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Abstract— We consider network systems where the node dy-
namics are described by identical MIMO LTI subsystems with
transfer-function matrix F(s), while the dynamic interactions
associated with the bidirectional arcs are described by identical
MIMO LTI subsystems with transfer-function matrix G(s);
the dynamics of the individual nodes and arcs are affected
by heterogeneous, norm-bounded uncertainties. We provide a
topology-independent condition for the robust stability of all
possible network systems with a maximum connectivity degree,
regardless of their size and interconnection structure. We also
give a topology-independent condition that robustly guarantees
not only stability, but also α-convergence (i.e. all poles having
real part less than a negative −α). The proposed frequency-
domain conditions are scalable and can be evaluated locally, also
for large-scale networks where nodes and arcs can be added or
removed in real time. The conditions are applied to assess the
robust α-convergence of a suspension bridge system of arbitrary
size.

I. INTRODUCTION AND MOTIVATION

Network systems, formed by the interconnection of several
subsystems, emerge naturally in a wide variety of fields,
ranging from smart grids [1] to biological models [2] and
groups of people in opinion dynamics [3]. Complex net-
worked system are often analysed by studying the individual
subsystem dynamics and the interconnection topology. As
with any dynamic system, stability is a fundamental property
of interest. Assessing it by exploiting the network structure
of the overall system gives rise to the question: under which
conditions does the stability of the individual subsystems
guarantee the stability of the whole network?

Sufficient conditions for the stability of heterogeneous
single-input-single-output (SISO) linear time-invariant (LTI)
systems are proposed in [4] using the multivariable Nyquist
criterion [5]; this type of conditions is further refined in [6],
including a partial extension to interconnections of multiple-
input-multiple-output (MIMO) systems. The MIMO case is
fully addressed in [7], [8] using integral quadratic con-
straints and in [9] with frequency-domain approaches. Also
an approach based on the generalised frequency variable,
proposed in [10], was used to obtain necessary and sufficient
stability conditions for networks of homogeneous MIMO LTI
systems in [11], where the robustness analysis encompasses
heterogeneous systems of almost equal agents.

The above approaches require the knowledge of the net-
work topology, which is typically not available for complex
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and large-scale networks: in such cases, stability conditions
that do not depend on the topology would be useful.

Topology-independent sufficient conditions and necessary
conditions for robust stability have been provided, based
on Nyquist-type arguments, for networks of identical SISO
LTI systems with homogeneous [12] and with heterogeneous
uncertainties [13]. For interconnections of uncertain MIMO
systems, topology-independent robust stability conditions
have been recently proposed in [14], which gives a sufficient
and a necessary condition for robust stability in the time
domain; in the frequency domain, the preliminary results in
[15] yield a sufficient robust stability condition for networks
of identical MIMO systems with homogeneous uncertainties.

Here we consider networks of identical MIMO systems
affected by heterogeneous uncertainties, in the presence of
bidirectional interactions, and we provide frequency-domain
sufficient conditions for
• robust stability;
• robust α-convergence, i.e. robust stability with largest

real part of the poles less than −α < 0.
The conditions are topology-independent (they only require
the maximum connectivity degree and an upper bound for
the Laplacian spectral radius), scalable (they can be evaluated
locally) and simple to compute, which makes them useful in
large-scale networks and in situations where nodes and arcs
can be added or removed from the network in a plug-and-
play fashion [16], [17].

After formulating the problem and providing some tech-
nical preliminary results in Section II, we present in Section
III our main results for topology-independent robust stability,
in Theorem 5, and α-convergence, in Theorem 6. Section
IV discusses the application example of a suspension bridge
system, and exploits Theorem 6 to guarantee robust α-
convergence regardless of the system size.

Definitions and Notation. A directed graph (digraph)
with N nodes and M arcs is a pair G = (N ,A ) where N =
{1, . . . ,N} denotes the node set and the arc set A ⊂N ×N
has M elements; (i, j) ∈ A if there is an arc from node
i∈N to node j∈N . A digraph is bidirectional if (i, j)∈A
implies ( j, i) ∈A for all node pairs (i, j). The degree di of
node i ∈N is the number of arcs that enter or leave node i.
The maximum connectivity degree D of the graph G is the
maximum degree of its nodes: D= maxk∈N dk.

