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Abstract—We consider a class of epidemiological models
with an arbitrary number of infected compartments. We show
that the logarithmic derivatives of the infected states converge
to a consensus; this property rigorously explains the feature
empirically observed in real epidemic data: the logarithms of
the state variables associated with infected categories tend to
behave as “parallel lines”. We introduce and characterise the
class of contagion functions, i.e., linear co-positive functions
of the state variables that decrease (resp. increase) when
the reproduction number is smaller (resp. larger) than 1.
Finally, we analyse the generalised epidemiological model by
considering the susceptible state variable along with a variable
that aggregates all the infected compartments: this leads
to an auxiliary planar system, governed by two differential
inclusions, which has the same structure as the two-dimensional
SI model and whose coefficients are functions of the original
variables. We prove that well known properties of the classical
SI model still hold in this generalised case.

I. INTRODUCTION

We consider a general class of epidemiological models
including an arbitrary number of infected compartments that
are fed back by the dynamics of the susceptible population:
each model can be described by a linear positive system
along with a destabilising feedback loop through the flow
of susceptible individuals, leading eventually to a positive
bilinear system. The considered class of systems includes
mean-field compartmental models of the SIR (Susceptible-
Infected-Recovered) type, describing the spread of an infec-
tious disease in a large, well-mixed population, see e.g. [2],
[3], [9], [11], [15], [18], [19], [22], [24]. SIR-like systems
were recently used to model the COVID-19 pandemic [12],
[13], [17], [23], [27] and allow for the design of optimal
control strategies to mitigate the spread of the infection [1],
[4], [8], [5], [6], [16], [22], [20], [21], [25], [26], [28].

The particular structure of the considered class of models
allows us to leverage the theory of positive linear systems,
see e.g. [7], to identify relevant properties of these nonlinear
(bilinear) systems. In particular:
• We show that the reproduction number R0, fundamen-

tal for the stability condition SR0 < 1, where S is the
susceptible population, corresponds to the H∞ norm of
the open-loop linear positive system.
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• We prove that relevant cost functions for the nonlin-
ear system can be computed just based on the linear
subsystem.

• We analyse the logarithmic dynamics of the system.
Empirical data (we report e.g. the Italian COVID-19
pandemic data in 2020) show that the infected state
variables, represented in a logarithmic scale, evolve
as “parallel curves”. We rigorously explain this ob-
servation by proving that the logarithm derivative vec-
tor obeys an ordinary-differential-equation system that
asymptotically reaches a consensus.

• We define a contagion function as a linear co-positive
function of all state variables that decreases (respec-
tively, increases) when the reproduction number is
smaller (respectively, larger) than 1. We provide a nec-
essary and sufficient condition for a linear co-positive
function to be a contagion function.

• By introducing an aggregate variable of all infected
compartments, we derive an auxiliary planar system
having the same structure as the standard two di-
mensional SI (Susceptible-Infected) model. The two
coefficients of this system are not constant, as in the SI
model, but are functions of the original state variables.
We prove that well known properties of the classical SI
model still hold in our generalised setting.

Notation: Throughout the paper we set 1> = [1 1 . . . 1].
For two vectors v and u, u � v and u � v (u ≤ v and
u ≥ v) respectively correspond to uk < vk and uk > vk
(uk ≤ vk and uk ≥ vk for all k). The kth vector of the
canonical basis is denoted as ek. For a vector v, D(v) =
diag(v) denotes the diagonal matrix with vi on the diagonal.

II. GENERAL PROPERTIES OF THE MODEL

We consider the class of models represented by equations:

ẋ(t) = Fx(t) + bu(t) (1)
y(t) = c>x(t) (2)
u(t) = S(t)y(t) (3)
Ṡ(t) = −S(t)y(t) (4)
x(0) = x0 (5)
S(0) = S0 (6)

where x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R. The variable S is the
susceptible population fraction and xi, i = 1, 2, . . . , n, are
the population fractions in different infected compartments.



Remark 1. Matrix F is characterised by parameters that
represent the transition rates among the various infected
compartments x. Vector c includes the contagion parame-
ters, which depend on the non-pharmaceutical interventions
(NPIs) adopted to contrast the spread of the infection.

