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Abstract— We describe an approach to stabilize a bistable bi-
ological system near its unstable equilibrium using a molecular
feedback controller. As a case study we focus on the classical
toggle switch by Gardner and Collins. The controller relies
on two parallel sequestration motifs, which yield two control
species influencing the production rates of the toggle switch
proteins. We show that the controller reshapes the equilibrium
landscape to a single equilibrium. With numerical simulations
we illustrate the effectiveness of our approach in stabilizing the
closed-loop system around this unique equilibrium, which falls
in a neighborhood of the toggle switch unstable equilibrium, if
the controller parameters are properly tuned.

I. INTRODUCTION

Bistable systems are very common in biology. Bistability
is found, for example, in metabolic networks [1], in cellular
processes such as division and differentiation [2], [3], and in
cellular communities [4]. Bistability means that the system
commits to either of two stable states, restricting the range of
possible responses to environmental stimuli, and in this sense
it can be seen as a source of robustness. However, there are
cases in which bistability may be undesirable: tumor growth,
for instance, can be promoted by a switch to a high energy
metabolism [5]; in microbial consortia, a particular strain
may cause a population-level switch and take over another,
more beneficial microorganism [4].

Advances in synthetic biology and molecular program-
ming have made it possible to build artificial systems with
biomolecules (DNA, RNA and proteins) presenting ratio-
nally designed interactions. This includes kinetic interac-
tions, opening up many opportunities to build arbitrary bio-
chemical dynamical systems, including molecular feedback
controllers [6], [7]. Building on these advances, we examine
the problem of controlling the behavior of a bistable system
using a reaction network that operates as a biomolecular con-
troller, and makes it possible to tune the dynamic and steady
state behavior of the bistable process without requiring its
direct redesign.
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We consider the well known Gardner and Collins toggle
switch as a simple test case [8]. We use a molecular
controller that relies on two parallel layers of sequestration
reactions [9], [10]. The controller senses the concentration
of one of the species of the bistable switch, and produces
two control outputs that influence both species of the toggle
switch. Sequestration reactions are known to be an effective
approach to build molecular controllers [11], [12], [7], [6].
Each sequestration layer of the controller described here is
similar to the antithetic integral controller proposed in [13];
we include degradation of each participating species, and
each sequestration layer provides a control output.

In Section II, we describe our general approach and
provide relevant background. Section III reports our main
results. Our simulation methods and parameters are in Sec-
tion IV, and a brief discussion is in Section V.
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Fig. 1. A. We demonstrate regulation of a canonical bistable gene network
to operate near its unstable equilibrium by using a molecular controller that
provides two inputs U1 and U2. B. By introducing a molecular controller,
we force the equilibrium landscape of the closed loop system to present a
single, stable equilibrium in a neighborhood of the unstable equilibrium of
the toggle switch in isolation.

II. APPROACH AND BACKGROUND

Fig. 1 A illustrates our approach to control the behavior
of a bistable process. In our molecular bistable system, as
usual, an unstable equilibrium is sandwiched between two
stable equilibria. By introducing a controller, consisting of
two control inputs with opposite effects on the state of
the system, we would like to induce a stabilization of the
unstable equilibrium. In practice, however, we will show
that if the controller parameters are chosen appropriately,
the closed loop system can undergo a transformation of the
equilibrium landscape and can transition to a single, stable
equilibrium point, as sketched in Fig. 1 B. Thus, by adding
a molecular control loop we can radically transform the
behavior of the process, without directly engineering the
process itself. This may be important in applications in which
genetically modifying a bistable process may be challenging
or impossible due to its complexity, or in which mutating
promoters may cause unknown perturbations to the host. In



the rest of this paper, we indicate molecular species with
capital letters, and their concentration with the corresponding
lowercase letter.

