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Abstract—We consider a class of epidemiological models in
which a compartmental linear system, including various cate-
gories of infected individuals (e.g. asymptomatic, symptomatic,
quarantined), is fed back by a positive feedback, representing
contagion. The positive feedback gain decreases (in a sort of
negative feedback) as the epidemic evolves, due to the decrease
in the number of susceptible individuals. We first propose
a convergence result based on a special copositive Lyapunov
function. Then, we address a major problem for this class of
systems: the deep uncertainty affecting parameter values. We
face the problem adopting techniques from optimal and robust
control theory to assess the sensitivity of the model. For this
class of systems, the optimal control solution has a peculiar
decoupling property that no shooting procedure is required. Fi-
nally, we exploit the obtained bounds to assess the effectiveness
of possible epidemic control strategies, including intermittent
restrictions adopted during the COVID-19 pandemic.

I. INTRODUCTION

We consider a general class of epidemiological models
that include a compartmental linear system, representing
several infection stages within a population, fed back by
the dynamics of the susceptible individuals S(t). This gen-
eral class includes, besides the standard SIR (Susceptible,
Infected, Recovered) model [14], several epidemiological
models that describe the spread of infectious diseases [5],
[8], [9], [11], [13], [17], [24]. Epidemiological models have
been studied with a control perspective for a long time
[2], [26], [25], [20], [19], [21], [10], [15], [27], [28], [6]
and have been intensively reconsidered after the outburst of
the COVID-19 pandemic [3], [11], [16], [23], [18], which
has evidenced their importance to understand, predict and
control epidemics; a comprehensive survey is proposed in
[1]. In our setup, the infection spread is modeled as a linear
positive system whose state variables correspond to different
categories of infected (e.g., diagnosed and quarantined, non-
diagnosed, asymptomatic, pauci-symptomatic, symptomatic)
as well as recovered and deceased, which is fed back by a
term representing contagion, i.e., the flow of newly infected
people caused by contacts between susceptible and infected
individuals. A major problem, when applying these models
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to real situations, is the deep uncertainty affecting parameter
values. It has been shown [11] that the sensitivity of different
parameters varies a lot. Typically, the pandemic evolution
is extremely sensitive to the contagion parameters, which
directly influence the growth of the infected population
and can be altered to control the epidemic evolution by
introducing suitable restrictions and non-pharmaceutical in-
terventions, while it is less sensitive to parameters describing
the transitions among different categories of infected.

We prove that both the sensitivity analysis and the control
of these epidemiological models can be solved via the same
technique: the optimal control of a compartmental system.
We show that mid-term predictions, sensitivity analysis and
containment plans under uncertainties can be tackled with
the same approach and the solution can be effectively
achieved by exploiting the special system structure. Our
contributions can be summarized as follows.
• We consider general SIR-like models, whose parame-

ters are uncertain, but bounded within given intervals.
• We analyze the class of models and we give a general

formula for the reproduction number R0, which turns
out to be the H∞ norm (equal to the L1 norm in this
case) of the linear part of the system.

• We show how to compute lower and upper bounds for
the uncertain system evolution.

• We show that the same methodology can be adopted
when considering an optimal control problem aimed at
minimizing a linear integral cost with final weight.

• We prove that the computation does not require the
shooting approach (often necessary to implement opti-
mal control), if we can rely on a reasonable mid-term
prediction of the susceptible population evolution.

• We show that the technique can be adopted to robustly
compute periodic open-close mitigation strategies.

II. CLASS OF MODELS

Consider the class of systems described by

ẋ(t) = F (p)x(t) + S(t)bc(v)>x(t) (1)
Ṡ(t) = −S(t)c(v)>x(t) (2)

with x(t) ∈ Rn, S(t) ∈ R. We assume that the parameter
sets P and V have the hyper-rectangular form

P = {p : 0 < p− ≤ p ≤ p+}, (3)
V = {v : 0 < v− ≤ v ≤ v+}, (4)
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and F (p) is a Metzler matrix, decomposable as the sum of
rank-one matrices (BDC-decomposition [7], [12]):

F (p) =

m∑
k=1

fkg
>
k pk, (5)

where fk and gk are vectors in Rn. Henceforth, > and
<, used with vectors, denote the component-wise strict
inequalities.