The parameters in F and c are assumed constant. We
consider the following standing assumptions.

Assumption 1. In system (1)-(4),
• both vectors b and c are nonnegative;
• matrix F is Metzler and Hurwitz.

System (1)-(4) is written in feedback form: it includes
the open-loop linear positive system (1)-(2) and a nonlinear
dynamic feedback given by (3)-(4), with u = −Ṡ ≥ 0.
Closing the loop yields the equation

ẋ(t) = [F + bS(t)c>]x(t). (7)

The susceptible variable S > 0 has a destabilising effect.
The Frobenius-Perron eigenvalue µ(S̄) of F + bS̄c> is a
monotonically increasing function of S̄. Being F Hurwitz
and Metzler, the smallest value S̄∗ of S̄ for which the Met-
zler matrix F + bS̄c> is no longer Hurwitz is characterised
by the equation det(F + bS̄c>) = 0. Its solution,

S̄∗ = − 1

c>F−1b
,

is the inverse of the DC-gain of the transfer function G(s) :=
c>(sI−F )−1b of the system with input u and output y. For
positive systems, G(0) is the H∞ (as well as the induced
L1 and L∞) input-output norm of such system. Therefore
we are well advised to define the parametric reproduction
number R0 as the H∞ norm of the positive system from u
to y with constant parameters, namely

R0 = −c>F−1b. (8)

Being the open-loop system positive, the H∞ norm coin-
cides with the induced L1 and L∞ norms. For distributed
epidemiological models including a contact network, R0 is
a matrix, see e.g. [27]. Expression (8), proposed for the
SIDARTHE model [12], is a generalisation of several well
known expressions of the reproduction number; see e.g. [9,
Section 9.5]. This number has the well known property
that the stability of any equilibrium of system (7) with
susceptible population S̄ is equivalent to the condition

R0S̄ < 1.

Among the fundamental properties of the reproduction num-
ber, we mention the following [2], [3], [5].

Proposition 1. For any initial state (x0, S0), it holds that

lim
t→∞

x(t) = 0 and lim
t→∞

S(t) = S̄,

where S̄ solves

log
S0

S̄
−R0(S0 − S̄) = −c>F−1x0 > 0. (9)

Consider now the cost

J(x0, S0) =

∫ ∞
0

l>x(t)dt− γ
∫ ∞
0

S(t)c>x(t)dt, (10)

where l ≥ 0, γ > 0. The positive term l>x represents ca-
sualties or intensive-care-unit occupancy, while the negative
integral coincides with S0 − S̄.

Proposition 2. The cost (10) can be written as

J(x0, S0) = q>x0 + (q>b− γ)(S0 − S̄), (11)

where q = −l>F−1 ≥ 0.

Proof: Take V (x, S) = q>x + q>bS, so V̇ (x, S) =
q>(Fx − bṠ) + q>bṠ = −l>x. The result follows after
integrating both sides from 0 to ∞ and recalling that Ṡ =
−Sc>x and, from Proposition 1, x→ 0 and S → S̄.

We can observe the following.
• Equation (9) enables to predict the final value S̄

of S(t) given the initial states x0 and S0. Function
g(Ŝ,R0) = log S0

Ŝ
− R0(S0 − Ŝ) is positive and

decreasing in the interval Ŝ ∈ (0, 1/R0) and is zero
for Ŝ = S0. Since ω0 := −c>F−1x0 > 0, there is a
unique intersection, easy to compute, for S̄ < 1/R0. A
graphical interpretation is in Figure 1.

• The value of S̄ < 1
R0

satisfying g(S̄,R0) = ω0 can be
found as

S̄ =
log(δ)

R0
, (12)

where κ = R0S0e
−R0S0−ω0 and δ ∈ (1, e1+ω0) is the

unique solution of κδ = log(δ).
• From equation (12) one can parametrise the set S of

values S̄ obtainable with a certain choice of R0 ∈
{R−0 ,R

+
0 } (recall Proposition 1). If Ŝ ∈ S is a desired

long-term target fraction of susceptible population, one
can impose such a value by introducing NPIs that yield

R0 =
log(S0/Ŝ) + ω0

S0 − Ŝ
.