A. Parallel modules for molecular sequestration

Each molecular sequestration module consists of two
species Ui and Xi, which mutually sequester with rate
constant γi, i = 1, 2, forming a waste complex. The modules
are illustrated in Fig. 2. In the first module, species X1 is
produced at a constant rate θ; in the second module, U2

is produced from an input species Y , with unitary reaction
rate constant for illustrative purposes. In the second module,
species X2 is produced from the input species Y with a
unitary reaction rate constant, while U2 is produced at a
constant rate θ. We assume, for simplicity, that all species are
degraded at the same rate φ. The list of chemical reactions
describing the two modules is:

∅ Y−−−⇀ U1 ∅ θ−−−⇀ X1 Production

U1
φ−−−⇀ ∅ X1

φ−−−⇀ ∅ Degradation

U1 +X1
γ1−−−⇀ ∅ Sequestration

∅ θ−−−⇀ U2 ∅ Y−−−⇀ X2 Production

U2
φ−−−⇀ ∅ X2

φ−−−⇀ ∅ Degradation

U2 +X2
γ2−−−⇀ ∅ Sequestration

Using the law of mass action, we can write the correspond-
ing Ordinary Differential Equations (ODEs):

u̇1 = y − γ1u1x1 − φu1, (1)
ẋ1 = θ − γ1u1x1 − φx1, (2)
u̇2 = θ − γ2u2x2 − φu2, (3)
ẋ2 = y − γ2u2x2 − φx2. (4)
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Fig. 2. Simulations examining the performance of a two-layer molecular
controller based on sequestration. Left: schematic of the controller modules
described in Equations (1)-(2). Right: Sensitivity analysis of the input-output
map of each controller module, when a single parameter is varied. Orange
lines correspond to u1 (the output of Module 1), and blue lines correspond
u2 (the outpt of Module 2). Ultrasensitivity of the response can be improved
when φi is small, and γi is large, i = 1, 2. The threshold of the controller
response is determined by θ, which has an “opposite” effect on the output
of each module.

Molecular sequestration in each module generates an
ultrasensitive input-output map with a tunable threshold if
the sequestration rates γi, i = 1, 2 are sufficiently fast [14].
When the concentration of species U1 is larger than the

concentration of species X1, then X1 should be completely
sequestered, while U1 is still available for downstream
(slower) reactions; conversely, if the concentration of X1 is
larger than that of U1, all U1 is sequestered allowing only
X1 to participate in other reactions (Fig. 2). Overall, the less
abundant species defines the tunable threshold [14]. Next, we
derive approximated steady-state expressions that describe
the input-output map of the modules.

1) Steady state analysis of the parallel molecular seques-
tration modules: Next, we aim to find expressions for the
steady states ū1 and ū2 as a function of a constant input
concentration ȳ. To do this, we set Equations (1) and (2)
equal to zero (u̇1 = ẋ1 = 0), and we find:

x̄1 =
y − φū1
γ1ū1

=
θ

γ1ū1 + φ
,

The value of ū1 can be computed by finding the roots of
a second order polynomial equation a1ū21 + b1ū1 + c1 = 0,
where a1 = 1, b1 = φ/γ1 + (θ−y)/φ and c1 = −y/γ1. The
constant term c1 is always negative, resulting in a single
positive solution, ū1 = 1

2a1

(
−b1 +

√
b21 − 4a1c1

)
. If γ1 is

very large (γ1 � 1, γ1 � φ), then c1 ≈ 0 and b1 ≈ (θ−y)φ,
hence the solution can be approximated as:

ū1(y) ≈ |b1| − b1
2

=

{
0 if y < θ

(y − θ)/φ if y ≥ θ
(5)

Following similar steps, we set Equations (3) and (4) equal
to zero (u̇2 = ẋ2 = 0), and find

x̄2 =
θ − φū2
γ2ū2

=
y

γ2ū2 + φ
.

The steady state ū2 can be found by finding the roots of the
second order polynomial equation a2ū

2
2 + b2ū2 + c2 = 0,

where a2 = 1, b2 = φ/γ2 + (y− θ)/φ and c2 = −θ/γ2. The
constant term c2 is always negative, resulting in a single
positive solution, ū2 = 1

2a2

(
−b2 +

√
b22 − 4a2c2

)
. If γ2 �

θ and γ2 � φ, then c2 ≈ 0 and b2 ≈ (y − θ)/φ, hence the
solution can be approximated as:

ū2(y) ≈ |b2| − b2
2

=

{
(θ − y)/φ if y ≤ θ
0 if y > θ

(6)

Overall, the approximated expressions (5) and (6) highlight
that the controller output is either very small or proportional
to the difference between y and θ when the input y exceeds
(first module) or is below (second module) the threshold
θ. Simulations illustrating the steady state response of the
controller modules are in Fig. 2, right (simulation parameters
are in Table II). The modules present an “opposite” output
trend with respect to the threshold θ.

