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Abstract— We study dynamic metabolic models that describe
the cellular responses of microorganisms under changing envi-
ronmental conditions, such as substrate perturbations. Feast-
famine experiments in Escherichia coli show that, despite
the enormous extracellular perturbations, important quantities
such as the cell energy charge remain practically constant. We
propose a simplified kinetic model of glycolysis in E. coli and
we analyse it to investigate the mechanisms that guarantee
the observed homeostatic energy charge. Identifying the source
of this extraordinary robustness will streamline the synthesis
of robust and efficient “cell factories” for the production of
relevant chemicals, enabling sustainable processes.

I. INTRODUCTION

Microbial cells are constantly exposed to dynamic en-
vironmental conditions: changing temperatures as well as
nutrient supply varying in time are found in many ecosys-
tems. However, microbial cells appear to be robust [1], [3],
[19], [25], [27] towards many perturbations, including very
fast changes. How this robustness is generated from kinetic
and stoichiometric properties of the metabolic network has
not been fully elucidated. Biological systems are inherently
noisy, with large variations in enzyme expression levels
from cell to cell and putative genetic mutations [29], hence
metabolic fitness should be robust towards external as well
as internal perturbations [18].

Analysing microbial metabolism under dynamic condi-
tions is important not only to understand the source of the
observed astounding robustness, but also to enable control
and optimisation of processes in large-scale bioreactors.
In fact, for better efficiency, processes are performed at
very large scale. Large-scale bioreactors have long mixing
times, leading to inhomogeneities: there are zones of high
and (very) low substrate concentration [20]. A cell travels
through these zones and experiences phases of high and low
nutrient concentrations. To study the cellular response to
these conditions in laboratory-scale bioreactors (which are
much cheaper to operate, and allow for easy manipulation
and simple sampling of biomass for metabolomics and pro-
teomics), a scale-down approach must be adopted: nutrient
gradients experienced by the cell are mimicked using a
periodic feeding regime, leading to repetitive profiles of high

This research is partially supported by the BioDate 2018 grant Robustness
by design? Structural analysis of dynamic metabolic models, awarded to
G.G. and S.A.W. by the Delft Bioengineering Institute, and by the Aspasia
grant and the DTF grant awarded to G.G.

1Delft Center for Systems and Control, Delft University of Technology,
The Netherlands. G.Giordano@tudelft.nl

2Department of Biotechnology, Delft University of Technology,
The Netherlands. L.M.deGraaf@student.tudelft.nl,
{E.Vasilakou,S.A.Wahl}@tudelft.nl

and low concentrations, known as feast-famine perturbations.
Note that the famine phase is kept short enough to make sure
that no cell-death phenomena occur.

The cellular responses of microorganisms in dynamic
environments have been studied in various organisms, taking
into account different operating conditions. The impact of
dynamic conditions seems to be very organism-specific. For
E. coli, experiments both with cultures cultivated under
steady conditions and then perturbed by a substrate pulse [21]
and with cultures constantly exposed to dynamic environ-
mental conditions [32] reveal that metabolic fluxes and the
concentrations of central metabolites change significantly;
the uptake rate varies more than 10-fold within seconds. In
the experiments with repetitive perturbations, biomass and
product yields are reduced compared to steady environmental
conditions. Despite the dynamic changes in fluxes and con-
centrations, the cellular energy charge [ATP ]+0.5[ADP ]

[ATP ]+[ADP ]+[AMP ] ,
where ATP , ADP and AMP are the molecules governing
energy flows within the cell [10], stays within very close
boundaries, between 0.7 and 0.85: its value is approxi-
mately the same as in steady environmental conditions. ATP
is consumed and produced in many metabolic pathways,
with rapidly changing fluxes; although the turnover is high,
the concentration is practically constant. These mechanisms
seem related to energy drains [28], but the robustness allow-
ing for energy homeostasis is not yet fully understood.