System (1)–(2) generalizes epidemiological model such as
[11]. Variable S(t) corresponds to the fraction of susceptible
individuals, vector x(t) corresponds to infected individuals
at various disease stages (e.g. asymptomatic, diagnosed, hos-
pitalized, recovered) and the term S(t)bc(v)>x(t) accounts
for contagion; typically, b = [1 0 . . . 0]>. The entries of v are
the contagion parameters, while the parameter p is associated
with transition flows among different infection stages. Note
that F (p) is a generic Metzler matrix, not necessarily a
compartmental matrix1.

Assumption 1. Vector c(v) is nonnegative and linear in the
parameters. Vector c(v) is a linear increasing function of its
parameters vk: 0 < c(v−) ≤ c(v) ≤ c(v+). Vector b and
vectors gk are nonnegative, while matrix F (p) is Hurwitz for
all parameter values. Matrix F (p) +Sbc(v)> is irreducible
for all positive values of S.

Checking the Hurwitz property of F (p) is easy based on
its decomposition (5).

Proposition 1. Matrix F (p) is Hurwitz if and only if (a)
F (p̂) is Hurwitz for an arbitrary positive parameter vector
p̂ and (b) det[−F (p̂)] > 0 for all parameter vectors p̂ taken
on the vertices P̂ = {p̂ : p̂k ∈ {p−k , p

+
k }, ∀k = 1, . . . ,m}.

Proof: Condition (b) is equivalent to det[−F (p)] > 0
for all p ∈ P [12]. This condition is clearly necessary
because det[−F (p)] is the constant term of the characteristic
polynomial. Hence (a) and (b) are necessary. Conversely,
assume that (a) holds and that F (p̃) is not Hurwitz, with p̃
strictly positive. Take p(α) = p̂(1 − α) + p̃α, α ∈ [0, 1].
Since F (p̂) is Metzler and has a real dominant eigenvalue,
there must be some α∗ in the interval for which F (p(α∗))
has a zero eigenvalue, hence det[−F (p(α∗))] = 0, in
contradiction with non-singularity in (b).

In the sequel we will consider parameter vectors p and
v that are time-varying in P and V , respectively. In this
case, we need to assume robust stability of the open loop
system ẋ = F (p(t))x. A sufficient condition is given by the
existence of a common copositive Lyapunov function q>x.

Assumption 2. There exists a vector q > 0, with q>b > 0,
such that q>F (p)x ≤ 0 for all p ∈ P and all x > 0.

Remark 1. If one of such vectors q has the form q> =
1> = [1 1 . . . 1], F (p) is a compartmental matrix.

The next proposition holds

1A compartmental is a Metzler matrix with negative diagonal elements
and column diagonally dominant

Proposition 2. Assumption 2 implies boundedness (even
with time-varying parameters) of the overall nonlinear sys-
tem (1)-(2).

Proof: It is enough to take V (x, S) = q>x + (q>b)S
and compute its Lyapunov derivative V̇ = q>F (p)x +
q>bSc(v)>(p)x+ q>bṠ = q>F (p)x ≤ 0.

Example 1. Consider a simple infection model with
three compartments: susceptible S(t), asymptomatic infected
x1(t), symptomatic infected x2(t), hospitalized x3(t). The
compartmental matrix F (p) and vectors b and c(v) are

F (α, β, γ, δ) =

−α 0 0
α −(β + γ) 0
0 β −δ


b =

[
1 0 0

]>
, c(ϕ, µ, ν)> =

[
ϕ µ ν

]
.

The contagion parameters are ϕ, µ, ν, while α, β, γ, δ are
internal “flow” parameters. Closing the loop, we get

ẋ(t) = (F (p) + bS(t)c(v)>)x(t) (6)

Vector q required in Assumption 2 is q = 1. Note that
q>F (p)x is not strictly negative: for x = [1 0 0]>, V̇ = 0.
Still, in this case convergence to zero is ensured since there
are no trajectories included in the subspace generated by
x = [1 0 0]> if α 6= 0.

III. GENERAL PROPERTIES OF THE MODEL

Define the parametric reproduction number R0(p, v) as
the H∞ norm of the positive system (F (p), b, c(v)>) [11],
which for positive systems is equal to the L1 norm:

R0(p, v) = −c(v)>F (p)−1b. (7)

Then, the stability of any equilibrium with susceptible pop-
ulation S̄ is equivalent to

R0(p, v)S̄ < 1.