When y = θ, the exact expression of ui (without intro-
ducing approximations) is

ui(θ) =
−φ/γi +

√
(φ/γi)2 + 4θ/γi

2

and it is apparent that, in the limit of γi →∞, ui(θ)→ 0.



B. The Gardner and Collins toggle switch

For the reader’s convenience, we shortly describe the well-
known Gardner and Collins’ toggle switch [8]. It consists
of two species Y1 and Y2 that repress each other. A Hill
function describes the repression kinetics, with a maximum
production rate α1 and α2, a dissociation constant κ1 and
κ2, and Hill exponent n.

∅ α1∗−−−⇀ Y1 ∅ α2∗−−−⇀ Y2 Production

Y1
φ−−−⇀ ∅ Y2

φ−−−⇀ ∅ Degradation

where α∗
1 = α1

κn
2

κn
2 +y

n
2

and α∗
2 = α2

κn
1

κn
1 +y

n
1

. Using the law
of mass action we can write the ODEs:

ẏ1 = α1
κn2

κn2 + yn2
− φy1 (7)

ẏ2 = α2
κn1

κn1 + yn1
− φy2 (8)

These equations can be normalized by defining ŷ1 = y1/κ1,
ŷ2 = y2/κ2, α̂1 = α1/(κ1φ), α̂2 = α2/(κ2φ), and rescaling
time as τ = φt:

dŷ1
dτ

= α1
1

1 + ŷn2
− ŷ1 (9)

dŷ2
dτ

= α2
1

1 + ŷn1
− ŷ2 (10)

The steady states of these equations are:

ỹ1 =
α̂1

1 + ỹn2
, ỹ2 =

α̂2

1 + ỹn1

In the rest of this paper we assume that the parameters of
the toggle switch are chosen to guarantee bistability. When
α̂1 = α̂2 = α̂, the condition for bistability [15] is

α̂ > n

√
nn

(n− 1)n+1
for n > 1

When α̂1 and α̂2 are different and n = 2, the condition for
bistability [16] depends on a third order polynomial,

a1α̂
3
1 + a2α̂

2
1 + a3α̂1 + a4 < 0,

where a1 = 256, a2 = −3(9α̂2
2 + 32α̂2 − 256), a3 =

−96(α̂2
2 + 29α̂2 − 8) and a4 = 256(α̂2 + 1)3.

III. STABILIZATION OF A TOGGLE SWITCH

We now describe the model for the closed loop system in
which the toggle switch in Equations (7)-(8) is the process
we want to control using two molecular sequestration mod-
ules, which are similar to those described in Equations (1)-
(4). The architecture is sketched in Fig. 3.

From an implementation point of view, the controller
species Ui and Xi, i = 1, 2 are expected to be RNA
molecules, which can be designed to include domains for
mutual sequestration as well as domains for translation. The
controller output species, as before, are U1 and U2; these
species produce respectively Y1 and Y2 at rate constants β1
and β2; this assumption is reasonable if the controller species
are RNA molecules that are translated into proteins Y1 and

Y2. The production of U1 is repressed by Y1, rather than
being produced at a rate that is linear in Y1 as in the original
model at Equation (1); this choice is convenient in practice,
because Y1 operates as a repressor within the toggle switch,
so naturally U1 could be regulated by the same promoter
repressed by Y1. U1 is also sequestered by the controller
species X1, which is produced at a constant reference rate θ.
The second module of the controller produces species U2 at
a constant rate of θ, while the production of X2 is repressed
by Y1 (like in the case of U1); in addition, species U2 and
X2 sequester each other. All the species decay at rate φ.

Toggle switch

Controller
1

Controller
2

Biomolecular
Process

Controller 1

Controller 2

Controller architecture Feedback controller

Fig. 3. Left: Architecture of the closed loop system that relies on two
control species U1 and U2. Right: More detailed schematic of the closed
loop system.