The incidence matrix B ∈ {−1,0,1}N×M is defined as

[B]ih =


1, if the arc h = ( j, i) enters node i,
−1, if the arc h = (i, j) leaves node i,

0, otherwise.



For bidirectional graphs, the Laplacian matrix is L = BB>.
The space of stable, linear, time invariant and continuous-

time transfer functions is denoted by H , while the space of
q×m matrices with entries in H is H q×m.

The 2-norm of the real matrix X is denoted as ‖X‖ =
supv6=0 ‖Xv‖/‖v‖ =

√
λmax(X>X), where λmax(S) denotes

the largest eigenvalue of a symmetric matrix S. Then,

‖X⊗Y‖= ‖X‖‖Y‖ and ‖XY‖ ≤ ‖X‖‖Y‖, (1)

where ⊗ is the Kronecker product of matrices [18]. Also,
‖X‖ = ‖X>‖. Given a square matrix X , its spectrum is
denoted by σ(X) and its condition number by K (X)

.
=

‖X‖‖X−1‖.

II. PROBLEM STATEMENT AND PRELIMINARY RESULTS

Given a network of N nodes and M arcs, represented by the
bidirectional digraph G , assume that each node (resp. arc) is
associated with a stable MIMO linear subsystem represented
by the transfer-function matrix F(s) ∈H r×n (resp. G(s) ∈
H n×r), which describes its nominal dynamics (n and r are
the number of inputs of the nodes and arcs respectively).
Furthermore, the generic ith node (resp. hth arc) dynamics
is affected by the uncertainty ∆Fi(s) ∈H r×n, i ∈ {1, . . . ,N}
(resp. ∆Gh(s) ∈H n×r, h ∈ {1, . . . ,M}).

Let vectors Yi(s) and Uh(s) represent the output of the ith
node and hth arc respectively. The dynamics of node i is

Yi(s) = [F(s)+∆Fi(s)]
M

∑
h=1

[B]ihUh(s), i ∈N ,

while the bidirectional dynamics of arc h = (i, j) ∈A is

Uh(s) = [G(s)+∆Gh(s)][Yi(s)−Yj(s)], h ∈A .

We can stack the output and input vectors as Y (s) =
[Y1(s)>, . . . ,YN(s)>]> and U(s) = [U1(s)>, . . . ,UM(s)>]> and
write the complete system dynamics as

Y (s) = [(IN⊗F(s))+DF(s)](B⊗ In)U(s), (2)

U(s) =−[(IM⊗G(s))+DG(s)](B>⊗ Ir)Y (s), (3)

where Ik denotes the identity matrix of size k, while DF =
diag(∆Fi)

N
i=1 and DG = diag(∆Gh)

M
h=1. Hence, the character-

istic polynomial of the complete network is

p(s) = det
(

INr +[(IN⊗F(s))+DF(s)](B⊗ In)

[(IM⊗G(s))+DG(s)](B>⊗ Ir)
)

= det
(

INr +L⊗H(s)+D(s)
)
, (4)

where L = BB>, H(s) = F(s)G(s) and D = (B⊗F)DG(B>⊗
Ir)+DF(B⊗ In)DG(B>⊗ Ir)+DF(BB>⊗G).

We assume stability of the nominal local transfer-function
matrices.

Assumption 1: All poles of the transfer-function matrix
H(s) = F(s)G(s) have negative real part.

Let σ(H(s)) = {λi(s)}r
i=1 be the eigenvalues of the

transfer-function matrix H(s), which are generic (non-
rational in general) complex functions of the variable s: the

poles of λi(s) are not the roots of a polynomial but the set
of complex numbers p̃ ∈C such that λ

−1
i (p̃) = 0. Then, the

following result is proven in [15].
Theorem 1: Consider the transfer-function matrix H(s) ∈

H r×r and its eigenvalues {λi(s)}r
i=1. Let p̃ ∈ C be a pole

of the complex function λi(s), for some i ∈ {1, ...,r}. Then,
p̃ is a pole of the transfer-function matrix H(s).

