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Abstract— To control the flow in a dynamical network where
the nodes are associated with buffer variables and the arcs with
controlled flows, we consider a network-decentralised strategy
such that each arc controller makes its decision exclusively
based on local information about the levels of the buffers that
it connects. We seek a flow control law that asymptotically
minimises a cost specified in terms of a weighted L1-norm.
This approach has the advantage of providing a solution that is
generally sparse, because it uses a limited number of controlled
flows. In particular, in the presence of a resource demand
applied on a single node, the asymptotic flow is concentrated
along the shortest path.

I. INTRODUCTION AND MOTIVATION

We consider a class of systems of the form{
ẋ(t) = Bu(t)− d
u(t) ∈ U :=

{
u ∈ Rm : u− ≤ u ≤ u+

}
, ∀t ,

(1)

where the inequalities hold component-wise, x ∈ Rn is the
vector of buffer levels, u ∈ Rm is the vector of controlled
flows, B ∈ Rn×m is an assigned matrix that captures the
topology of the interconnections among buffers and d ∈
Rn is an external, unknown constant demand. We seek a
stabilising control strategy that is:
• Network decentralised: each control component uk ex-

ploits local information only, i.e., depends on the state
components xi corresponding to nonzero entries Bik of
the k-th column of B, and it is independent of d.

• Asymptotically optimal in the weighted L1-norm: the
flows converge to a vector ū such that

ū ∈

 argmin
u∈U

m∑
k=1

γk |uk|

s.t. Bu = d.

(2)

Example 1: The source node 1 in Fig. 1 receives an exter-
nal supply flow, while an outgoing demand is applied to the
sink node 8. The arc controllers are network-decentralised;
e.g., u10 only knows the buffer levels at nodes 5 and 6, hence
u10 = Φ10(x5, x6, γ10), where γ10 is a weight associated
with arc 10. We wish to direct the whole steady-state flow
(compatibly with other constraints on the network) through
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Fig. 1. The network in Example 1. Green arcs identify the shortest (or,
more in general, minimum-cost) path from the source node to the sink node.

the shortest source-to-sink path, i.e., the path through nodes
1-2-3-5-7-8, in a decentralised way. Each arc outside this
path may be initially activated to match the demand in the
transient, but shall spontaneously drive its flow to 0, based
on the knowledge of the buffer levels at its extreme nodes
only, while each arc in the optimal path shall drive its flow
to a steady-state value equal to the unknown demand d. �

Pioneering work on network-decentralised control [11],
[12] has been later reconsidered in [2], [4], [5]. Important
recent contributions about flow control include [8], [13],
[14], [15]. As shown in [3], a saturated network-decentralised
control u = sat[−B>x] is asymptotically optimal in the L2-
norm. Extensions to more general classes of smooth and
strictly convex functionals have been proposed in [7].

Minimising the L2-norm “evenly distributes” the network
flow. Contrarily, here we aim at concentrating the flow
along a single path, preferably the shortest one, which can
be identified by solving a linear programming problem,
whose solution is typically sparse when the optimal point is
unique (a generically satisfied condition, which holds with
probability 1 for randomly generated instances).

Remark 1: Sparse solutions are fundamental when the
network is subject to strong demands concentrated on a
single node: if the flow reaches this node through the shortest
path, only a subset of the arcs are permanently activated. �
The contributions of this paper are summarized next.
• Due to the lack of differentiability and strict convexity,

we cannot directly apply the solution in [7]. First, we
need to regularise the cost γ|u| as γ|u|+ δu2/2, where
δ > 0 is small enough. We provide an upper bound for
δ to ensure that the asymptotic optimal (sparse) solution
coincides with that of the original linear problem.

• By assuming integer data and uniqueness of the solu-
tion, we show that δ can be determined based exclu-
sively on upper bounds on the network size.

• We show that the proposed control law can satisfy flow
demands concentrated at a sink node by directing the



flow along the shortest source-to-sink path (when al-
lowed by the arc flow constraints) and it is also resilient
to modifications of the network topology (due to, e.g.,
failures or introduction of new network components).

• Since high values of the demand may lead to transient
shortage, we propose also a different control strategy
that considers the overall storage level in the network.