The ODEs corresponding to the closed loop system are:

ẏ1 = α1
κn2

κn2 + yn2
− φy1

Control input 1︷ ︸︸ ︷
+β1u1 (11)

ẏ2 = α2
κn1

κn1 + yn1
− φy2

Control input 2︷ ︸︸ ︷
+β2u2 (12)

u̇1 = α2
κn1

κn1 + yn1
− γ1u1x1 − φu1 (13)

ẋ1 = θ − γ1u1x1 − φx1 (14)
u̇2 = θ − γ2u2x2 − φu2 (15)

ẋ2 = α2
κn1

κn1 + yn1
− γ2u2x2 − φx2 (16)

The model above can be made nondimensional by defin-
ing the following variables: ŷ1 = y1/κ1, ŷ2 = y2/κ2,
α̂1 = α1/(κ1φ), α̂2 = α2/(κ2φ), β̂1 = β1/(κ1φ), β̂2 =
β2/(κ2φ), γ̂1 = γ1/φ, γ̂2 = γ2/φ, θ̂ = θ/φ, and τ = φt.
This leads to the ODE system:

dŷ1
dτ

=
α̂1

1 + ŷn2
− ŷ1+β̂1u1 (17)

dŷ2
dτ

=
α̂2

1 + ŷn1
− ŷ2+β̂2u2 (18)

du1
dτ

=
α̂2

1 + ŷn1
− γ̂1u1x1 − u1 (19)

dx1
dτ

= θ̂ − γ̂1u1x1 − x1 (20)

du2
dτ

= θ̂ − γ̂2u2x2 − u2 (21)

dx2
dτ

=
α̂2

1 + ŷn1
− γ̂2u2x2 − x2 (22)

In the rest of the paper we will work with the nondimensional
model (17)–(22).



A. Steady state analysis of the closed loop system

1) The toggle switch with inputs admits one or three
equilibria: We restrict our attention to the toggle switch
model that includes two additive inputs. We show that in the
presence of bounded inputs, the toggle switch can present
either one or three steady states. Starting from model (17)–
(22), we focus on Equations (17)-(18) and we define u∗i =
β̂iui, obtaining the following ODES:

dŷ1
dτ

=
α̂1

1 + ŷn2
− ŷ1 + u∗1 (23)

dŷ2
dτ

=
α̂2

1 + ŷn1
− ŷ2 + u∗2. (24)

The following proposition holds.
Proposition 1: System (23)-(24), in which n = 2, and u∗i ,

i = 1, 2 are nonnegative bounded constants, admits either
one or three equilibrium points.

Proof: The equilibria of system (23)-(24) are the
solutions ỹi, i = 1, 2 of the following equations:{

ỹ1 = u∗1 + α̂1

1+ỹ22

ỹ2 = u∗2 + α̂2

1+ỹ21
.

(25)

We derive a polynomial equilibrium condition, whose only
variable is ỹ1:

P (ỹ1) = a5ỹ
5
1 − a4ỹ41 + a3ỹ

3
1 − a2ỹ21 + a1ỹ1 − a0 = 0,

in which a5 = 1 + u∗22 , a4 = α̂1 + u∗1 + u∗1u
∗2
2 , a3 =

2(1 + α̂2u
∗
2 + u∗22 ), a2 = 2(α̂1 + u∗1 + α̂2u

∗
1u

∗
2 + u∗1u

∗2
2 ),

a1 = 1 + (α̂2 +u∗2)2, and a0 = α̂1 +u∗1 +u∗1(α̂2 +u∗2)2. All
coefficients αi, i = 1, .., 5 are positive, for arbitrary choices
of the system reaction rate constants and parameters. First,
since this is an odd-degree polynomial, it must have at least
one real solution. Because P (−ỹ1) has no sign changes,
the polynomial does not admit any negative real solution.
Thus, the polynomial always admits at least one real positive
solution. Using the Descartes rule, since there are 5 sign
changes in the coefficients of P (ỹ1), there can be at most 5
real positive solutions (they could be 5, 3, or 1). To quantify
their number, we build the Routh Table I, in which we define:

b1 =
a4a3 − a2a5

a4
=

2α̂1α̂2u
∗
2

α̂1 + u∗1 + u∗1u
∗2
2

> 0

b2 =
a4a1 − a0a5

a4
=
α̂1α̂2(α̂2 + 2u∗2)