If Assumption 1 is satisfied, then Theorem 1 guarantees
that the complex functions λi(s) are stable (their poles have
negative real part). The poles of the transfer-function matrix
H(s), i.e. the roots of the denominator polynomial, are much
easier to compute than the poles of the generic complex
functions λi(s).

We also assume that H(s) is diagonalisable.
Assumption 2: The transfer-function matrix H(s), with

eigenvalues σ(H(s)) = {λi(s)}r
i=1, can be diagonalised by

matrix V (s), so that V (s)−1H(s)V (s) = diag(λi(s))r
i=1.

Assumption 2 is always satisfied for the important classes
of MISO and SIMO systems: if F(s) is a row vector and
G(s) is a column vector, then H(s) is a scalar function; if
F(s) is a column vector and G(s) is a row vector, then H(s)
is a rank-one matrix, hence it is diagonalisable.

Assumption 3: ‖F( jω)‖ 6= 0 and ‖G( jω)‖ 6= 0 ∀ω ∈R+.
Under the above assumptions, we wish to assess the robust

stability of the class of systems with characteristic polyno-
mial (4), in the presence of heterogeneous uncertainties. We
look for topology-independent conditions, which hold for a
whole class of topologies with a given maximum connectiv-
ity degree D and exclusively depend on local information.

First, some technical preliminary results are needed.
Spectral properties of the Laplacian matrix. For bidi-

rectional digraphs, L is a symmetric matrix that can be
diagonalised by unitary matrices W such that W−1LW =
diag(γk)

N
k=1, where {γk}N

k=1 are the real eigenvalues of L. For
unitary matrices, the condition number is one: K (W ) = 1.
By the Gershgorin circle theorem, the real eigenvalues of L
are located inside a circle of radius D with centre in (D,0),
since D is the maximum element along the diagonal of L.
Hence,

σ(L)⊂ {z ∈ R : 0≤ z≤ 2D}. (5)

This implies that
‖B‖‖B>‖ ≤ 2D, (6)

since ‖B‖= ‖B>‖=
√

λmax(L)≤
√

2D.
Nominal stability for bidirectional networked systems.

A topology-independent condition for the stability of bidi-
rectional network systems without uncertainties is proven in
[15].

Theorem 2: Given the networked system (4) with D =
0, under Assumption 1, stability is ensured for all network
topologies with maximum connectivity degree D if, for all
i ∈ {1, . . . ,r} and ω ∈ R+,

min
ξ<−(2D)−1

{|λi( jω)−ξ |}> 0, (7)

where {λi( jω)}r
i=1 = σ(H( jω)).



Bauer-Fike Theorem. A well-known result on the spec-
trum of perturbed matrices is proven in [19].

Theorem 3 (Bauer-Fike Theorem): Let A,B ∈ Rn×n with
A diagonalisable: V−1AV = diag(λ1, ...,λn) for some V ∈
Cn×n and λ1, . . . ,λn ∈ C. For every (complex) eigenvalue
β of A + B, there exists an index i ∈ {1, . . .n} such that
|β −λi| ≤K (V )‖B‖, where K (V ) is the condition number
of V .
A Lemma. The following lemma will be used in the proof
of Theorem 4.

Lemma 1: Let a, b and u be three complex numbers. If
the inequalities |a−b| ≤ ϕ and |b− (−u)|> ϕ are satisfied
for some real ϕ > 0, then a 6=−u.

III. STABILITY AND α -CONVERGENCE

We provide a topology-independent condition to assess the
robust stability of classes of networked systems associated
with bidirectional digraphs having maximum connectivity
degree D, where the node and arc dynamics are subject to
heterogeneous uncertainties. We make the following assump-
tion on the norm bounds for node and arc uncertainties.

Assumption 4: Node and arc uncertainties are bounded as

‖DF( jω)‖
‖F( jω)‖

≤ KF( jω) and
‖DG( jω)‖
‖G( jω)‖

≤ KG( jω).