II. PROBLEM STATEMENT

Consider a directed network, represented as a graph G :=
(N ,A) where N is the set of nodes of cardinality n and
A is set of arcs of cardinality m. We write k = (i, j)
when arc k ∈ A has initial node i ∈ N and final node
j ∈ N . We assume that the graph is strongly connected
and also externally connected (i.e., there exists at least one
arc whose initial node is the external environment; see,
e.g., the arc associated with u1 in Fig. 1). The nodes are
associated with buffers, while the arcs with controlled flows,
and an unknown uncontrolled flow demand d is applied to
some nodes. We associate with each arc k a controller that
regulates the intensity of the arc flow uk by adopting a
network-decentralised strategy [3], [5], [6], i.e., exclusively
based on the buffer levels xi, xj at the extreme nodes i and j
of arc k. We wish to asymptotically convey the overall flow
(when possible, in the presence of flow constraints) through
the path associated with minimum length, or time, or cost
in general, and to match as much as possible the demand in
the transient state. The control problem is the following.

Problem 1: Find a network-decentralised control law

uk = Φk(xi, xj , γk), with k = (i, j), k ∈ A, i, j ∈ N ,

such that limt→∞ u(t) = ū, where ū is a solution to (2). �
The next assumption guarantees the existence of a feasible

solution to Problem 1 [7].
Assumption 1: Matrix B has full row rank, and there

exists u0 ∈ int (U) for which Bu0 = d. �
We denote by U the polyhedron of feasible solutions

to (2) and by U the polyhedron of the optimal solutions.
Assumption 1 implies that U is a full dimensional polyhedron
and that U is not empty: U is a singleton if (2) has a unique
optimal solution, otherwise U may include infinite elements.

Remark 2: In the instances of problem (2) considered
herein, B is the generalised incidence matrix [10] associ-
ated with graph G, hence its entries belong to {−1, 0, 1}.
However, the theory developed here applies to any matrix
B ∈ Rn×m. In general, the control uk can be a function
only of the state components xi such that Bik 6= 0. �

We stress that Problem 1 includes, but is more general
than, the shortest-path problem discussed in Example 1.
Indeed, given the demand d, assume that the flow u is
bounded from below to be non negative, i.e., u−k = 0 for
all k ∈ A, but not upper bounded, i.e., u+

k = +∞ for all
k ∈ A. Then, we make the following claims.

Claim 1: If G has a single external supply arc, and hence
the demand vector d has a single non-zero entry d+

i > 0,
then U includes the solution to the shortest-path problem. �
More in general, the following result holds true.
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Fig. 2. Function fk (left), its derivative gk (center), and the inverse φk
of the derivative (right) along with its saturation, dashed.

Claim 2: If G has several external supply arcs, the demand
vector d may have more than one non-zero positive entry,
and the costs γk correspond to distances or transit time,
then the optimal solution to (2) corresponds to the solution
that minimises the sum of traveled distances of the unit flow
elements (packets, vehicles, unit volume of water...) or the
overall permanence time in the network. �

Next, we determine an optimal control strategy.

III. A REGULARISED COST YIELDS THE TRUE OPTIMUM

The cost function in (2) is neither differentiable nor strictly
convex. We regularise it as (Fig. 2, left):

J(u) =
∑
k∈A

fk(uk) :=
∑
k∈A

(
γk |uk|+

1

2
δu2
k

)
,

for some δ > 0. The function fk is still not differentiable,
but it is strongly convex. By considering J(u) and under
suitable assumptions, we show next that the proposed control
law u(t) converges to an optimal solution ū to (2).

The generalised derivative of fk (Fig. 2, center), gk(uk) =
dfk(uk)
duk

= γksgn(uk) + δuk, has a discontinuity at zero and
is invertible in R \ [−γk, γk]. We extend g−1

k to the whole
R by defining the dead-zone function (Fig. 2, right):

φk(ξ) :=


ξ−γk
δ , if ξ > γk,
0, if |ξ| ≤ γk,

ξ+γk
δ , if ξ < −γk.

Moreover, we introduce the (component-wise) saturation
function sat[u−,u+] : Rm → Rm as

sat[u−,u+](yk) :=


u−k , if yk < u−k ,

yk, if u−k ≤ yk ≤ u
+
k ,

u+
k , if yk > u+

k .

We can then apply the network-decentralised strategy [7]:

u(t) = sat
[
φ
(
−B>x(t)

)]
, (3)

where we alleviate the notation by omitting the subscripts
u− and u+ denoting the saturation extrema.