Example 2. For Example 1, the parametric reproduction
number is R0(p, v) = ϕ

α + µ
β+γ + νβ

δ(β+γ) .

For the nonlinear system, the following properties hold.

Theorem 1. If p(t) = p̄ and v(t) = v̄, for t ≥ t̄, then

log
S(t̄)

S(t)
−R0(p̄, v̄)(S(t̄)− S(t))

= c(v̄)>F (p̄)−1(x(t)− x(t̄)), t ≥ t̄ (8)
lim
t→∞

x(t) = 0 (9)

lim
t→∞

S(t) = S̄ <
1

R0(p̄, v̄)
(10)

Proof: Equation (8) results from integrating ẋ = Fx−
bṠ and taking into account that Ṡ/S = −c(v̄)>x. Take now
S̄ as the only point S > 0 satisfying (8) with x(∞) = 0

log
S(t̄)

S̄
−R0(p̄, v̄)(S(t̄)− S̄) = −c(v̄)>F (p̄)−1x(t̄) > 0
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The left hand side tends to ∞ for S̄ → 0 and is 0 for S̄ =
S(t̄). Moreover, its derivative w.r.t. S̄ is R0−1/S̄. The only
equilibrium point is such that S̄ < 1/R0 and S(t̄)− S̄ ≥ 0.
Moreover, take q̄ > 0 such that q̄>F (p̄)

.
= −r̄ < 0 and set

V (x, S) = q̄>x+ q̄>b(S − S̄) (11)

It follows that

V̇ (x, S) = q̄>[F (p) + q̄>bS(t)c(v̄)>]x+ q̄>bṠ =

− r̄>x+ (q̄>b− q̄>b)Sc(v̄)>x = −r̄>x < 0

for x 6= 0. This justifies claims (9), (10).

Remark 2. The Lyapunov function (11) provides an in-
teresting interpretation. The variables xi can be increas-
ing; however, if we consider their sum weighted by the
components of vector q, the increase of this quantity is
compensated by the decreasing susceptible variable S(t).
For a compartmental matrix F (p), we can take q = 1 and,
if b = [1 0 . . . 0]> (x1 associated with the earliest infection
stage), (S(t)− S̄) +

∑
k xk(t) is always decreasing.

The following is a consequence of Theorem 1.

Proposition 3. Assuming constant parameters p̄ and v̄ for
t ≥ t̄, at the equilibrium we have

log
S(t̄)

S̄
−R0(p̄, v̄)(S(t̄)− S̄) = −c(v̄)>F (p̄)−1x(t̄) > 0

A. Stability analysis

A general property of epidemiological models is that,
being of the compartmental type, their linear part is stable
even under time-varying parameters [22]. This is not always
true for the general model (1)–(2), where F (p) is a generic
Metzler matrix. In this regard, we can state the following
results, assuming that parameters p and v are bounded and
time-varying.

Theorem 2. Assume that the linear time-varying system
ẋ(t) = F (p(t))x(t) is exponentially stable. Then the non-
linear feedback system (1)-(2) is exponentially convergent.

Proof: In the interval [0, T ], take the backward solution
of q̇>+q>F (p)+l> = 0, with q(T ) = 0, and the functional
V (x(·), S(·), t) = q(t)>x−

∫ T
t
q(τ)>bṠ(τ)dτ . For any T >

0, we have that V̇ = −l>x ≤ 0. The assumption and the
fact that Ṡ ≤ 0 imply that for T →∞ we have x→ 0 and
S → Ŝ, has limit Ŝ ≥ 0 depending on p(·) and v(·).

The next theorem provides a testable condition for the
robust convergence of the overall system, under uncertain
time-varying parameters.

Theorem 3. Assume that the linear time-varying system
ẋ(t) = F (p(t))x(t) admits a copositive Lyapunov function
W (x) = q>x, for some q > 0, i.e. q>F (p) < 0 for all
p ∈ P . Then, the nonlinear feedback system is robustly
convergent.

Proof: Take V = q>(x+bS). Then V̇ = q>F (p)x < 0
for all x 6= 0.