Equivalently, since ‖diag(Xi)‖ = maxi ‖Xi‖, we can assume
the local uncertainty bounds

‖∆Fi( jω)‖
‖F( jω)‖

≤ KF( jω) ∀i ∈ {1, . . . ,N},

‖∆Gh( jω)‖
‖G( jω)‖

≤ KG( jω) ∀h ∈ {1, . . . ,M}.

We first provide a sufficient condition for robust stability.
Theorem 4: Given the networked system (4) under As-

sumptions 1, 2 and 3, assume that the nominal system
(D = 0) is stable for all possible network topologies with
maximum connectivity degree D. Then, stability is robustly
guaranteed for the class of uncertain networked systems with
maximum connectivity degree D that satisfy Assumption 4
if the inequality

|γkλi( jω)+1|> 2Dζ (F,G)K( jω) (8)

holds for all k ∈ {1, . . . ,N}, for all i ∈ {1, . . . ,r}, and for all
ω ∈R+, where {λi(s)}r

i=1 are the eigenvalues of H(s), while

ζ (F,G) = K (V ( jω))‖F( jω)‖ ‖G( jω)‖, (9)
K( jω) = KF( jω)+KG( jω)+KF( jω)KG( jω). (10)
Proof: Denoting by βq(s), q ∈ {1, . . . ,rN}, the eigen-

values of the matrix [
(
L⊗H(s)

)
+D(s)], the characteristic

polynomial (4) can be rewritten as

p(s) =
rN

∏
q=1

[1+βq(s)].

By the zero-exclusion theorem [20], since the nominal inter-
connected system is stable by assumption, robust stability of
the uncertain system is guaranteed if, for all possible DF(s)

and DG(s) within the bounds, p( jω) 6= 0 for all ω ∈ R+,
which is equivalent to

βq( jω) 6=−1, ∀q ∈ {1, . . . ,rN} and ∀ω ∈ R+. (11)

The eigenvalues of L⊗H(s) are the products of the eigen-
values of L and of H(s), {γkλi(s)}, and its diagonalisation
matrix is W⊗V (s), where W and V (s) are the diagonalisation
matrices for L and H(s) respectively. Hence, in view of the
Bauer-Fike Theorem, for every q = 1, . . . ,rN there is a pair
of indices (k, i) ∈ {1, . . . ,N}×{1, . . . ,r} such that

|βq( jω)− γkλi( jω)| ≤K (W ⊗V ( jω))‖D( jω)‖. (12)

Using the properties of the 2-norm and of the Kronecker
product we have that

K (W ⊗V ( jω)) = ‖(W ⊗V ( jω))−1‖‖W ⊗V ( jω)‖
= ‖W−1⊗V−1( jω)‖‖W ⊗V ( jω)‖
= ‖W−1‖‖V−1( jω)‖‖W‖‖V ( jω)‖
= K (W )K (V ( jω)) = K (V ( jω)).

Also, ‖D( jω)‖ ≤ ‖B‖‖B>‖
(
‖F( jω)‖‖DG( jω)‖ +

‖G( jω)‖‖DF( jω)‖ + ‖DF( jω)‖‖DG( jω)‖
)

≤
‖B‖‖B>‖‖F( jω)‖‖G( jω)‖K( jω), with K( jω) defined
in (10). Recall from equation (6) that ‖B‖‖B>‖ ≤ 2D to get

K (W ⊗V ( jω))‖D( jω)‖ ≤ 2Dζ (F,G)K( jω), (13)

with ζ (F,G) defined in (9). Inequalities (12) and (13) yield

|βq( jω)− γkλi( jω)| ≤ 2Dζ (F,G)K( jω). (14)

Now we can apply Lemma 1 to (14) and (8), setting ϕ =
2Dζ (F,G)K( jω), a = βq( jω), b = γkλi( jω) and u = 1. We
get that βq( jω) 6=−1, hence condition (11) is satisfied and
the network system is robustly stable.

Remark 1: The stability of the nominal interconnected
system, required to apply Theorem 4 (and, as we will see,
Theorem 5), can be assessed by checking the topology-
independent condition in Theorem 2.

The condition (8) in Theorem 4 can be easily checked
numerically. However, it is topology-dependent: complete
knowledge of the network is required to compute the Lapla-
cian eigenvalues γk. The result can be refined, yielding a
topology-independent condition.

