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I. Abstract
We present a revised analysis of Negative Capacitance (NC)

in ferroelectric-insulator capacitors, and particularly of the dif-
ference between systems with and without a metal interlayer.
We develop a model accounting for the three-dimensional
electrostatics and report analytical and numerical results based
on Landau-Ginzburg equations. Our results explain the lack
of NC operation in capacitors having an interlayer metal,
compare well with recent experiments and enlighten the role
of traps at the ferroelectric-oxide interface.

II. Introduction
Recent experiments on Metal-Ferroelectric-Insulator-Metal

(MFIM) structures claimed a direct observation of NC
operation [1], [2], but other contributions focused on
Metal-Ferroelectric-Metal-Insulator-Metal (MFMIM) capaci-
tors negated any evidence of NC operation [3], or proposed
that the alleged NC effects are always due to domains switch-
ing [3]–[6]. From a theory perspective it was argued that
domain nucleation is much more likely to occur in a MFMIM
than in a MFIM system [7], but such conclusions relied on
the inspection of energy landscapes of a one-dimensional
system, rather than on actual dynamic equations. Hence NC
stabilization of ferroelectrics is still actively debated [8].

We here present a study of the NC operation in MFIM
and MFMIM systems. First we develop a model based on
the Landau-Ginzburg (LG) theory that accounts for the three-
dimensional electrostatics. Then we derive analytical condi-
tions for a stable NC operation and provide physical insight
by solving numerically the LG equations. Our results explain
the lack of NC operation in MFMIM capacitors and compare
well with experiments [1], [2]. We also show that traps at the
ferroelectric-oxide interface may play an important role.

III. Dynamic equations for ferroelectric domains
By following [7], we write the free energy per unit volume
of the ferroelectric as in Eq.1, where P is the spontaneous
polarization, α<0, β and γ are the ferroelectric anisotropy
constants, EF , εF are respectively the electric field and relative
background permittivity of the ferroelectric, while k is the
coupling constant governing the domain wall energy. When we
consider the MFIM and MFMIM systems sketched in Fig.1 the
overall electrostatic energy consists of the three contributions
defined as in Eq.2 [9], namely the ferroelectric self-energy UF ,
the term UB of the external battery, and the depolarization
energy UD (which is zero in a MFM structure). In Eq.2

EF,T (r̄)=EF,z(r̄,−tF ) is the electric field at the top metal
interface and nD is the number of domains. When we sum
UF , UB , UD and normalize to the domain area d2 we obtain
Eq.3. Eq.4 reports the contribution, uW,i, of domain i to the
domain wall energy obtained by discretizing the gradient of
the polarization in Eq.1, where w is the domain wall width
shown in Fig.2. We then integrate uW,i over the domain wall
region delimited by the red line in Fig.2 and along tFe, and
then normalize to d2, and thus obtain UW in Eq.4.

The difference between the MFM, MFIM and MFMIM
systems is in the UET defined in Eq.3. In a MFM
the last term in Eq.3 is zero and EF,T =VT /tF , so that
UET =−VT

∑nD

j=1 Pj−(nD CF V
2
T )/2 with CF =ε0εF /tF .

For the MFMIM structure the metal interlayer results in
a one dimensional electrostatics, so that EF,T and VD are
independent of r̄ and we have EF,T =(CDVT−PAV )/(tFC0),
VD=(CFVT + PAV )/C0 [7], where PAV =(

∑nD

j=1 Pj)/nD is
the average polarization, CD=ε0εD/tD and C0=(CD+CF ).
This readily leads to the UMFMIM

ET in Eq.5, with C−1
S =C−1

F +
C−1

D . For the MFIM system the electrostatics is three
dimensional and the Appendix sketches a derivation of
UMFIM
ET in Eq.5, where capacitances Ci,j obey the sum rule∑nD

i,j=1(1/Ci,j)=nD/C0. In this work the Ci,j were evaluated
numerically for each MFIM, and then used in all analyses.

The overall free energy can be finally written as
UT =

∑nD

j=1

(
αP 2

j + βP 4
j + γP 6

j

)
+UW +UET , with UET and

UW given by Eqs. 4, 5, and the LG equations are readily
given by Eqs.6,7,8, where Eq.6 implicitly defines ∂ULG.
When tD tends to zero, 1/C0 and 1/Cj,h also tend to zero
while [CD/C0] tends to one, so that Eqs.7,8 simplify to Eq.6.
For nD=1 Eqs.7,8 are identical and the MFMIM and MFIM
systems are equivalent, furthermore the UW in Eq.4 is zero
and Eqs.7,8 simplify to the single domain equation [7].