α̂1 + u∗1 + u∗1u
∗2
2

> 0

c1 =
a4b2 − a5b2

b1

=
α̂1α̂2 + α̂2u

∗
1 − 2α̂1u

∗
2 − 2u∗1u

∗
2 − 3α̂2u

∗
1u

∗2
2 − 2u∗1u

∗3
2

2u∗2

d1 =
c1b2 + a0b1

c1
=
α̂1α̂

3
2

2u∗2

(
1

c1

)
Because c1 and d1 always have the same sign, the Routh table
always has exactly 3 sign changes, hence there are always
three solutions with positive real part. One must be real, and
we know it is positive. The other two can be either real or
complex. If they are real and positive, then the polynomial

has three positive real solutions, i.e. the system has three
equilibria. If they are complex, then the polynomial has a
single positive real solution, i.e. the system has a single
equilibrium. The polynomial does not admit five positive
real solutions. In conclusion, the system admits either one
or three equilibria (corresponding to the real and positive
solutions of the polynomial).

TABLE I
ROUTH TABLE ASSOCIATED WITH THE POLYNOMIAL EQUILIBRIUM

CONDITIONS FOR SYSTEM (23)-(24)

5 a5 a3 a1
4 −a4 −a2 −a0
3 b1 b2 0
2 c1 −a0 0
1 d1 0 0
0 −a0 0 0

B. Stability analysis of the closed loop system

Here we demonstrate that by tuning the controller it is
possible to force the closed loop system to have a unique,
stable equilibrium.

1) The controller tunes the equilibrium conditions of the
closed loop system: Here we illustrate how a suitable choice
of the controller parameters can force the closed loop system
to admit a single equilibrium. For this purpose, we first
derive equilibrium conditions in the ỹ1, ỹ2 plane and we
show that they intersect at a single point if the controller is
tuned properly.

We start by computing the equilibrium conditions by
setting Equations (17) and (18) equal to zero. After some
manipulation, this yields the two equations

ỹ2 = n

√
α̂1

ỹ1 − β̂1ũ1(ỹ1)
− 1 (26)

ỹ2 =
α̂2

1 + ỹn1
+ β̂2ũ2(ỹ1) (27)

Next, we find ũ1 and ũ2 as a function of ỹ1; we will follow
the same steps taken to derive expressions (5) and (6).

We start with ũ1(ỹ1): we set Equations (19) and (20) equal
to zero (du1

dτ = dx1

dτ = 0), and we find:

x̃1 =
α̂2(ỹ1)− ũ1

γ̂1ũ1
=

θ̂

γ̂1ũ1 + 1
,

where α̂2(ỹ1) = α̂2/(1 + ỹn1 ). This results in a second order
polynomial equation a1ũ21 + b1ũ1 + c1 = 0, where a1 = 1,
b1 = 1/γ̂1 + θ̂− α̂2(ỹ1) and c1 = −α̂2(ỹ1)/γ̂1. The constant
term c1 is negative, resulting in a single positive solution,
ũ1 = 1

2a1

(
−b1 +

√
b21 − 4c1a1

)
. If γ̂1 is very large, c1 ≈ 0

and b1 ≈ θ̂ − α̂2(ỹ1), and the solution can be approximated
as:

ũ1(ỹ1) ≈ |b1| − b1
2

=

{
0 if α̂2(ỹ1) < θ̂

α̂2(ỹ1)− θ̂ if α̂2(ỹ1) ≥ θ̂
(28)



We look for ũ2(ỹ1) by following similar steps. First, we set
Equations (21) and (22) equal to zero (du2

dτ = dx2

dτ = 0), and
we find

x̃2 =
θ̂ − ũ2
γ̂2ũ2

=
α̂2(ỹ1)

γ̂2ũ2 + 1
,

where again α̂2(ỹ1) = α̂2/(1 + ỹn1 ). This yields a second
order polynomial a2ũ22 + b2ũ2 + c2 = 0, where a2 = 1,
b2 = 1/γ̂2 + α̂2(ỹ1) − θ̂ and c2 = −θ̂/γ̂2. The constant
term c2 is negative, resulting in a single positive solution,
ũ2 = 1

2a2

(
−b2 +

√
b22 − 4a2c2

)
. If γ̂2 is very large, c2 ≈ 0

and b2 ≈ α̂2(ỹ1)− θ̂, and the solution can be approximated
as

ũ2(ỹ1) ≈ |b2| − b2
2

=

{
θ̂ − α̂2(ỹ1) if α̂2(ỹ1) ≤ θ̂
0 if α̂2(ỹ1) > θ̂.