Theorem 5: Given the networked system (4) under As-
sumptions 1, 2 and 3, assume that the nominal system (D =
0) is stable for all possible network topologies with max-
imum connectivity degree D. Then, topology-independent
stability is robustly guaranteed for the class of uncertain
networked systems with maximum connectivity degree D
that satisfy Assumption 4 if the inequality

min
i∈{1,...,r}

{φi( jω)}> 2Dζ (F,G)K( jω) (15)

holds for all ω ∈ R+, where

φi( jω) =


1 if 0≤ Re(λi( jω)),
|Im(λi( jω))|
|λi( jω)| if −ρ|λi( jω)|2 ≤ Re(λi( jω))< 0,

|ρλi( jω)+1| if Re(λi( jω))<−ρ|λi( jω)|2,
(16)



ρ is an upper bound for the maximum eigenvalue of the
Laplacian matrix L = BB>, ζ (F,G) is defined as in (9) and
K( jω) is defined as in (10).

Proof: To show that inequality (15) implies inequality
(8) for all k∈ {1, . . . ,N} and i∈ {1, . . . ,r}, write the complex
number λi( jω) as λi = αi + jβi, where the argument is
omitted for clarity. Now define the convex function

D(γk) = |γkλi +1|=
√
(γkαi +1)2 + γ2

k β 2
i .

Taking into account that γk ∈ [0,ρ], the minimum of D(γk)
is obtained for γk = γ∗k given by

γ
∗
k =


0 if 0≤ αi
−αi
|λi|2

if −ρ|λi|2 ≤ αi < 0

ρ if αi <−ρ|λi|2

In other words, γ∗k = argmin{D(γk) s.t. γk ∈ [0,ρ]}. Hence,
the minimum value of D(γk) depends on λi( jω) as follows

1) if 0≤ αi, then D(γ∗k ) = 1,
2) if −ρ|λi|2 ≤ αi < 0, then D(γ∗k ) =

|Im(λi( jω))|
|λi( jω)| ,

3) if αi <−ρ|λi|2, then D(γ∗k ) = |ρλi( jω)+1|.
Since |γkλi( jω) + 1| ≥ D(γ∗k ), each case gives a differ-
ent lower bound for |γkλi( jω)+ 1|. Thus, by construction,
φi( jω) satisfies |γkλi( jω) + 1| ≥ φi( jω). Taking the min-
imum over all i ∈ {1, . . . ,r} makes inequality (15) imply
inequality (8) for all k ∈ {1, . . . ,N} and i ∈ {1, . . . ,r}.

Theorem 5 avoids the need of computing the eigenvalues
of the Laplacian matrix and provides a topology-independent
condition: all the required information about the topology is
the maximum connectivity degree D and an upper bound ρ

for the maximum Laplacian eigenvalue. The general upper
bound provided in (5) is ρ = 2D, but for many common
topologies tighter bounds exist.

A. α-Convergence

So far, the main objective has been to guarantee stability
of the overall network. However, in many instances it is
desirable to have fast enough convergence, or equivalently an
upper bound on the settling time, as per the next definition.

Definition 1: A LTI system with pole set P is α-
convergent if Re(p)<−α < 0 for all p ∈P .
Based on Theorem 5, we can obtain topology-independent
sufficient conditions to robustly certify not only stability, but
also α-convergence.

Theorem 6: Given the networked system (4) under As-
sumptions 1, 2 and 3, topology-independent α-convergence
is robustly guaranteed for the class of uncertain networked
systems with maximum connectivity degree D that satisfy
Assumption 4 if the inequalities

min
ξ<−(2D)−1

{|λi( jω−α)−ξ |}> 0, i ∈ {1, . . . ,r}, (17)

min
i∈{1,...,r}

{φi( jω−α)}> 2Dζ̂ (F,G)K( jω−α), (18)

hold for all ω ∈ R+, with φi as in (16),

ζ̂ (F,G) = K (V ( jω−α))‖F( jω−α)‖‖G( jω−α)‖

and K as in (10).
Proof: Take the characteristic polynomial p(s) of the

complete network, given in (4), and define p̂(s) as the shifted
polynomial p̂(s) = p(s−α). If p̂(s) is stable, then p(s) is
α-convergent.
By Theorem 2, inequality (17) guarantees that the nominal
networked system associated with p̂(s) is stable, thus The-
orem 5 can be applied to check that, if inequality (18) is
satisfied, then p̂(s) is stable, hence p(s) is α-convergent.
The suitable value of α is problem-dependent and can be
selected based on the desired settling time, which can be
approximated as 4/α .