Example 3. In Example 1, let α = 0.3, β = 0.1, γ = 0.1,
δ = 0.2, µ = 0.2, ν = 0.1, ϕ(t) = 0.5 + 0.5 sin(t). The
reproduction number R0 is periodic with mean 2.919. The
time evolution of xi(t) and S(t) is shown in Figure 1. The
asymptotic value of S is Ŝ = 0.0633.
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Figure 1: Time evolution of S, x1, x2, x3 for periodic R0.

IV. GUARANTEED BOUNDS AND CONTROL

In this section we consider
• The sensitivity analysis problem: the parameters are un-

certain within given bounds and cannot be decided. In
this case we are considering the problem of estimating
an uncertain evolution.

• The control case: the parameters are control variables,
constrained within their bounds.

As we will see soon, the two problems can be faced
as one. Indeed, given any integral performance index, pos-
sibly with final cost, the two problems require either the
maximization or the minimization of this functional. In the
following, we will show that we can take advantage of the
system positivity and the fact that its linear part admits
a BDC-decomposition, namely it is the sum of rank-one
matrices having a special structure [7], [12]. Consider the
cost

J = h>x(T ) +

∫ T

0

l>x(t)dt (12)

formally J = J(x(·)), and the problem of its maximization
or minimization w.r.t. the system parameters. Before pro-
ceeding further we describe some important cases.
• For l = 0 and h = ek, the kth vector of the canonical

basis, we are estimating the maximum or the minimum
value of xk(t) at time T . This can be, for instance,
important to estimate the casualties at time T .

• For l = ek and h = 0, we are estimating the integral of
xk(t) and this can be useful to estimate, for instance,
the overall Intensive Care Unit occupancy in the interval
[0, T ].

We work under the simplifying assumption, typically
satisfied in epidemiological models as long as mid-term
predictions are considered, that the susceptible population
fraction S(t) over the prediction horizon is unknown but
bounded as

S− ≤ S(t) ≤ S+ 0 ≤ t ≤ T. (13)

Remark 3. Although this seems a drastic simplification,
which is technically equivalent to excluding the nonlinear
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part of the system and considering a linear differential
inclusion, it is a reasonable assumption in practice, because:
(a) the number of susceptible people S is slowly time-
varying in most of the cases; the infection dynamics is
much faster; (b) S can be quite accurately statistically
estimated (e.g. through serological studies) and predicted.
This estimation can be deemed more accurate than that
of other quantities, such as the infection parameters, the
fatality rate, the number of infected people; (c) S can be also
controlled by means of a vaccination campaign although the
process can be very slow.

From our assumptions, we can derive the following.

Proposition 4. The maximum (resp. the minimum) of (12),
under (1) and (13), is always achieved for S = S+ (resp.
S = S−) and for v = v+ (resp. v = v−).

Proof: It follows immediately from the fact that b and
c are positive vectors and c(v) is an increasing function.

Henceforth we always assume that S and c are both fixed
to their maximum or minimum. It is not difficult to show
that, considering all parameters p and v, the maximization
(resp. minimization) problem, given x(0), has the form

max
p−k ≤pk(t)≤p

+
k

h>x(T ) +

∫ T

0

l>x(t)dt (14)

s.t.

ẋ(t) =

m∑
k=1

fkg
>
k pk(t)x(t) + bSc(v)>x(t)

=

m∑
k=0

fkg
>
k pk(t)x(t) (15)

where we take f0 = b, g0 = c, p0(t) = S(t). Then we take

f0g
>
0 = bc(v+)> and p0 = S+

in the maximization case and

f0g
>
0 = bc(v−)> and p0 = S−

in the minimization case. Finding p is a control problem,
faced via Pontryagin theory and usually requires a shooting
approach. Shooting is not necessary for this problem in view
of its special structure that makes it easy to solve.

