuals by following
the contact network of detected infected [83], [142], can also
be represented by explicitly including diagnosed and non-
diagnosed compartments in epidemic models: a higher level
of testing and tracing is then represented in terms of a larger
rate of diagnosis associated with the flow from the non-
diagnosed to the diagnosed compartments [15]. Diagnosis
is beneficial also because detected infected are less likely to
transmit the disease due to the adopted precautions.

The controllability of an epidemic highly depends on the
reproduction number [2], [143] discussed in Section III: in
homogeneously mixed communities, epidemics can be pre-
vented by keeping below 1 the effective reproduction number
R(t) = S(t)R0, which quantifies the average number of
secondary infections per infectious case in a population with
both susceptible and non-susceptible hosts, and hence the
effectiveness of the adopted interventions. If R(t) < 1, then
the incidence of new infections decreases and the spread of
contagion diminishes over time, leading to convergence to
the DFE. In the SIS and SIR case, R(t) = S(t)βγ is the
product of the size of the susceptible population S(t), the
transmission rate β, and the mean duration of the infectious
period 1/γ. NPIs aim at reducing β by limiting human-
to-human contacts that may lead to contagion. Improving
therapies by devising new drugs and treatment strategies can
reduce the duration of the infectious period, i.e. increase the
recovery rate γ. The fraction of susceptible individuals can
be reduced e.g. by vaccination [16] or by repeated waves of
infection over the years [144]. Clearly, the duration of the
acquired immunity (either due to a vaccine or to past infec-
tions) is critical, as for example in the case of the COVID-
19 pandemic, and waning immunity needs to be considered
when modelling mid/long-term epidemic evolution [58].

B. Optimal Control Theory

Several epidemiological problems, including the control
of infectious diseases such as rabies [54] and tuberculosis
[145], benefit from optimal control approaches, which, to-
gether with a qualitative analysis of the epidemic model, can
provide useful insights to manage large-scale outbreaks and
reduce the epidemic burden [34]–[50].

The dynamic optimisation techniques of the calculus of
variations and of optimal control theory provide methods
for solving problems in continuous time and identifying
a suitable strategy to control the system and achieve a
desired outcome, expressed by the minimisation of a cost
function subject to constraints. The corresponding solution
is a continuous function (or a set of functions) indicating the



optimal path to be followed by the variables through time or
space. In a standard optimal control formulation

min
y,u

J(y, u) =

∫ T

0

ℓ(y(t), u(t), t)dt+ g(y(T ))

ẏ = f(t, y(t), u(t)) for t ∈ (0, T )

y(0) = y0 (28)
u ∈ Uad

with running cost ℓ(y(t), u(t), t) and terminal cost g(y(T )),
applied to epidemic control, vector y(t) stacks the population
fractions in the different compartments at a given time t, u(t)
is the control function, which can be e.g. the vaccination rate
or the modified infection rate, while the differential equation
ẏ = f(t, y(t), u(t)) is the epidemic model, which could be
e.g. SIR or SEIR, or more complex. The initial condition
is y0 and the control action u(t) can be chosen from the
admissible set of controls Uad, where suitable constraints on
the control action can express e.g. a limitation on the number
of vaccine doses provided to a hospital per day or on the
quantity of pharmacological treatment provided to a patient.
Finite horizon problems are mostly considered: the epidemic
situation is strongly time-varying and needs to be re-assessed
periodically. Running costs are typically quadratic in both
state and control, or linear in the state and quadratic in the
control [50], but can also be linear in both state and control,
or quadratic in the state and linear in the control [41].

The existence of at least one control function that solves
(28) depends on the chosen model and constraints, and
on the functional space where the control is sought [146],
[147]. Once existence is guaranteed, Pontryagin’s maxi-
mum principle yields a set of necessary conditions that
characterise the optimal solutions [148] and become also
sufficient under certain convexity conditions on the objective
and constraint functions [149]. To derive this optimality
system, the Hamilton-Pontryagin function H(t, y, u, p) =
p · f(t, y, u) + ℓ(t, y, u) has to be defined, where p is the
unique solution to the corresponding adjoint system [150].

We now illustrate some epidemiological optimal control
problems; see [50] for further models and information.

1) Optimal control in SIR model with vaccination: Con-
sider the SIRV model with the vaccinated compartment V

Ṡ(t) = b− βS(t)I(t)− au(t)S(t)− µS(t),

İ(t) = β[S(t) + ϵV (t)]I(t)− γI(t)− µI(t),

Ṙ(t) = γI(t)− µR(t),

V̇ (t) = au(t)S(t)− βϵV (t)I(t)− µV (t),

where b is the birth rate, µ is the basal death rate, β and γ
are the transmission and healing rates, ϵ ∈ [0, 1) expresses
the reduced risk of contagion for vaccinated people, u(t) is
the controlled vaccination rate, with 0 ≤ u(t) ≤ 1, and the
initial conditions are S(0) > 0 and I(0), R(0), V (0) ≥ 0. In
the cost functional

J(y, u) =

∫ T

0

(
α1I(t) +

α2

2
u2(t)

)
dt, α1 > 0,

the term α1I(t) represents the cost of infections (related
to the burden on the healthcare system, hospital beds, ICU
beds, deaths), while the term α2

2 u2(t) represents the cost of
the vaccination program at time t (vaccine doses, logistics,
implementation costs). When u(t) is close to 1, then the
vaccination campaign proceeds at full speed, but with high
implementation costs.