• Proposition 2 is related to the induced L1 norm of the
system with input u and output y. Assuming x0 = 0,
standard analysis of positive systems, see [7], yields

sup
u∈L1,u 6=0

∫∞
0
l>x(t)dt∫∞

0
u(t)dt

= q>b.

Therefore, we have that∫∞
0
l>x(t)dt∫∞

0
S(t)c>x(t)dt

= q>b+
q>x0
S0 − S̄

,

with S0 − S̄ ≥ 0 increasing with R0.

III. LOGARITHMIC DYNAMICS

Systems of the form (1)-(4) exhibit a peculiar behaviour:
all the variables xi, after an initial transient, tend to be
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Figure 1: Function g(Ŝ, 0.9) associated with R0 = −c(v̄)>F (p̄)−1b =
{0.5, 1, 1.5, 2.5} from top to bottom (red lines) and corresponding values
(blue lines) of ω0 = −c(v̄)>F (p̄)−1x0 = {0.1, 0.2, 0.3, 0.5}. The black
dots mark the values of S̄ obtained by solving (9), or equivalently (12).

proportional to each other, hence the plot of their logarithms
tend to be “parallel curves”. Precisely, we prove that

lim
t→∞

ẋk(t)

xk(t)
= λ̄, for all k,

namely to a common value. Then we argue that this be-
haviour is true after a transient for slowly varying pandemics.

The epidemic dynamics is captured by the time behaviour
of the log-derivative functions of the infected variables:

λ = D(x)−1ẋ. (13)

where D(v) = diag(v). Given λ(t), the vector of infected
variables x(t) satisfies

x(t) = e
∫ t
0
λ(τ)dτx0. (14)

Theorem 1. The log-derivative vector λ in (13) satisfies the
differential equation

λ̇ = −L(x, S)λ+D(x)−1bṠc>D(x)1, (15)

where

L(x, S) = D(x)−1
[
D
(
(F + bSc>)x

)
− (F + bSc>)D(x)

]
is a Laplacian matrix: it has nonpositive off-diagonal entries
and L(x, S)1 = 0. The log-derivative vector λ reaches a
consensus, i.e,

lim
t→∞

λ(t) = λ̄1,

where λ̄ < 0 is the dominant (Perron-Frobenius) eigenvalue
of the (Metzler and Hurwitz) matrix F + bS̄c>. Moreover,

lim
t→∞

xi(t)

xj(t)
=
z̄i
z̄j
,

where z̄ is the right (Perron-Frobenius) eigenvector of the
(Metzler and Hurwitz) matrix F + bS̄c>.

Proof: Consider the linear system ẋ = (F + bS̄c>)x
where S̄ is the equilibrium value of S computed via equation
(9). Matrix F + bS̄c> is Metzler, Hurwitz and irreducible.
Hence, it admits a Perron-Frobenius eigenvalue λ̄ < 0
associated with a strictly positive eigenvector, say z̄, i.e.
(F +bS̄c>)z̄ = λ̄z̄. Taking z(t) = exp(λ̄(t))x(t), it follows
that z(t) � 0 for any x0 � 0 and z(t) → z̄ for t → ∞.
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Figure 2: Real data curves (in logarithmic scale) showing the evolution of
the COVID-19 pandemic in Italy from February to December 2020. The
curves of pauci-symptomatic infected (red), hospitalised infected (blue),
infected in intensive care units (purple) are essentially parallel. The integral
variables of recovered (green) and deceased (black) are also shown.

Hence, all ratios xi/xj are bounded and converge to z̄i/z̄j .
Now, consider equation (15) with S = S̄, x = 0 and
xi/xj = z̄i/z̄j . We have λ̇ = −L(z̄, S̄)λ with L(z̄, S̄) =
D(z̄)−1

[
D
(
(F + bS̄c>)z̄

)
− (F + bSc>)D(z̄)

]
, so that

limt→∞ λ(t) = λ̄1.
In the proof of Theorem 1, we essentially exploit the

fact that, for Ṡ = 0, limt→∞ λ(t) = λ̄1. The result
is asymptotic; however, under controlled pandemic events,
S(t) varies slowly with respect to x(t).