The Hamiltonian is

H(x, ξ, p) = ξ>

[
m∑
k=0

fkg
>
k pk

]
x+ h>x

The maximum is achieved componentwise by solving

max
p−k ≤pk≤p

+
k

ξ>fkg
>
k xpk

Since g>k x > 0, the pointwise maximizer p∗k is

p∗k(ξ) ∈ arg max
p−k ≤pk≤p

+
k

(ξ>fkpk)

namely

p∗k(ξ) =

{
p−k if ξ>fk < 0
p+k if ξ>fk ≥ 0

and does not depend on x. The adjoint equation

−ξ̇(t)> = ξ(t)>

[
m∑
k=0

fkg
>
k p
∗
k(ξ(t))

]
+ l>, ξ(T )> = h>

(16)
can be solved independently of x to determine the optimal
control p∗, after a single integration backward in time with
final condition h. This means that the problem can be
solved without resorting to shooting, requiring multiple trials
involving integration.

Proposition 5. The optimal control problem (14)-(15) can
be solved with a single backward integration of (16).

Example 4. Consider the elementary case

F (α, β) =

[
−α 0
α −β

]
with c = 0 (i.e. no infection), and the cost weights
h> = [0 1] and l = 0. With this purely academic example
we wish to pose a question: is the worst (maximum) or
best (minimum) case achieved for constant values of the
parameters? The answer is no, even without the infection
term. The differential equation (16) is

−
[
ξ̇1 ξ̇2

]
=
[
ξ1 ξ2

] [−α 0
α −β

]
,

[
ξ1(T )
ξ2(T )

]>
=

[
0
1

]>
and the maximizing parameters are

[α∗, β∗]> = arg max
α,β

[ξ1, ξ2]

[
−α 0
α −β

] [
x1
x2

]
= arg max

α,β
x1(ξ2 − ξ1)α− βx2ξ2

Take α ∈ [1, 4], β ∈ [2, 3] and T = 1. As shown in Fig.
2, upper panel (minimizer functions α, β) and middle panel
(maximizer functions α, β), while β does not switch, α does
at some point. The lower panel reports the bounds and a set
of randomly generated curves; it is important to notice that
the bounds are valid at the final time t = T .
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Figure 2: Time evolution of: the minimizer functions α(t), blue, and β(t),
green (upper panel); the maximizer functions α(t), blue, and β(t), green
(middle panel); the lower- (blue) and upper- (red) bounding curves for
x2(T ), along with a set of randomly generated curves (lower panel). It is
important to note that the bounds only hold at the final time T .
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Remark 4. Consistency verification The strong assumption
of the knowledge of bounds (13) can be verified a posteriori.
Having the minimizer or maximizer trajectory x∗(t), one can
integrate starting from the initial conditions x(0) and S(0)
to compute S(T ) by means of

log
S(T )

S(0)
= −

∫ T

0

c(v)>x∗(t)dt

and check if the final value S(T ) ≥ S−. Note that, in a
controlled epidemic event, the infected population x(t) is
orders of magnitude smaller than the susceptible population,
therefore the relative variation of S(t) is in general very
small in the medium term (3-4 months). In the long run,
more sophisticated techniques should be considered.

V. OPEN-CLOSE CONTROL

We consider an on-off switching control consisting of
a sequence alternating periods in which restrictions are
enforced and periods in which these are released. Now the
model (1) has the form

ẋ(t) = F (p)x(t) + Sbc(v)>x(t) , (17)

where v ∈ {v−, v+} is now considered a switching decision
variable (a control): v− is the “closing value” while v+ is the
“opening value”. During the closing regime the contagion
parameters are at their lowest level, while during the opening
regime contagion parameters are at their highest level. We
consider S again as an uncertain parameter bounded as in
(13) and, to establish safety bounds, we assume S = S+.
We consider two regions

SL = {x : q>x ≤ θL}, SH = {x : q>x ≤ θH} (18)

with q > 0 and
θL ≤ θH . (19)

In the closing period, the goal is to safely reach SL. In the
opening period, we must not leave region SH .

To have boundedness of the setup, we need the following
assumption.

Assumption 3. The “closing” configuration

ẋ = [F (p) + S+bc(v−)>]x(t)

is asymptotically stable: there exists q > 0 such that

q>
[
F (p) + S+bc(v−)>

]
< 0

The opening-closing sequences can be then robustly de-
termined as follows.
Set k = 0 and x(0) = x0 (given). Then

1) Close: Given the initial state x0 determine the smallest
closure interval T kc > 0 such that at the end

q>x(T kc ) ≤ θL (20)

and apply v− in this interval.
2) Open: Given x(Tc), determine the largest opening

interval T ko > 0 such that, at the end,

q>x(T kc + T ko ) = θH , (21)

and apply v+ in this interval.
3) Set k := k + 1, x0 = x(T kc + T ko ) and go to 1).