(29)

Going back to the equilibrium conditions (26) and (27),
written at the beginning of this section, we can substitute the
approximated expressions for the steady state controller vari-
ables ũ1(ỹ1), expression (28), and ũ1(ỹ1), expression (29).
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Fig. 4. Simulations illustrating the effects of the molecular controller on the
closed loop equilibrium conditions; blue: condition (26), red: condition (27);
gray: trajectories. A) Top left: Equilibrium conditions of the toggle switch
in isolation, i.e. conditions (26) and (27) with ũ1 = ũ2 = 0. Top left and
bottom right: closed loop equilibrium conditions when either β̂1 or β̂2 are
varied. Dashed-dotted lines mark the controller threshold Kc. Bottom right:
closed loop equilibrium conditions and overlapped trajectories that converge
to the single equilibrium when using the nominal parameters (Table II);
dashed lines correspond to the equilibrium conditions of the toggle switch
in isolation, highlighting that the closed loop equilibrium is very close to the
unstable equilibrium of the toggle, given the choice of controller threshold.
B: Effects of increasing β̂i on the closed loop trajectories overlapped to the
equilibrium conditions of the toggle switch in isolation.

In the case of a repressor dimer, n = 2, we define

a threshold Kc =

√
(α̂2 − θ̂)/θ̂, and we note that ũ1 is

positive only if ỹ1 ≤ Kc, and is negligible if ỹ1 exceeds the
Kc. Note that the threshold Kc is determined by the value of
θ̂, which is a reference parameter of the molecular controller.
This means that the equilibrium condition (26) is identical to
the equilibrium condition of the toggle switch in the absence
of inputs when ỹ1 exceeds the threshold Kc. The equilibrium
condition is altered, relative to the no-input case, only if ỹ1
is below the threshold Kc. Conversely, ũ2 is positive only
when ỹ1 ≥ Kc, and negligible when ỹ1 < Kc, thus the
equilibrium condition (27) is identical to the no-input case
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Fig. 5. Simulations illustrating the effects of an aggressive molecular
controller on the closed loop equilibrium conditions. Left column, top: if
β̂i are too large, the unique equilibrium becomes far from the unstable
equilibrium of the toggle in isolation; bottom: by increasing γ̂i (sequestra-
tion rate constant), the controller ultrasensitivity improves (see Fig. 2) and
the closed loop equilibrium becomes closer to the unstable equilibrium of
the toggle switch. Center column: equilibrium conditions overlapped with a
series of trajectories. Right column: Example solutions highlighting that for
large β̂i the overshoot increases (light gray line corresponds to the solution
with β̂i having its nominal value (Table II); dark gray line corresponds to
10β̂i (top) or 10β̂i, 10γ̂i (bottom).

when ỹ1 < Kc, and departs from the no-input condition only
when ỹ1 ≥ Kc.

We now focus on the case in which the Hill coeffi-
cient is n = 2 (dimer repressors in the toggle switch).
Proposition 1 ensures that when n = 2 the closed loop
system presents either one or three equilibria. This means
that the equilibrium conditions (26) and (27) can have either
one or three intersections. If the toggle switch in isolation
does exhibit three equilibria (see Section II-B), then the
equilibrium conditions (26) and (27) with ũ1 = ũ2 = 0 (no-
input case) must have three intersections. In the presence of
a controller, then ũ1 and ũ2 may become non-zero, so the
controller provides an opportunity to alter the shape of the
equilibrium conditions in relation to the controller threshold
Kc. The simplest tuning knob for the controller are the
reaction rates β̂1 and β̂2, which directly amplify the influence
of the controller on the steady state expressions (26) and (27).