In realistic situations, Ṡ is expected to be very small.
Considering e.g. the Italian population, a 0.2% daily varia-
tion of S means more than 105 new infected individuals per
day: during the COVID-19 pandemic in 2020, in the absence
of a vaccine, this would have led to more than 1000 new
intensive-care-unit hospitalisations per day, unsustainable for
any healthcare system. Large variations of S in a short time
can reasonably occur only as a consequence of vaccination.

If we assume Ṡ ≈ 0, even in the short term we have that
d
dt log(x(t)) ≈ λ̄1. Hence, “locally” we can write

log(x(t+ δt)) ≈ log(x(t)) + 1λ̄δt (16)

meaning that logarithmic curves tend to align and become
parallel, over a short horizon.

The above predictions are well confirmed by the real data
shown in Fig. 2, which illustrate the evolution of the COVID-
19 pandemic in Italy from February to December 2020. Even
though the epidemic parameters have substantially changed
due to different NPIs adopted over time, quite interestingly,
the curves associated with the infected categories remain
essentially parallel throughout the whole period.

A simple additional explanation is provided by the fol-
lowing intuitive reasoning. NPIs modify c, but leave F
essentially unchanged. As long as S varies slowly, it can be
assumed approximately constant over a short horizon, so that
ẋ ' (F +bS̄c>)x. Then, x(t) tends to align to the dominant
Frobenius eigenvector x̄, x(t) ≈ x̄eλt, whose logarithm has
parallel lines as graphs as in (16).



A. Estimating λ̄

The common Lyapunov exponent λ̄ is the Perron-
Frobenius eigenvalue of F + bS̄c>, which is a continuous
function of the parameters, decreasing with S̄. Note that

0 = det(λI − F − bS̄c>)

= det(λI − F )det(I − bS̄c>(λ̄I − F )−1)

= det(λI − F )(1− S̄G(λ)),

where G(λ) = c>(λ̄I −F )−1b is the transfer function from
u to y evaluated in λ̄. Therefore λ̄ < 0 is such that

G(λ̄)S̄ = 1, (17)

with G(0)S̄ = R0S̄ < 1. The formula G(λ)S̄ = 1 yields
any eigenvalue of F + bS̄c> that is not an eigenvalue of F .
Being F Metzler and Hurwitz,

−ρs(F ) < λ̄ < −ρs(F + bS̄c>) < 0, (18)

where ρs indicates the spectral abscissa.

B. Triangular epidemiological models

When F is a triangular compartmental matrix and b =
e1, the exponent λ̄ has a closed form expression in terms
of z̄, a right Frobenius eigenvector of F + bS̄c>. Define
a state-dependent reproduction function associated with the
stationary point (i.e. ẋ1 = 0) of the main infected stage x1:
at any time point, one can write

λ1 = F11(1− R̃0S), R̃0 = − 1

F11
c>

x

x1
. (19)

Then λ1 = 0 when R̃t = R̃0S = 1. Notice that R̃0 depends
on the ratios xi/xj and is such that, when R̃0 = 1/S, the
infected compartment x1 has zero derivative. We have

lim
t→∞

R̃0 = − 1

F11z̄1
c>z̄, λ̄ = F11 + c>S̄

z̄

z̄1
,

to be compared with R0 = −c>F−1b. If n = 1 (as for the
SIR model) then

R0 = R̃0(x) = − c1
F11

.

Example 1. Consider a SIR-like model of the form (1)-(4)
with

F (α, β, γ, δ) =

−α 0 0
α −(β + γ) 0
0 β −δ

 ,
b =

[
1 0 0

]>
and c>(ϕ, µ, ν) =

[
ϕ µ ν

]
.

The contagion parameters are ϕ, µ, ν, while α, β, γ, δ
are the flow parameters. Let α = 0.3, β = 0.1, γ = 0.1,
δ = 0.2, ϕ = 0.5, µ = 0.2, ν = 0.1, so that the basic
reproduction number is R0 = 2.9167. Take x1(0) = 0.01,
S0 = 0.99, x2(0) = x3(0) = 0. Figure 3, top left, shows the
time evolution of the state variables S and x, with x → 0
and S → S̄ = 0.0648. Figure 3, top right, shows the time
evolution of variable x1 and of the reproduction functionsRt
and R̃t. As expected, the peak of x1 is achieved when R̃t =

1. Figure 3 also shows the time evolution of the ratios xi/xj
(bottom left) and of the logarithmic functions λi, achieving
consensus with λ̄ = −0.1422 (bottom right).