IV. Conditions for a stable NC operation
The stable NC operation can be evaluated by inspecting the
three Jacobian matrices, J, of Eqs. 6, 7, 8 evaluated for Pi=0
in all domains1, which have the expressions in Eq.9, where
I is the identity matrix while L is the Laplacian matrix2.
Moreover, the matrix Odep is the all-ones matrix, whereas the
entries of Cdep are defined as Cdep(i, j)=

[
C−1

i,j + C−1
j,i

]
/2.

1The Jacobian matrix of the system of dynamic equations
dPi/d t=fi(P1, · · ·PnD) is defined component-wise as J(i, j)=∂fi/∂Pj .

2L is defined component-wise as L(i, j)=−1 if domain j is a neighbour of
domain i and L(i, j)=0 otherwise (see Fig.1), and L(i, i)=−

∑
j 6=i L(i, j).
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The matrices Odep and Cdep denote the remarkably different
contributions of the depolarization energy to the Jacobian of
respectively the MFMIM and MFIM system. The eigenvalues
of the symmetric J matrices are real valued and the stability
for all Pi=0 requires that the largest eigenvalue σmax(J) be
negative [10], resulting in the inequalities of Eqs.10, where
σmin denotes the smallest eigenvalue of a matrix.
MFM system. The eigenvalues of L are known analytically
and the smallest and second smallest eigenvalue are σ0(L)=0
and σ1(L)=[2sin(π/(2

√
nD) )]

2 [11]. Hence, as expected, in
virtue of Eq.10 the MFM cannot have a stable NC operation.
MFMIM system. Due to the specific form of Odep, analytical
eigenvalues for [(tF k)/(dw)L + Cdep] can be derived (not
shown), and the stability condition is given by Eq.11. Hence
the effect of Odep on stabilization is very limited, in fact,
compared to MFM, Odep can only eliminate the influence of
σ0(L)=0 but not the influence of σ1(L). Eq.11 also affirms that
(1/C0)>2|α|tF is necessary for NC stabilization of MFMIM,
but not at all sufficient. In particular, for a relatively large nD
such that sin(π/(2

√
nD))'π/(2√nD), Eq.11 shows that the

k/w necessary for stability increases proportionally to nD.
MFIM system. For the MFIM structure it is not possible
to derive analytical eigenvalues and stability conditions from
Eq.10, but a numerical analysis shows that Cdep has a much
larger influence on NC stabilization than Odep has for the
MFMIM system. It can be demonstrated (not shown) that
(1/C0)>2|α|tF still is a necessary condition for stability.

All results of this work were obtained for εF =33, εD=23.5,
tF =11.6 nm, tD=13.5 nm, α=−4.6·108 m/F and β=9.8·109

m5/C2/F (i.e. the parameters in [2]), if not otherwise stated.
Fig.3 reports the maximum eigenvalue σmax of the Jacobian

versus the coupling factor k for either MFMIM or MFIM
structures with an area A=2500nm2, and for different nD
and d. MFIM achieves NC stabilization for smaller k values
compared to the MFMIM and has a much weaker sensitivity
to the increase of nD. By evaluating σmax of the Jacobian as
in Fig.3, the design space for a stable NC operation can be
explored for different material and design parameters.

V. Results and insight about a stable NC operation
The huge difference in the NC stabilization of MFMIM and

MFIM systems for large nD is illustrated in Fig.4, showing
that for the MFMIM system the k value required for NC
stabilization increases proportionally to nD and thus the device
areas. This makes NC stabilization practically impossible
for MFMIM systems having areas as those used in recent
experiments [2]–[5]. Fig.5 reports design regions for a stable
NC operation of a MFIM structure in the tD, k plane and
for nD=100. The NC operation is not possible for too thin
oxides because of the necessary condition (1/C0)>2|α| tF .
Moreover, for any tD there exists a minimum k value for NC
stabilization, that becomes independent of tD for tD larger
than about 10 nm. This occurs because the electric field lines
tend to close inside the oxide and the depolarization energy
becomes independent of tD (not shown). The MFIM results

in Fig.5 are insensitive to an increase of nD, whereas for
a MFMIM the k for stability increases proportionally to nD
(see Fig.3), which precludes stability for the k values in Fig.5.
Fig.5 also shows that the empirical formula for MFIM stability
in [7] gives k values in fair agreement with our results.