In Figs. 4 and 5 we illustrate the qualitative analysis above
with numerical simulations. These simulations indicate that
large βi is beneficial to guarantee a single intersection in
the equilibrium conditions, thus the presence of a single
equilibrium which falls in a neighborhood of the unstable
equilibrium of the toggle switch in isolation (Fig. 4 A) due
to a suitable choice of the controller threshold. However,
if βi are too large, they cause an increase in the distance
of the single closed loop equilibrium from the unstable
equilibrium of the toggle switch in isolation, which may not
be a desirable feature (Fig. 5, left column, top). This effect
can be compensated by increasing the sequestration rates γi,
because they improve ultrasensitivity near the threshold as
shown in Fig. 2 (the larger γi, the closest ui is to zero near
the threshold, i = 1, 2) (Fig. 5, left column, bottom). An



analytical characterization of these phenomena is left for
future work. Parameters for these simulations are listed in
Table II.

2) Stability properties of the closed loop system: We
just showed that the molecular controller can be tuned so
that the closed loop system has a single equilibrium, which
can be found numerically as the unique intersection of the
equilibrium conditions. Naturally, stability of the equilibrium
depends on the eigenvalues of the Jacobian matrix (30)
evaluated at such equilibrium. Applying Gershgorin’s disk
theorem to the columns of Jacobian (30), we can find
the following sufficient conditions for stability: f1 < 1,
f2 < 1/3, β̂1 < 1, β̂2 < 1. These conditions, however,
are just sufficient and not necessary, so they may not be
useful in practice. In fact, the system may be stable also
when f1 and f2 are larger, when β̂1 and β̂2 are suitably
chosen; and we are particularly interested in the values of
β̂i that can stabilize the system in this case. In search of
tighter conditions, we examined the characteristic polynomial
of the Jacobian (30) and applied the Routh Criterion (see
Appendix); the inequalities obtained from the Routh table
suggest that stability is guaranteed in a limited range of β̂i
(instability can occur if they are too low or too high).

With numerical simulations we examined the behavior of
the closed loop system for values of β̂i up to 10-fold the
nominal values listed in Table II (the nominal values were
chosen to guarantee a single equilibrium in closed loop).
These simulations indicate that trajectories converge to the
equilibrium in the entire range of values of β̂i we considered,
as shown in Figs. 4 B and 5. However, for large values of
β̂i, ŷ1(t) presents a significant overshoot, which persists even
when γ̂i are increased (we recall that a large value of γ̂i helps
reduce the distance between the equilibrium of the closed
loop system and the unstable equilibrium of the toggle switch
in isolation, when β̂i are too large).

Although not exact, our analysis indicates that stability
of the closed loop system is robust to controller parameter
variations when a single equilibrium is present.

TABLE II
NOMINAL SIMULATION PARAMETERS OF THE CONTROLLED SYSTEM.

Parameter Description Value Other studies

β1, β2 Production 1.16.10−4 2.710−4 − 1
(/s) [17], [18]

[19], [20]

α1, α2 Maximal 3.85.10−10 2.81−11 − 2.81−8

(M/s) production [21], [22]

θ Production 5.776.10−10

(M/s)

γ1, γ2 Titration 2.91 · 104 104 − 106

(/M/s) [23], [24]

φ Degradation 3.85 · 10−4 10−4 − 10−3

(/s) [25].

κ1, κ2 250
(nM)

n 2

IV. NUMERICAL SIMULATIONS

The ODE models described in this paper were integrated
using MATLAB’s ode23s routine, using the nominal pa-
rameters listed in Table II. Individual parameters were varied
as explained in each simulation figure, leaving all other
parameters fixed and equal to their nominal value. Character-
istic polynomials and the coefficients of Routh tables were
computed with the support of Wolfram Mathematica.