Remark 2. Assuming that the variation of susceptible peo-
ple S is mainly due to vaccination leads to the system

ẋ(t) = [Fx(t) + S̄(t)bc>]x(t),

where S̄(t) is the residual portion of non-vaccinated people.
For Ṡ small, all the previous considerations hold.

IV. THE CONTAGION FUNCTION

We define a contagion function as follows.

Definition 1. Z(x) = z>x is a contagion function if, for
all x � 0, it decreases if S < 1/R0 and it increases if
S > 1/R0.

We have the following characterisation.

Proposition 3. Z(x) = z>x is a contagion function if and
only if z is aligned with c>F−1: z> = −σc>F−1, for some
σ > 0.

Proof: Necessity: for S = 1/R0 we must have

Ż(x) = z>ẋ =
[
z>F + Sz>bc>

]
x ≡ 0,

or, equivalently, z>F−1 + Sz>bc> = 0. Since Sz>b is a
scalar, z>F must be aligned with c>.
Sufficiency: the derivative is

Ż(x) = −σc>F−1ẋ = σc>x+ σc>F−1bc>x

= σ
[
1 + c>F−1b

]
c>x = σ [1− SR0] c>x.

Hence, decreasing or increasing Z corresponds to S < 1/R0

or S > 1/R0 respectively.

Remark 3. Since Z(b) = R0, we can say that Z(x)
increases (decreases) iff Z(b) > 1 (Z(b) < 1).

Example 2. The contagion function for Example 1 is defined
by vector

z> =
[
φ
α

µ
β+γ

βν
(β+γ)δ

]
.

The contagion function can be leveraged to guide the
implementation of open-close control strategies [10]. We can
rewrite the susceptible equation as

Ṡ(t) = −S(t)κ(t)c>0 x(t), (20)

where c(t) = κ(t)c0 and κ(t) ∈ [κ−, κ+] can be modified by
tightening or loosening the imposed restrictions. Although
varying κ changes the value of c, we can consider the
constant c0 and the contagion function

Z(x) = −c>0 F−1x.

Given upper and lower bounds 0 < ζ− < ζ+ for Z(x), we
can apply the following hysteresis strategy:

if Z(x(t)) > ζ+, switch to κ = κ− (close)
if Z(x(t)) < ζ−, switch to κ = κ+ (open)

else κ(t) = κ(t−) (do not switch),
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Figure 3: Left: time evolution of the susceptible population S (black), and infected populations x1 (red), x2 (blue), x3 (green). Middle-left: time evolution
of x1 (red), Rt (blue) and R̃t (black). Middle-right: time evolution of the ratios xi/xj . Right: time evolution of the log-derivative functions.

which ensures that the region

ζ− ≤ Z(x) ≤ ζ+

is attractive and positively invariant.

V. REDUCTION TO SI

By considering a state transformation, we can rewrite the
general model (1)-(4) as only two scalar equations. Let

I :=
w>x

w>b

where w � 0 and w>F � 0. Taking the derivative yields

Ṡ = −αSI (21)
İ = αSI − βI (22)

β = −w
>Fx

w>x
(23)

α = w>b
c>x

w>x
(24)

System (21)-(22) is not formally an SI model, since param-
eters α and β depend on x = (I − bw>

w>b
)x + bI . Still, one

can define a reproduction number (function) Rw = α/β
associated with w such that İ = 0 (I has a peak) when
RwS = 1.

Before providing interesting exemplifications for w, we
provide upper and lower bounds for α and β.

Proposition 4. Denoting by mini[v] and maxi[v] the mini-
mal and maximal components of v, it holds that

min
i

[−w>F ]i
[w>]i

≤ β ≤ max
i

[−w>F ]i
[w>]i

(25)

w>bmin
i

[c>]i
[w>]i

≤ α ≤ w>bmax
i

[c>]i
[w>]i

(26)

Proof: To prove the proposition, for the maximum case,
it is sufficient to show that, given two vectors p> � 0 and
q> � 0, it holds that µ∗ .