Eqs.9-11 and Fig.5 describe NC stabilization in the condi-
tion Pi=0 for all domains. We also solved numerically Eqs.7-8
to inspect the steady-state domain configuration corresponding
to VT =0, which is illustrated in Fig.6 for a MFIM and a
MFMIM system with k=2 · 10−9 m3/F and nD=100. Con-
sistently with Fig.5, the steady-state condition for the MFIM
system corresponds to all Pi=0. The MFMIM, instead, is not
stable for all Pi=0, and therefore it evolves to a configuration
corresponding to PAV =(

∑nD

i=1 Pi)/nD'0.
The crucial difference between MFMIM and MFIM systems

is that the depolarization energy of the MFMIM system at
VT =0 is zero if PAV is zero (see Eq.5). Consequently, if the
MFMIM is initialized with all Pi=0, then it gets destabilized
along trajectories having PAV'0 and thus UMFMIM

ET '0,
which is confirmed by the steady-state configuration in
Fig.6(b). The same trajectories are not possible for the MFIM
system because the corresponding UMFIM

ET in Eq.5 is not at
all zero, hence it is the form of the UMFIM

ET which makes the
NC stabilization of the MFIM system possible.

VI. Comparison with experiments
In order to validate our models and the NC stabilization analy-
sis in Sec.V, we now illustrate a comparison with experiments
for the MFIM capacitor in [1], [2]. Simulations correspond
to nD=100 and d2=25nm2, and we verified that results are
practically insensitive to a further nD increase. We used a
deliberately small ρ value to make the ferroelectric time con-
stants negligible, k=2·10−9 m3/F (i.e. stable NC operation, see
Figs.5, 6), and included a fixed charge QDF =−0.15C/m2 at
the ferroelectric-insulator interface [1]. Fig.7(a),(c) report the
charge Q=P+εF ε0EF and field EF versus the VMAX of the
trapezoidal external waveform, and Fig.7(b) shows P versus
EF . The agreement between simulations and measurements is
good for all the main features of the experiments.

We also developed a model for traps at the ferroelectric-
dielectric interface (see Fig.8), with a first order kinetic given
by ∂nt/∂t=cn(NT−nt)−ennt, with nt, NT being trapped
electron and trap density. The relation cn=en exp[(EfB −
ETr)/KT ] ensures that the static trap occupation is in equilib-
rium with Ef,B . Fig.9 shows that by increasing NT the MFIM
tends to deviate from the stable NC region, in which case the
MFIM trajectories become sensitive to the input frequency (see
Fig.10), which is again in qualitative agreement with [2].

VII. Conclusions
We have presented comprehensive revised analysis of stable

NC operation in ferroelectric capacitors, reported analytical
and numerical results and explained why in MFMIM systems
instability seems inevitable. We also show that traps can play
a subtle role in MFIM systems. Good agreement with experi-
ments validate our modelling approach and our conclusions.
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Free energy, r̄=(x, y) Ferroelectric (spontaneous and dielectric): uF = αP 2 + βP 4 + γP 6 + k (∇P )2 +
ε0εF

2
E2

F [J/m3] (1)

Di: area of domain i UF =
VT

2

∫
A ε0εFEF,T (r̄)dr̄ , UB=−VT

[
d2
∑nD

j=1 Pj +
∫
A ε0εFEF,T (r̄)dr̄

]
, UD=

∑nD
j=1

∫
Dj

PjVD(r̄)

2
dr̄ [J] (2)

UET = −
VT

2

1

d2

∫
A ε0εFEF,T (r̄) dr̄ − VT

∑nD
j=1 Pj +

1

d2
∑nD

j=1

∫
Dj

Pi VD(r̄)

2
dr̄ [J/m2] (3)

Domain i: uW,i=k
∑
n

[(Pi − Pn)/w]2 [J/m3] Overall domain wall: UW =
nD∑
i=1

[
tF

2d

∑
n

k

w
(Pi − Pn)2

]
[J/m2] (4)

Electrost. energy UMFMIM
ET =

nDPAV (PAV − VTCD)

2C0
−
CSV

2
T

2
nD , UMFIM

ET =
1

2

nD∑
i,j=1

PiPj

Ci,j
− VT

CD

C0

nD∑
j
Pj −

CSV
2
T

2
nD (5)

Dynamic MFM: tF ρ
dPi

dt
=
∂UT

∂Pi
= −tF

(
2αPi + 4βP 3

i + 6γP 5
i

)
−
tF k

dw

∑
n

(Pi − Pn) + VT = ∂ULG + VT (6)

Landau-Ginzburg MFMIM: tF ρ
dPi

dt
= ∂ULG −

1

nDC0

nD∑
i=1

Pi +
CD

C0
VT (7)

equations MFIM: tF ρ
dPi

dt
= ∂ULG −

1

2

nD∑
j=1

[
1

Ci,j
+

1

Cj,i

]
Pj +

CD

C0
VT (8)

Jacobian matrices JMFM =
1

ρtF

[
−2αtF I−

tF k

dw
L

]
, JMFMIM = JMFM −

1

ρtF

[
Odep

nDC0

]
, JMFIM = JMFM −

[
Cdep

ρtF

]
(9)