Remark 3: For δ = 0, the functions gk are not invertible,
and hence (3) could not be defined without regularisation. �

A control based on a dead-zone function has a strong
practical motivation. First, it prevents a control from being
active for small flow values, which leads to the sparsity of the
solution. Also, when the buffer levels have similar value at
steady state, small inaccuracies in the measurements would
induce unnecessary circulations. For example, given Fig. 1,
assume that the strategy in (3) is applied: consider arcs 9, 10



and 16, and let γ9 = γ10 = γ16 = 0. By assuming a lack of
accuracy that induces the sensor placed at arc 9 (respectively
10, 16) to overestimate the value of state x4 (respectively x5,
x6), a circulation would be triggered when x4 = x5 = x6.

A. Convergence of the state

In this subsection, we show the convergence of the con-
trol (3) to the solution of the optimisation problem

min
u∈U

J(u) s.t. Bu = d. (4)

We also show that the state is bounded. The next lemma
characterises the optimal solution in terms of steady state.

Lemma 1 ([7]): The vector u∗ is an optimal solution to
(4) if and only if u∗ = sat[φ(−B>x∗)], for some x∗, and

Bu∗ = Bsat[φ(−B>x∗)] = d.

�
Proposition 1: The solution x(t) of system (1) with the

control (3) is bounded and converges to the non-empty set

Ξ :=
{
ξ ∈ Rn : Bsat

[
φ(−B>ξ)

]
= d
}
,

while u(t) converges to the solution u∗ of (4). �
Proof: (Cf. [7]). First, Lemma 1 guarantees

that Ξ is not empty. Then, consider x∗ ∈ Ξ and
define z(t) := x(t) − x∗. Given (1) and (3), we
have ż(t) = Bsat

[
φ
(
−B>(x∗ + z(t))

)]
− d =

B
(
sat
[
φ
(
−B>(x∗ + z(t))

)]
− sat

[
φ
(
−B>x∗

)])
=

−B∆(z(t))B>z(t), where ∆(z(t)) is a diagonal matrix
of nonnegative functions, which always exists because: a)
both sat(·) and φ(·) are non-decreasing, Lipschitz functions;
b) their composition is non-decreasing and Lipschitz as
well; c) for any non-decreasing Lipschitz function f ,
f(p+q)−f(p) = ([f(p+q)−f(p)]/q)q = δ(q)q, δ(q) ≥ 0.

Now, consider V (z) := 1
2z
>z as a candidate Lya-

punov function. Its Lyapunov derivative is V̇ (z(t)) =
−z(t)>B∆(z(t))B>z(t) ≤ 0, which ensures that z is
bounded and, due to LaSalle’s principle, converges to the set
where V̇ (z) = −z>B∆(z)B>z = 0. Since, for any symmet-
ric positive (or negative) semidefinite matrix S, z>Sz = 0 if
and only if Sz = 0, z(t) converges to the set Z := {z ∈ Rn :
B∆(z)B>z = 0} = {z ∈ Rn : Bsat

[
φ
(
−B>(x∗ + z)

)]
=

d}, hence x(t) converges to the set Ξ and u(t) to u∗.
Remark 4: The limit solution achieved for δ → 0, i.e.,

uk(−B>k x) =


u−k , if −B>k x < −γk ,
0, if − γk ≤ −B>k x ≤ γk ,
u+
k , if −B>k x > γk ,

would lead to discontinuity and possibly chattering. Our goal,
i.e., u(t)→ ū, would not be achieved with δ = 0. �

B. Sub-optimality and sparse solution

Hereinafter, we denote by u∗ the optimal solution to (4)
when δ 6= 0 and by ū an optimal solution to (4) when δ = 0,
i.e., ū is an optimal solution to (2). In addition, we always
assume that u− = 0. If this is not the case, we can double
any arc k with u−k < 0 into two different arcs k′ and k′′,

where k′ has the same direction as k and flow 0 ≤ uk′ ≤ u+
k ,

k′′ has the opposite direction of k and flow 0 ≤ uk′′ ≤ −u−k .
In general, u∗ 6= ū. Here we determine sufficient condi-

tions on the value of δ to guarantee u∗ = ū.
Suppose that u∗ is sub-optimal for (4) when δ = 0. Then,

we can provide an upper bound proportional to δ to the
associated loss of optimality. We consider the degradation
index Ideg :=

∑
k∈A γk (|u∗k| − |ūk|) ≥ 0.