IV. α -CONVERGENCE OF A SUSPENSION BRIDGE

For a suspension bridge, it is important not only to
ensure stability within suitable uncertainty bounds, but also
to guarantee a short enough settling time, so as to prevent
long-lasting oscillations.

A suspension bridge can be modelled as a network of
interconnected systems (see Fig. 1): the nodes correspond to
the cables that hold the bridge road and the arcs correspond
to the discretisation of the bridge road that connects the
cables. The resulting graph is known as a ladder graph, for
which the maximum connectivity degree is always D= 3.

It is worth stressing that the results in this section hold
for any type of graph with D= 3, regardless of its topology
(information about the topology is not needed).

Fig. 2 shows an example of a ladder graph with 8 nodes
and 10 arcs, having incidence matrix

B =



−1 −1 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0
0 1 0 −1 −1 0 0 0 0 0
0 0 1 1 0 −1 0 0 0 0
0 0 0 0 1 0 −1 −1 0 0
0 0 0 0 0 1 1 0 −1 0
0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 1 1


. (19)

Node and arc dynamics. Assume that an affine transfor-
mation was used to remove gravitational effects. Then each
node can be modelled as a two mass-spring-damper system
(see Fig. 3). The state vector is x = [x1,x2,x3,x4]

>, where
x1 (resp. x2) corresponds to the displacement of mass m1
(resp. m2) from its equilibrium location, while x3 (resp. x4)
represents the velocity of mass m1 (resp. m2). The nodes
have a single input u1, which is a force acting on m2, and

Fig. 1. Suspension bridge (side view). The vertical cables are the nodes
(red) and the road discretisation segments are the arcs (blue). The side view
shows only one side of the graph. The upper view is similar to the complete
graph in Fig. 2.



Fig. 2. Example of ladder graph, corresponding to the incidence matrix B
in (19). The red dots are nodes and the blue arrows are arcs. The arrows
are double headed to denote bidirectional interactions.

Fig. 3. Simplified dynamic system at the nodes. The cable mass is m1 and
the road mass is m2; ki denote spring coefficients and bi denote damping
coefficients. The system is modelled as a double oscillator.

the outputs are the state variables x2 and x4. The system
matrices are therefore:

AF =


0 0 1 0
0 0 0 1

− (k1+k2)
m1

k2
m1

− (b1+b2)
m1

b2
m1

k2
m2

− k2
m2

b2
m2

− b2
m2

 BF =


0
0
0
1

m2


(20)

CF =

(
0 1 0 0
0 0 0 1

)
DF =

(
0
0

)

The arcs can be represented by a mass-spring-damper, with
only one mass (M) and two identical dampers (B) and springs
(K) at each side. The state variables are the position and
velocity of the mass M, while the inputs are the difference
between the position and velocity at each side (see Fig. 4).
The resulting system matrices are

AG =

(
0 1
− 2K

M − 2B
M

)
BG =

(
0 0
− K

M − B
M

)
(21)

CG =
(
−2K −2B

)
DG =

(
−K −B

)
Topology-independent robust α-convergence. We wish

to determine the maximum uncertainty magnitude for which
the overall bridge system is robustly α-convergent, with
α = 0.4, regardless of the network size. Using a second
order approximation, this means that the settling time is at
most T ≈ 4/α = 10 seconds. To assess topology-independent
robust α-convergence, we can apply Theorem 6 with ρ =
2D= 6.

For the simulation results, we use the parameter values:
k1 = 200, m1 = 800, b1 = 400, k2 = 200, m2 = 1000, b2 =
800, K = 800, M = 200, B = 800.