Condition for stable MFM:
k

dw
σmin(L) > 2|α|, MFMIM: σmin

[
tF k

dw
L +

Odep

nDC0

]
> 2|α|tF , MFIM: σmin

[
tF k

dw
L + Cdep

]
> 2|α|tF (10)

NC operation Analytic condition for MFMIM: σmin

[
tF k

dw
L +

Odep

nDC0

]
=min

{
1

C0
,
tF k

dw

[
2 sin

(
π/(2
√
nD)

)]2}
> 2|α|tF (11)

Appendix. VT and Pi are the electric field sources and linearity allows us to write EF,T (r̄)=
nD∑
j=1

PiGFT,j(r̄)+(CDVT )/(tFC0),

VD(r̄)=
nD∑
j=1

PiGD,j(r̄)+(CFVT )/C0, where G(FT,D),j are Green’s functions of Pi. By substituting EF,T , VD(r̄) in

Eq.3 it is possible to derive UMFIM
ET in Eq.5, with no approximations and by defining [Ci,j ]−1=d−2

∫
Di

GD,j(r̄)dr̄.

Fig. 1: Sketch of a MFIM (left) and a MFMIM capacitor (right), where the top metal contact is not
shown. tF and tD are the ferroelectric and dielectric thicknesses, d is the side of a square domain with
area d2, and VT is the externally applied voltage. VD(r̄) is the electrostatic potential at the oxide interface
(i.e. at z=0), which depends on r̄ in a MFIM but it is independent of r̄ in a MFMIM capacitor.

Fig. 2: Sketch of domain i and its nearest
neighbor domains n. The shaded area illustrates
the domain-wall region, whose width is w. The
dashed red line delimits the domain-wall region
used to calculate uW,i in Eq.4.

Fig. 3: Largest eigenvalue σmax of the Jacobian matrix for all
Pi=0 versus the domain wall coupling factor k for either a MFIM
(numerically calculated) or a MFMIM structure (see Eq.11). Capacitor
area is A=2500nm2 and results are shown for different combinations of
d and nD . Stable NC operation corresponds to σmax<0.

Fig. 4: Minimum coupling factor k necessary for a stable NC opera-
tion versus the capacitor area for either a MFMIM or a MFIM structure.
For the MFIM structure results have been calculated numerically from
the condition σmax <0, while for the MFMIM structure results stem
from Eq.11. Domain size is d=5nm, thus Area=d2 nD . Please notice
the large areas corresponding to recent experiments in [2]–[5].
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Fig. 5: Regions for stable NC operation for a MFIM
structure in the tD versus k plane and for different
tF values. Filled circles correspond to tF =11.6nm. For
larger tF values the minimum tD required for stabil-
ity increases as predicted by the necessary condition
(1/C0)>2|α| tF . Area A=2500nm2 and nD=100.

Fig. 6: Steady-state domain configuration at VT =0V for either a MFIM (a) or a MFMIM
capacitor (b). Both structures have k=2·10−9, tD=13.5nm and tF =11.6nm, that for the MFIM
system correspond to a stable NC operation (see the triangular symbol in Fig.5), but it is instead
unstable for the MFMIM case (not shown).

Fig. 7: Measurements (symbols) and simulations (red lines) for the MFIM structure in [1], [2], consisting of a ferroelectric Hf0.5Zr0.5O2 layer and
a Ta2O5 insulator. (a) Reversibly stored and released charge, Q, versus the top value VMAX of the trapezoidal voltage waveform across the capacitor.
(b) Polarization versus ferroelectric electric field. (c) Ferroelectric electric field versus VMAX . Simulation parameters are εF =33, εD=23.48, tF =11.6nm,
tD=13.5nm, α=−4.6 · 108m/F, β=9.8 · 109m5/C2/F, ρ=0.5 mΩ·m and k=2 · 10−9 m3/F.

Fig. 8: Band profile for the MFIM structure
in the presence of traps at the ferroelectric-oxide
interface. Ef,B and Ef,T are Fermi levels of
bottom and top metal contacts and ETr is the
trap energy. Traps exchange electrons with bottom
metal contact via tunneling with emission, en,
and capture rate, cn, where F0(η) is the Fermi
occupation function. Other symbols have their stan-
dard meaning and values ΦM=4.05eV, χF =2.2eV,
χD=0.9eV and en0=5.6·107 1/s.

Fig. 9: Charge versus ferroelectric EF for the
MFIM in [2] and for different densities, NT , of in-
terface traps (see Fig.8) with uniform distribution.
To ensure that all traps are responding, frequency
is set to 1KHz. Arrows show clockwise hysteresis
due to traps.

Fig. 10: Charge versus ferroelectric EF for the
MFIM in [2], with uniform trap density NT =1013
eV−1/cm2 and for different frequencies of the
input VT waveform. Symbols are experiments [2]
and lines are simulations.
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