The problem of determining the two intervals T kc and T ko
can be robustly solved by adopting the techniques suggested
in the previous section, even under time-varying parameter
uncertainties.

The sequences T kc and T ko depend on x(0) = x0 and they
are not constant (there is no periodicity). To compute strictly
periodic sequences {Tc, To, Tc, To . . .}, we can slightly
change the approach by assuming regions of the form

BL = {x : 0 ≤ x ≤ x̄L}, BH = {x : 0 ≤ x ≤ x̄H} (22)

with 0 < x̄L < x̄H . Then we proceed as follows.
1) Closing interval: Take x(0) = x̄H , determine Tc as

the smallest T such that, at the end, x(T ) ∈ BL.
Opening interval: Take x(0) = x̄L, determine To
as the largest T such that, at the end, x(T ) ∈ BH
(necessarily on the boundary).

In view of monotonicity, trajectories starting from any initial
condition in BL will end up in BH at time To and, con-
versely, from any initial condition in BH trajectories will
end up in BL at time Tc.

Remark 5. The two vectors x̄L and x̄H can can be arbitrary
positive vectors. As a good choice, if a nominal value p̄ is
known for p, we could take the right Frobenius eigenvectors
of F (p) + S+bc(v)> corresponding to v− and v+.

Note that the condition x(To) ≤ x̄H holds for the
final state of the opening period, but might be violated
immediately after the commutation to the closure period.
To ensure that the safety barrier is never violated, we may
seek the positive invariance of SH for the closure dynamics.

Proposition 6. Set SH is positively invariant for the closure
dynamics with v = v− if and only if, for all p,

[F (p) + S+bc(v−)>]x̄H < 0 (23)

Proof. Condition (23) is necessary and sufficient for the
positive invariance of SH for ẋ = [F (p) + S+bc(v−)>]x
[4]. It can be checked via linear programming because it
can be equivalently written as [F (pi)+S+bc(v−)>]xH < 0,
i = 1, . . . , np, where pi ∈ P̂ , the set of vertices of P .

Vector x̄H (if any) can be found via linear programming.

VI. EXAMPLE

Consider the system in Example 1 with 1 ≤ α, β, γ, δ ≤ 2,
and c> = [1 0.2 0.1]v, where v = 0.5 in the closing regime
and v = 1.3 in the opening regime. Starting from the initial
condition x(0) = [10−4 0 0], meaning that 0.01% of the
population is infected, with no symptomatic or hospitalized,
an opening-closing sequence has been computed. The worst
case values of R0, computed with (7), are 0.6 (closing) and
1.495 (opening). We consider the threshold function q>x(t)
with

q> = [ 0.2547 0.1898 0.5554 ]
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This is the left unit-sum Frobenius eigenvector of the “worst
case opening dynamics”. The rationale is that the region
q>x ≤ θH is invariant for the closure dynamics.

The upper and lower thresholds are θL = 0.5 · 10−4

and θH = 1 · 10−4. The first six periods of the epidemic
evolution are reported in Fig. 3, which shows possible
realizations corresponding to randomly generated (constant)
parameters (black), along with their upper (red) and lower
(blue) bounds. Numerically, we observe that the sequences
“tend to periodicity” after a while.
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Figure 3: The sequence of opening and closing periods: T 1
o = 1.97 ,

T 1
c = 1.8, T 2

o = 1.55 T 2
c = 1.8, T 3

o = 1.55 T 3
c = 1.8. The upper and

lower bounds are reported in red and blue, respectively; black curves are
possible realizations with randomly generated parameters.

VII. CONCLUSIONS

We have considered a general model of infection dynam-
ics in which a compartmental uncertain system is coupled
with nonlinear infection dynamics due to the time-varying
susceptible fraction of the population. We have provided
general properties, including some exact relations between
the compartmental state and the susceptible population. We
have then considered a sensitivity analysis, formulated as an
optimal control problem and found a solution which does
not involve shooting if we can assume the knowledge of
bounds on the number of susceptible individuals. Removing
this assumption is left to future work.
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