2) Optimal control in SEIR model with quarantine and
hospitalisation: Consider the SEQIHR model with quaran-
tined compartment Q and hospitalised compartment H

Ṡ(t) = b+ ρQ(t)− βS(t)[I(t) + ϵQQ(t) + ϵHH(t)]− µS(t)

Ė(t) = βS(t)[I(t) + ϵQQ(t) + ϵHH(t)]− γE(t)− µE(t)

Q̇(t) = u1(t)κγE(t)− ηQ(t)− ρQ(t)− µQ(t)

İ(t) = [1− u1(t)κ]γE(t)− αI(t)− µI(t)

Ḣ(t) = u2(t)ναI(t) + ηQ(t)− σH(t)− µH(t)

Ṙ(t) = [1− u2(t)ν]αI(t) + σH(t)− µR(t)

(the reader is referred to [50] for more details on the model
parameters), with control functions ui(t), 0 ≤ ui(t) ≤ 1, for
i = 1, 2, and a cost functional given by

J(y, u1, u2) =

∫ T

0

(
α1Q(t) + α2I(t) + α3H(t) +

α4

2
u2
1 +

α5

2
u2
2

)
dt,

with αi > 0. The control function u1(t) represents the
fraction of asymptomatic infected that are identified and then
quarantined, while u2(t) represents the fraction of symp-
tomatic infected that are detected and hence hospitalised.

As shown by the above examples, epidemiological control
problems are often characterised by nonlinear dynamics and
control constraints. Thus, computing the solution requires
numerical methods able to solve the above optimality sys-
tem, also called Hamiltonian system: a two-point boundary
value problem, plus a minimum condition of the Hamilton-
Pontryagin function [150]. The most popular algorithm used
in epidemiological control is the forward-backward-sweep
(FBS) method [46], where the optimal solution is obtained
using a forward-backward iterative method with a Runge-
Kutta fourth-order solver. However, the convergence of the
method depends on the initialisation of the control and on
the choices of the parameters of the model [46]. Heuristic
optimisation algorithms, such as the simulated annealing
method, are employed when FBS fails to converge [151].

We conclude with some examples of the application of
optimal control theory in epidemic control: [152] describes
the dynamic optimal vaccination strategy for an SIR epi-
demic model and obtains the optimal solution using the
FBS algorithm; [153] solves the optimal control problem
of minimising the total level of infection when the control
actions are bounded due to scarce resources; [55] discusses
optimal vaccination strategies for horizontally and vertically
transmitted infectious diseases; [154] leverages the Pontrya-
gin maximum principle to determine an optimal Bang-Bang
strategy that minimises the total number of infection cases
during the spread of SIR epidemics in contact networks.
An example of the optimal control of the present COVID-
19 pandemic is proposed in [11], [155], where the authors



design an optimal strategy aimed at minimising the number
of infected cases while reducing the cost of NPIs. Of partic-
ular relevance is model predictive control, which can ensure
both optimality and robustness [57], [60] when contrasting
outbreaks, in spite of possible model inaccuracy and strong
parameter uncertainties.

C. Behavioural Modelling

Classical epidemiological models represent individuals as
interacting particles following the empirical mass-action law
(also employed in chemical reaction networks), resulting in
a well-mixed population. However, people have specific con-
tact patterns based on their habits and regular interactions;
moreover, the individual behaviour during an epidemic is the
result of a balance between usual habits and the information
achieved on the epidemic evolution at a precise time. Also,
the willingness to vaccinate results from a trade-off between
the fear of contagion and the fear of vaccine-induced side
effects: hence, the overall vaccine coverage is the outcome of
individual decisions based on publicly available information
on the current state of the disease and on possible side
effects. Behavioural change models have been developed
[63], [64], [66] to embed opinion-driven human actions as a
key element that drives the spread of a disease.

The first work that explicitly includes a phenomenological
behavioural response into the Kermack-McKendrick epi-
demic model is probably [84]. Further, the analysis of data
regarding the spread of a cholera epidemic in Southern Italy
in 1973 suggested the introduction of a nonlinear force
of infection – in the term βSI , the linear I is replaced
by a nonlinear function of I – that explains the emerging
behaviour [156]. Typical expressions of nonlinear forces of
infection are the so-called Holling type functional responses
[84]

f(I) =
αIp

1 + βIq
, p, q > 0. (29)

The cases p = q = 1 and p = q = 2 include saturation
phenomena for large numbers of infected. Further, the choice
p = 1, q = 2 models psychological effects: when the number
of infected individuals is very large, the force of infection f
decreases as I increases [84].

This concept is further elaborated in [157], which intro-
duces a nonlinear dependence on the fraction of susceptible
and infected individuals in AIDS models. [158] adds a delay
in the force of infection.