Proposition 2: Let ω = maxk∈Amax{|u−k |, |u
+
k |}. Then,

Ideg ≤ mω2

2 δ. �
Proof: Since J(u∗) ≤ J(ū) in view of the optimality

of u∗, we have: Ideg =
∑
k∈A γk |u∗k| −

∑
k∈A γk |ūk| ≤∑

k∈A
(
γk |u∗k|+ 1

2δ(u
∗
k)2
)︸ ︷︷ ︸

J(u∗)

−
∑
k∈A γk |ūk| ≤

∑
k∈A

(
γk |ūk|+ 1

2δ(ūk)2
)︸ ︷︷ ︸

J(ū)

−
∑
k∈A γk |ūk| ≤

δ
∑
k∈A

1
2ω

2.

U is the polyhedron of the optimal solutions to (4) also
when δ = 0. The proposition above can be used to prove that
the optimal solution u∗ of (4) satisfies limδ→0 u

∗(δ) ∈ U .
From now on, ū denotes the optimal solution in U such that
ū = limδ→0 u

∗(δ).
A stronger result than the above limit may hold: if δ

belongs to a sufficiently small right neighborhood of 0, we
have u∗ = ū. To this aim, we need additional assumptions.

Assumption 2: (a) d has a single nonzero component,
d1 = d+; (b) U is a singleton, i.e., ū is the unique optimal
solution to (4) when δ = 0; (c) the network capacities and
costs are such that the non-zero components of ū describe a
single shortest path from the source node to the sink node:
0 = u− ≤ d+ ≤ u+. �

Under Assumption 2, we can rewrite (4) with δ = 0 as

min
u∈Rm

γ>u s.t. Bu = d, 0 ≤ u ≤ d+1̄ , (5)

where γ> = [γ1 γ2 . . . γm] and 1̄> = [1 1 . . . 1]. In
addition, the components of the optimal solution ū corre-
spond either to arcs with zero flow, or to arcs with flow
equal to d+. As the arcs with ūk = d+ identify the shortest
path, their number cannot be greater than the number n of
nodes. Now, define Π ∈ Rm×m as the diagonal matrix with
components Πkk = 1 if ūk = 0 and Πkk = −1 if ūk = d+.
The set of all feasible solutions to (5) can be parameterised
as ū + v with 0 ≤ ū + v ≤ d+1̄, where v ∈ ker(B). For
v = 0 we have the optimal. The admissible infinitesimal
variations of the solution to preserve feasibility are in the
cone C = {v ∈ ker(B) | Πv ≥ 0} (only positive variations if
ūi = 0, and only negative variations if ūi = d+). Introduce
the generator matrix C for the cone C:

C = {v ∈ ker(B) | v = Cw, w ≥ 0}. (6)

Matrix C can be determined with an approach similar to the
one used to compute the reduced costs in (5) as we will
describe in Section III-C. Since we assume that (5) has a
unique optimal solution ū, γ>Cw > 0 must hold for any
w ≥ 0. This condition in turn implies γ>C > 0.
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Fig. 3. Super-graph Ḡ and an optimal flow ū along the shortest path (left)
and residual graph R(ū) associated with the optimal flow ū (right). Costs
are in square brackets.

We can now provide a sufficient condition on the value
of δ such that u∗ = ū in terms of the entries of C. We
observe that a generic cost variation J(u) in (4) is ∆J =
J(u) − J(ū) = γ>u + (δ/2)‖u‖22 − γ>ū − (δ/2)‖ū‖22 =
γ>(ū + v) + (δ/2)‖ū + v‖22 − γ>ū − (δ/2)‖ū‖22 = γ>v +
δū>v + (δ/2)‖v‖22 = [γ + δū+ (δ/2)v]

>
Cw, w ≥ 0.

Therefore J(ū) is the optimal cost for (4) if:

(γ + δū)
>
C > 0. (7)

As ū has at most n non-zero components, all equal to d+, a
sufficient condition for (7) to hold is γ>C + δnd+C1̄ > 0,
where C is the element of matrix C with minimum value.