= max p>x
q>x

= maxi
pi
qi
. First, we

note that µ∗ is not smaller than maxi
pi
qi

because this value
is achieved.

We prove that µ∗ is not greater. Scaling x as ωx does not
change the function: p>x/q>x = p>(ωx)/q>(ωx). Then,
we can constrain the optimisation problem in the cube

µ∗ = sup
0<xi≤1

p>x

q>x
.

For all x, p>x ≤ µ∗q>x or φ(x, µ∗)
.
= p>x − µ∗q>x ≤ 0

in the unit cube. But this means that φ(x, µ∗) ≤ 0 at all the
vertices of the unit cube [14]. Then, in particular, ek is a
vertex and φ(ek, µ

∗) ≤ 0. This means p>ek−µ∗q>ek ≤ 0,
hence p>ek

q>ek
=

p>k
q>k
≤ µ∗. So the maximum µ∗ is not smaller

than maxi
pi
qi

.
An analogous proof holds for the minimum case.
We consider some peculiar cases.
1) Constant α: Assume that Ṡ is given by equation (20),

Ṡ = −κc>0 xS. Then,

I =
c̄>x

c̄>b
, β = − c̄

>Fx

c̄>x
, α = κc̄>0 b,

so α is independent of x: α ∈ [αmin, αmax], with αmax =
κmaxc̄

>b, αmin = κminc
>b.

2) Constant β: Let µ be the left Frobenius eigenvector
of F̄ = F , i.e., w>F̄ = µw>. Then,

I =
w>x

w>b
, β = −µ, α = w>b

c>x

w>x
,

so β is independent of x.
3) Triangular case: Assume that F is triangular and b =

e1. By taking w = e1, we have

I = x1, β = −F11, α =
c>x

x1
,

so β is independent of x. Note that αβ = R̃0, defined in (19).
4) Constant α/β = uR̄0 = −uc̄>F̄−1b: In this case,

I =
−c̄>F̄−1x
R̄0

, β = − c̄>x

c̄>F̄−1x
, α = βR0 = uβR̄0.

Since the choice of I is associated with the contagion
function, the ratio α/β is independent of x. Interestingly,
this case reflects open-close strategies for NPIs [10] where
the basic reproduction number R0 can switch from a min-
imum value Rmin = −uminc̄>F−1b to a maximum value
Rmax = −umaxc̄>F−1b. Letting λ := İ/I = −β + αS =
−β(1−R0S), from the definition of λ̄ (Theorem 1) we have

lim
t→∞

β = − λ̄

1−R0S̄
, lim

t→∞
α = − λ̄R0

1−R0S̄
. (27)

for any constant R0.
Consider now the following potential function

V = I+S− 1

R0
log(S) = − Ṡ

αS
+S− 1

R0
log(S) > 0 (28)



that is constant along the system trajectories if R0 is
constant. The trajectories in the plane (S, I) satisfy

I − I0 = −S + S0 +
1

R0
log(S/S0). (29)

Interestingly, this is the same formula that is well known for
the standard SI model [9, Section 9.2].

Example 3. In the SIDARTHE model [12], the state variable
x includes 5 compartments: infected, diagnosed, asymp-
tomatic, recognised and threatened. The global infected
compartment is chosen as in Section V, case 3. The initial
condition is x0 = 0.01e1, S0 = 0.99. Figure 4 shows the
evolution of S and I for various values of R0, ranging from
1.07 to 3.30. It can be verified that the final value of β
matches the value in (27). Values R0 < 1 are not considered
since the variation of S with respect to S0 is negligible in
such cases.
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Figure 4: Trajectories in the (S, I) plane for various values of R0 for the
SIDARTHE model [12].

VI. CONCLUSIONS

We have analysed class of generalised epidemiological
systems, characterised by a linear compartmental model with
a positive feedback due to the dynamics of the susceptible
population. We have provided a theoretical justification for
the empirically observed “parallel” behaviour of the com-
partmental infected variables represented in the logarithmic
scale. Then, we have introduced some properly chosen
functions of the state variables for aggregate analysis. These
include the contagion function, whose decreasing/increasing
behaviour is associated with Rt = R0S being smaller/larger
than 1, and the aggregate infected variable, which enables a
planar analysis.
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