The idea of a nonlinear force of infection motivated the
development of the so-called behavioural epidemiology [61]–
[66], which also studies the impact of human decisions on
vaccine uptake under voluntary vaccination. When vacci-
nation is voluntary, and not mandatory, records of disease
control, due to a past vaccine-induced herd immunity, can
favour the spread of information-dependent behaviour [65].
Moreover, in periods of low prevalence, individuals may
encourage information and rumours on vaccine side-effects.
As a result, their propensity to vaccinate might decline.
On the contrary, during severe outbreaks the attitude to
vaccinate can increase [151] due to the increased fear of

being infected. In [63], individual decisions on vaccination
are assumed to rely not only on the present situation, but also
on past information about the spread of the disease, which
is mathematically described by the information index

M(t) =

∫ t

−∞
g(y(s))K(t− s)ds, (30)

where K is the delaying kernel encoding the relevance of
past information for the population and the function g, rep-
resenting the information that individuals consider relevant
when making their choices, depends on the variable y, which
is the system state, e.g. y = (S, I,R)⊤ in a SIR model.
The index M encodes information about the current and past
states of the disease. It is a time-delayed formulation since
information takes time to reach the population. Specifically,
the kernel is assumed to belong to the Erlangian family:
K(t) = Erln,a(t) =

an

(n−1)! t
n−1e−at, a, t ∈ R+, n ∈ N.

Recent examples of the use of behavioural modelling of
infectious diseases apply the information index to simple
models containing distinctive relevant features of a coron-
avirus disease [61] and take into account vaccine hesitancy
and refusal in the context of the COVID-19 pandemic,
showing how information-related parameters affect the dis-
ease dynamics [62]. Large information coverage and small
memory characteristic time are needed to have the best
results in terms of vaccine coverage. Also, [151] applies
optimal control on a behavioural model of the SIR type with
voluntary vaccination and public health system interventions
to determine the vaccination shape in childhood diseases.

D. Bridging Scales: Multi-Scale Epidemiological Models

The onset and the spread of infectious diseases are phe-
nomena that inherently involve different scales, ranging from
in-host infection dynamics at the patient level to between-
host contagion dynamics at the population level. Therefore,
the most complex, all-encompassing models of epidemic
phenomena are multi-scale models [85]–[97], [100], [159]–
[162], which capture both in-host and between-host dynam-
ics with a nested approach [93], [159], [163] and study how
the former affects the latter [90] by considering the interplay
between the immunological mechanisms in the host and the
epidemiological mechanisms of contagion.

The coupling between infection dynamics and contagion
dynamics is due to the fact that the infectiousness of an
individual host varies throughout the course of the infection,
due to changes in pathogen loads and in the behavioural
responses to infection [96], [98], [163], [164]. Multi-scale
models use an in-host model, whose parameters are chosen
based on patient data, to determine the parameters of a
population-scale model with time-dependent infectiousness
[100], [163], by leveraging an assumed relationship between
the infection level within a host and the rate at which the host
transmits the pathogen to susceptible individuals [96], [98],
[100], [163]. Not only patient-level infection dynamics affect
the population-scale transmission of contagion: a feedback
from the population to the patient level may be present e.g.
due to multiple co-circulating pathogen strains [96], [163].



Multi-scale epidemiological modelling studies are rela-
tively numerous, but only few of them comprehensively use
real data, partly because of the lack of suitable datasets
and partly because of the huge complexity and challeng-
ing implementation of such models [96]–[98]. Streamlining
these models and making them amenable to tackle real-time
epidemics in combination with actual epidemiological data is
fundamental so as to enable the design of coordinated control
interventions that concurrently act both at the individual level
and at the population level, thus bridging the inherent scales
of an epidemic not only from an understanding standpoint,
but also from a control perspective.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented models and control approaches to
contrast the onset and the spread of infectious diseases
at all scales, ranging from in-host infection dynamics to
between-host contagion dynamics described adopting both
compartmental and networked models.

Open problems in the analysis of spread processes evolv-
ing over networks include global stability analysis of the
endemic equilibrium for the discrete-time networked SIS
and SIRS models, and a complete analysis of the stability
of the endemic equilibria for the continuous time SAIRS
networked and compartment models. Further, exploring the
case of parameter estimation for networked epidemiological
models in the presence of noise, with provable bounds, is
an open problem. Efforts to explore the development of
complete, closed-loop modelling and mitigation frameworks
from testing data, through to control implementations have
only recently been considered [165].

A broader overview including recently developed systems-
and-control methodologies for present and future epidemics,
with a strong emphasis on data-driven approaches and on
issues related to monitoring and data collection, modelling,
parameter estimation and identification, as well as control, is
provided in [33] along with open problems. For a discussion
of challenges and promising directions in epidemic control,
the reader is referred to [130].

Here, we point out that a particularly fascinating direction
for future interdisciplinary research is the development of
holistic models that seamlessly integrate multiple resolution
scales, from the immunological to the epidemiological level,
include the effect of human behaviour and describe the
multi-faceted impact of epidemics on healthcare along with
socio-economical aspects, so as to develop all-encompassing
control approaches that are coordinated across scales.
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