The above condition implies u∗ = ū for any δ ≥ 0 if C ≥
0. This situation occurs, for example, when the graph G is
a tree. Differently, if C < 0, the above condition guarantees
that u∗ = ū at least when

δ <
minr{[γ>C]r}
−nd+C

, (8)

where [γ>C]r is r-th component of vector γ>C.
When the demand vector d has more than one non-zero

component, the previous arguments should be repeated by
considering all the non-zero demands dk acting on the nodes.
The intrinsic limit of bound (8) is that knowledge of the
network structure is needed and a global re-computation must
take place at any change or variation (due, e.g., to an arc
failure). We deal with this problem next.

C. A decentralised choice of δ

In this subsection, we understand that Assumptions 1 and 2
hold together with the following assumption.

Assumption 3: Vectors u+ and γ have integer entries. �
We consider the super-graph Ḡ as the graph derived from

G by adding an external node, hereinafter referred as node
0, which represents the external environment. In the super-
graph Ḡ, any arc entering or leaving the original graph G is
not “floating”, but is connected with node 0. See, e.g., Fig. 3.
In view of Assumption 2, we know that the optimal solution
ū to (5) is unique and that we can consider the network
capacity constraints to be 0 ≤ u ≤ d+1̄.

Then, we define the residual graph R(ū) associated with
the flow ū [1]: R(ū) includes the same nodes and arcs as Ḡ.
In addition, each arc of R(ū) has the same capacity as the
corresponding arc of Ḡ, and they have:
• opposite direction if ūk = d+,
• the same direction if ūk = 0.

It follows that a feasible flow ū+ v in Ḡ is associated with
any feasible flow v in the residual graph R(ū).

As an example, given the super-graph Ḡ depicted on the
left in Fig. 3 with a flow ū along the shortest path, which is
the one connecting nodes 1-2-3, the corresponding residual
graph R(ū) is the one on the right in Fig. 3.

Define a circulation in the residual graph as a flow along
an oriented cycle of R(ū). Let the vector c represent the
associated cycle as follows. For each arc k in R(ū)

ck :=


1 if k is in the cycle with same orientation in R(ū) and Ḡ,
−1 if k is in the cycle with opposite orientation in R(ū) and Ḡ,
0 if k does not belong to the cycle.

For example, the vectors associated with the two circula-
tions 1-0-2-1 and 1-3-2-1 in the residual graphR(ū) of Fig. 3
are [−1 1 − 1 0 0]> and [0 0 − 1 − 1 1]>, respectively.

Theorem 1 ([1]): A flow ū is optimal if and only if the
residual graph has no circulation with negative cost: γ>c ≥ 0
for any circulation. Moreover, any other non-optimal flow
is u = ū + v and has cost γ>u = γ>ū + γ>v = γ>ū +∑
k γkckwk, wk ≥ 0, i.e., vector v is a positive combination

of the circulations. �
As a consequence [1], the solution is strict if and only if
the circulation cost is strictly positive: γ>c > 0 for any
circulation in the residual graph. It turns out that the cone
in (6) is generated by circulations. Then if the entries of γ
are integers, and ū is strictly optimal, the vector γ>C has
positive integer components that are all lower bounded by 1,
and condition (8) is implied by the stronger condition:

δ <
1

nd+
. (9)

Therefore we provide a bound for δ that does not depend on
the network structure.

Proposition 3: Under Assumptions 1-3, let ū be the opti-
mal solution to (4) with δ = 0. Then, ū is optimal for the
same problem when δ 6= 0, if condition (9) holds. �

Since Assumption 2 is quite strong, let us now drop it
and compute again the value of ∆J for u ∈ U \ U , that
is, for u that can be expressed as u = ū + v̂, where v̂ is
any feasible flow in R(ū) such that γ>ū 6= 0. Let Ĉ be
the generating matrix of the flows v̂. Then, for u ∈ U \
U , we have ∆J = J(u) − J(ū) = γ>u + (δ/2)‖u‖22 −
γ>ū− (δ/2)‖ū‖2 = (γ>u− γ>ū) + (δ/2)(‖u‖22 −‖ū‖22) =
γ>v̂ + δū>v̂ + (δ/2)‖v̂‖22 = γ>v̂ + δū>v̂ = [γ + δū]

>
Ĉŵ,

ŵ ≥ 0. Assumption 3 guarantees that γ>Ĉ ≥ 1. Also, the
components of the vector ū>Ĉ can be lower bounded by
−md+. Indeed, all entries of Ĉ are in the set {−1, 0, 1} and
the bounds u+ on the arc capacities may force all the entries
of ū to be different from 0.