First, we show that condition (17) is satisfied. In this case
there are only two eigenvalues λi, i= 1,2: λ1 is zero, because
H is a rank-one matrix, thus it satisfies the inequality; Fig.
5 shows the Nyquist plot of λ2, which is far from the point
−1/(2D) =−1/6. Hence, condition (17) is satisfied.

Fig. 4. Simplified dynamic system at the arcs, corresponding to a discreti-
sation of the road. The spring coefficient K and the damping coefficient B
account for a rotational spring and damper.

Fig. 5. Nyquist plot of the non-zero eigenvalue λ2( jω−α) of H( jω−α).
Since it is far from the point −1/(2D) =−1/6, condition (17) is satisfied.

Then, we can determine the upper bound for the un-
certainty K that guarantees robust α-convergence for all
topologies with D= 3. Rearranging inequality (18) yields

K( jω−α)< θ( jω−α)
.
=

mini∈{1,2}{φi( jω−α)}

2Dζ̂ (F,G)
. (22)

Let us analyse function θ( jω−α) in (22).
On the numerator is min{φ1( jω −α),φ2( jω −α)}. Since
λ1 = 0, φ1 = 1. Regarding λ2, for different values of ω it
satisfies all the cases in (16): Fig. 6 shows the value of
φ2( jω −α), indicating the frequency intervals for each of
the cases. From Fig. 6, it can be seen that in this case we
have min{φ1( jω−α),φ2( jω−α)}= φ2( jω−α).
The denominator consists of the product 2DK (V ( jω −
α))‖F( jω −α)‖‖G( jω −α)‖, where D = 3 for a ladder
graph. Fig. 7 shows K (V ( jω−α)), ‖F( jω−α)‖, ‖G( jω−
α)‖, and the product ζ̂ (F,G) as a function of ω .

As expected, since the input-output matrix DG 6= 0, ‖G‖
is non-zero at high frequencies. This is reflected also in the
frequency response of K (V ). On the other hand, F(s) has
a low-pass-filter behaviour, hence ‖F‖ and ζ̂ (F,G) tend to
zero for high frequencies.

Finally, taking the ratio between φ2 and 2Dζ̂ (F,G) gives
the upper bound in (22), whose plot is shown in Fig. 8.

According to Fig. 8, the minimum value of the upper
bound for K( jω−α) is around 0.137, when ω = 0.426 rad/s.
This means that, even if the uncertainties were about 6%,
i.e. KF( jω−α)≤ 0.06 and KG( jω−α)≤ 0.06, it would be
K( jω−α)≤ 0.1236; then, K( jω−α) would still satisfy the
inequality (22) at all frequencies. Hence, the system would be
stable and α-convergent with α = 0.4. Note that, since φ2≤ 1
and ζ̂ (F,G) has a low-pass-filter response, the uncertainties



Fig. 6. Plot of φ2( jω−α); colour denotes the different cases in (16).

Fig. 7. Frequency response of K (V ( jω −α)), ‖F( jω −α)‖, ‖G( jω −
α)‖, and ζ̂ (F,G).

can be very large at high frequencies without compromising
stability and α-convergence.

Given that the expression of K couples the uncertainties
affecting the node transfer function matrix, F , and the arc
transfer function matrix, G, it is not possible to imme-
diately deduce separate upper bounds for the individual
uncertainties. However, if for instance KG ≈ 0, then K ≈KF ,
which yields an upper bound for the node uncertainties. An
analogous result is obtained if KF ≈ 0.

V. CONCLUSIONS

This paper considered networks of interconnected MIMO
systems, where the uncertainties are different for each node
and arc. A topology-independent robust stability condition
was provided in Theorem 5, and a topology-independent
condition to robustly guarantee fast enough convergence
was given in Theorem 6. This last result was applied to a
suspension bridge system, to determine an upper bound for
the uncertainty for which the bridge dynamics exhibit a maxi-
mum guaranteed settling time. Future work includes studying
how conservative the sufficient conditions are, looking for
necessary conditions and extending the results to networks
formed by heterogeneous nodes.

Fig. 8. Largest admissible value for the uncertainty K( jω − α) that
guarantees robust topology-independent stability, according to equation (22).
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