V. DISCUSSION

The recent efforts toward the constructions of molecular
controllers will enable us to engineer robust molecular sys-
tems with diverse applications in biotechnology. Here we
have highlighted that sequestration-based controllers can be
used to stabilize a bistable network in a neighborhood of
its unstable equilibrium. The dynamic behavior of bistable
switches can be controlled with alternative approaches; an
in silico controller regulating inducer concentrations can be
used to commit a bistable gene network to a particular stable
state or to induce switching between steady states [26], [27],
[28]. Theoretical analysis has been dedicated to the problem
of toggling a bistable system using in silico generated pulsed
inputs [29]. Our study provides a molecular circuit approach
to control bistability, in which additional species are used to
build a feedback loop around the bistable process. As many
experimental efforts are being dedicated to characterizing
similar controllers [11], [12], [7], [6], it may be possible
to implement the controller suggested here to reshape the
equilibrium landscape of complex bistable networks.

APPENDIX

Evaluation of the characteristic polynomial of the closed
loop Jacobian matrix The characteristic polynomial of the
closed loop system Jacobian matrix (30) is below, in which
variable ŝ = s+ 1:

PJ(ŝ) = ŝ2(ŝ+ T1)(ŝ+ T2)(ŝ2 −F ) +D1Q1β̂1 +D2Q2β̂2

where T1 = γ̂1(x̃1 + ũ1), T2 = γ̂2(x̃2 + ũ2), F = f1f2,
where f1 and f2 are defined at expression (30). We also
define D1 = f2, D2 = f1f2γ̂2ũ2, Q1 = ŝ2(ŝ+C1)(ŝ+T2),
where C1 = γ̂1ū1, and Q2 = ŝ(ŝ + T1). We can expand
PJ(ŝ) and we obtain:

PJ(ŝ) = ŝ

6∑
i=1

aiŝ
i−1 (31)

where

a6 = 1

a5 = T1 + T2

a4 = T1T2 +D1β̂1 − F
a3 = T2(D1β̂1 − F ) + C1D1β̂1 − FT1

a2 = D2β̂2 + T2(C1D1β̂1 − FT1)

a1 = D2β̂2T1

To determine whether the Jacobian admits eigenvalues
with positive real part, we build the Routh table shown in



J =


−1 −f1 β̂1 0 0 0

−f2 −1 0 0 β̂2 0
−f2 0 −γ̂1x̃1 − 1 −γ̂1ũ1 0 0

0 0 −γ̂1x̃1 −γ̂1ũ1 − 1 0 0
0 0 0 0 −γ̂2x̃2 − 1 −γ̂2ũ2
−f2 0 0 0 −γ̂2x̃2 −γ̂2ũ2 − 1

 f1 =
α̂1nỹ

n−1
2

(ỹn2 + 1)2
, f2 =

α̂2nỹ
n−1
1

(ỹn1 + 1)2
(30)

TABLE III
ROUTH TABLE FOR THE CHARACTERISTIC POLYNOMIAL (31)

5 a6 > 0 a4 a2
4 a5 > 0 a3 a1 > 0
3 b1 > 0 b2 0
2 c1 a1 > 0 0
1 d1 0 0
0 a1 > 0 0 0

Table III, in which the following coefficients were computed
and examined using Wolfram Mathematica:

b1 =
a5a4 − a3a6

a5
> 0, b2 =

a5a2 − a1a6
a5

c1 =
a3b1 − a5b2

b1
, d1 =

c1b2 − a1b1
c1

.

To guarantee that no eigenvalue has a positive real part, both
c1 and d1 should be positive. Because we focus on the role of
the controller parameters β̂i, we rewrite coefficients c1 and
d1 isolating β̂i, and we find that c1 and d1 are second order
polynomials of β̂1 and β̂2. Some of the coefficients of these
polynomials are sign definite, others are not. Specifically:
c1 = β̂2

1 ± ξ1β̂1 − ξ2β2, and d1 = β̂2
2 − ξ3β̂2 − ξ4, where

ξ3 = ζ1(β̂2
1 ± ζ2β̂1 ± ζ3) and ξ4 = ζ4β̂1(β̂2

1 ± ζ5β̂1 ± ζ6).
We use the ± notation to emphasize that the following term
could be positive or negative. Because c1 has a positive
dominant term, then for large β̂1, c1 can become positive.
However, when β̂1 is larger enough to make c1 positive, d1
could become negative. When β̂2 is large, it can make d1
positive, but also make c1 negative. This suggest that there
is a bounded range of values of β̂i, i = 1, 2 for which c1
and d1 are positive and the equilibrium is stable.
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