Hence, we can conclude that ∆J > 0, for u ∈ U \ U , if

[γ + δū]
>
Ĉ ≥ (1−md+δ)1̄> ⇒ δ <

1

md+
. (10)

The optimal solution to (4) cannot belong to U \ U when
condition (10) holds, as formalised next.

Proposition 4: Under Assumptions 1 and 3, let U be the
polyhedron of the optimal solutions to (4) with δ = 0. Then,



Fig. 4. The time evolution of the arc flows ui in the graph in Fig. 1
according to our dynamic algorithm spontaneously leads to the exact
minimum cost solution. At time T = 40, arc 7 undergoes a failure.

if condition (10) holds, U includes the optimal solution to
the same problem when δ 6= 0. �

D. Robustness, multiple demands and shortest path

The proposed control provides sparse flow solutions. If
a) d has a single nonzero component d1 = d+,
b) B is a generalised incidence matrix,
c) u− = 0 (positivity constraint),

then the optimal solution asymptotically converges to the
flow corresponding to the shortest path from the source node
to the sink node as long as this flow does not saturate the ca-
pacity of any arc. If we consider larger values of the demand
such that some link saturates, then the flow is automatically
re-distributed to other arcs. The proposed control scheme
is then able to dynamically determine the shortest path in a
decentralised fashion, without explicitly resorting to standard
shortest path algorithms, such as Dijkstra’s.

The proposed flow algorithm has a different nature with
respect to primal shortest path algorithms. No information
about the distance to the sink node is available, not even
asymptotically, at the nodes, which ignore the identity of the
sink. Moreover, the algorithm is robust to failures. If at some
point an arc fails, the flow is re-directed to a different path
(the new optimal one), achieving a resilient network [9].

Example 2: Reconsider the problem in Example
1, along with Fig. 1. If the weights are γ =
[1 1 1 3 3 3 1 3 3 3 3 1 3 3 1 3]>, and the demand
is d8 = 2.5, the exact solution to the optimisation problem
is: ū = [1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0]>,
which corresponds the shortest path. We apply the proposed
dynamic flow algorithm with δ = 0.1: the corresponding
time evolution of u is shown in Fig. 4, and the asymptotic
value is identical to ū. Indeed, asymptotically only u1, u2,
u3, u7, u12 and u15 are equal to 2.5, while all the other
flows converge to zero. At time T = 40, arc 7 undergoes a
failure. The flow is then redirected. The new path crosses
the arcs 1, 2, 6, 12 and 15, corresponding to new (optimal)
ū = [1 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0]>. �

IV. TRANSIENT OPTIMALITY

We now analyse the behaviour of the proposed decen-
tralised strategy in the transient, before the steady-state is
reached. We have seen that our algorithm, in the presence of
concentrated demands, supplies the flow along the shortest

path. Clearly, highly concentrated demands may create a
network shortage (or excess) in terms of stored goods.

To consider optimality in the transient, we introduce an
auxiliary scalar variable ξ(t) := η>x(t)− ρ, where η ∈ Rn
is a weighting vector and ρ is a constant, with dynamics

ξ̇(t) = η>ẋ(t) = η> (Bu(t)− d) . (11)

The variable η>x(t) is the weighted sum of buffer levels,
whose desired value is ρ, so that ξ̄ = 0 is the target level for
ξ. For instance, if η = [1 1 . . . 1]>, then ξ = η>x− ρ = 0
means that the total amount stored in the buffers is ρ. Without
restriction (since it can always be achieved by translating the
reference) we assume ρ = 0. If a deviation occurs, due to
an accidental event (flood), then suddenly ξ 6= 0, and the
controls should restore the zero condition as soon as possible.
This can be done by the control

ubb(t) = ext
[
−B>ηξ(t)

]
, (12)

where the extremum function ext[·] is defined as

ext[vi] :=

{
u+
i , if vi ≥ 0,
u−i , if vi < 0.

Theorem 2: The control (12) ensures that the target ξ = 0
is monotonically reached in minimum time, and minimises∫∞

0
|ξ(t)|dt, as well as

∫∞
0
|ξ(t)|2dt. �

Proof: Consider the candidate Lyapunov function
V (ξ) := ξ2. Its time derivative is V̇ = 2ξξ̇ = 2ξη>ẋ =
2ξη> (Bu− d). Consider the case ξ(0) > 0 (an analogous
reasoning holds in the case ξ(0) < 0). The control (12) min-
imises the Lyapunov derivative: minu∈U 2ξη> (Bu− d) =
2ξη> (Bubb − d) < 0, where the negative sign depends on
Assumption 1, since η> (Bū− d) = 0 and ū ∈ int (U).

Also, ubb is constant as long as ξ(t) > 0 and does not de-
pend on x(t). Hence, ξ(t) converges to 0 with constant nega-
tive slope η> (Bubb − d), ξopt(t) = ξ(0) + η> (Bubb − d) t,
and in finite time T (ξ(0)) = − ξ(0)

η>(Bubb−d)
> 0. Any other

choice of u leads to a trajectory such that ξ(t) ≥ ξopt(t),
hence optimality follows.

The dynamics in (11) can be added to the original sys-
tem (1) and the above theory applies to the extended system{

ξ̇(t) = η>ẋ(t) = η> (Bu(t)− d)

ẋ(t) = Bu(t)− d
(13)

The resulting control is

u(t) = sat
[
φ
(
−B>x(t)−B>ηξ(t)

)]
. (14)

By scaling η = αη0 for some α > 0 large enough, the domi-
nant portion of the control is u(t) ≈ sat

[
φ
(
−B>αη0ξ(t)

)]
,

which, for α→∞, converges point-wise (or in L1-norm) to
the extremum function: sat [φk (−αv)] → ext[v]. Therefore,
the control compromises the buffer and the links perfor-
mances. The implementation of the technique requires that
the information about the variable ξ(t) is communicated to
all local controllers. To analyse convergence we perform a
change of variables and we consider the new state vector[

ω(t)
y(t)

]
=

[
ξ(t)− η>x(t)
(I + ηη>)x(t)

]
.
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Fig. 5. A: Graph with 15 nodes and 30 arcs. Green arcs identify the shortest (minimum-cost) path from the source node (yellow) to the sink node (red).
The arrows on the arcs represent the direction of the flow. Evolution of state (B) and arc flows (C) for system (1) with control strategy (3). Evolution of
auxiliary state variable (D), state (E) and arc flows (F) for system (13) with control strategy (14) (η scaled with α = 10).

The first component ω obeys ω̇(t) = ξ̇(t)−η>ẋ(t) = 0, and
therefore ω(t) = ω̄ = 0. So we need to analyse the behaviour
of x. If we initialise ξ(0) so that ω(0) = ω̄ = 0, namely as
ξ(0) = η>x(0), the variable y(t) evolves according to ẏ(t) =

(I+ηη>)

[
Bsat

[
φ
(
−B>(I + ηη>)x

)]
−d

]
. Introduce B̂ =

(I + ηη>)B and d̂ = (I + ηη>)d to get a system exactly
in the previous form ẏ(t) = B̂sat

[
φ
(
−B̂>y

)]
− d̂. Hence

stability is ensured by adopting V (y) = y>y/2.
Remark 5: In the x space, the level curves of the Lya-

punov function y>y/2 = x>(I + ηη>)2x are squashed in
the direction η, hence are similar to a “flat ellipsoid” with
minor axis directed as η: this explains the behaviour of x. �

V. NUMERICAL SIMULATIONS

We consider the network in Fig. 5A and compare the
behaviour of the original system (1) with the control (3),
and the behaviour of the augmented system (13) with the
control (14). As expected, the transient behaviour of the
two systems is considerably different, both for the state
x(t) and the control input u(t); as shown in Fig. 5D, the
auxiliary variable ξ(t)→ 0. However, even though the values
achieved as x(t)→∞ are different (see Fig. 5B and E), both
control strategies correctly activate the arcs associated with
the shortest path (see Fig. 5C and F). As evidenced in Fig. 5F,
the effect of the correction term −B>ηξ in the control (14)
not only does not compromise the convergence of u(t)→ ū,
but speeds up the transient with respect to control (3).

VI. CONCLUSION

We have proposed a network-decentralised flow control
strategy capable of directing the flow along the shortest path.
This strategy has the advantage that, in the presence of large
demands concentrated in a single node, the supply follows
the fastest route. This strategy is resilient since, in case of
failure of some arcs, the flow is dynamically redirected along

the new shortest path. We have also shown that a suitable
modification of this control keeps the overall amount of
resource stored in the network close to a target level.
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