In this paper, the fundamental question of robust function
in the presence of perturbations is approached for glycolysis
in Escherichia coli [12]. In particular, Section II proposes
a new simple model of glycolysis in E. coli, based on the
chemical reactions reported in [22], [31]. Our goal is to
build a simple model that, differently from the famous one
proposed in [12], can capture the essence of the dynamics
while using the smallest possible number of variables. The
corresponding dynamical system is analysed to prove its
positivity and robustness, and the existence of a steady state
that, under suitable assumptions, is unique. The system is
also shown to be a candidate oscillator [5], [6], consistently
with glycolytic oscillations reported in the literature, not only
for yeast [2], [11], but also for E. coli [22], [23], [31] and
even for human pancreatic beta-cells [33]. The steady-state
influences among the system variables (i.e., the variations in
the steady state of a variable due to a persistent positive
perturbation added to the differential equation of another
variable) are also assessed [9], [14], [15], to reveal influences
whose sign is preserved regardless of the parameters, and to
analyse sensitivity to parameter variations; it turns out that
the variation of [ATP ] due to additive perturbations affecting
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ẋ1 = ufeedGLC − k1cxf1(x1, x4)−Dx1
ẋ2 = f1(x1, x4)− f2(x2, x5)− µx2
ẋ3 = f2(x2, x5)− h3(x3, x5) + f3(x4, x5)− g3(x3)− µx3
ẋ4 = −f1(x1, x4) + 2h3(x3, x5)− 2f3(x4, x5)− h4(x4, x5)− µx4
ẋ5 = −f2(x2, x5) + 2h3(x3, x5)− 2f3(x4, x5) + h4(x4, x5)− g5(x5)− µx5

TABLE I: The dynamical system modelling glycolysis in E. coli.

the other metabolites is particularly small, which supports
the evidence of energy homeostasis (Section III). Finally,
the theoretical predictions obtained with the proposed model
are compared to experimental observations from E. coli
cultivations: the model is able to reproduce very well the
qualitative evolution of concentrations over time, and the
observed energy homeostasis (Section IV).

II. GLYCOLYSIS IN E. coli: A SIMPLE DYNAMIC MODEL

We propose and analyse here a simple ordinary-
differential-equation model that captures the dynamics of
glycolysis in E. coli, based on [22], [31]. The state variables
of the dynamic model are the concentrations of the species:
extracellular glucose, x1 = [GLCEC ]; fructose 6-phosphate,
x2 = [F6P ]; fructose 1,6-bisphosphate, x3 = [FDP ]; 2-
phosphoenolpyruvate, x4 = [PEP ]; adenosine triphosphate,
x5 = [ATP ]. Other species involved are ADP (adeno-
sine diphosphate), AMP (adenosine monophosphate), PY R
(pyruvate). The considered chemical reactions are:

GLC + PEP
f1(x1, x4)−−⇀ F6P + PY R

F6P +ATP
f2(x2, x5)−−⇀ FDP +ADP

FDP + 2ADP
h3(x3, x5)−−⇀↽−−
f3(x3, x5)

2PEP + 2ATP

FDP
g3(x3)−−⇀ ∅

PEP +ADP +H
h4(x4, x5)−−⇀ PY R+ATP

ATP
g5(x5)−−⇀ ADP

where fi, gi and hi are the reaction rate functions. This list of
reactions relies on simplifications suggested by experimental
evidence: many other reactions occur within the glycolysis
pathway, but they are either lumped (several intermediate
steps are replaced by an overall reaction) or considered at
equilibrium in view of their rapidity due to high enzyme
capacity. The consumption of FDP due to the reaction
FDP

g3−−⇀ ∅ implicitly represents the conversion of G6P
(glucose-6-phosphate) and ATP into glycogen, not explicitly
considered in the model. Also the reaction 2ADP −−⇀↽−−
ATP + AMP occurs, but it is extremely fast, hence it can
be assumed at equilibrium and replaced by the equality

[ATP ][AMP ] = [ADP ]2. (1)

The total concentration of adenine nucleotides changes ex-
tremely slowly, hence can be legitimately assumed constant:

[ATP ] + [ADP ] + [AMP ] = cAxP , (2)

where cAxP = 10.7 mmol/LIC (cf. [30]); we denote by LIC
the measure unit for intracellular (cytosol) volume and by
LEC the measure unit for extracellular (culture) volume.

Considering the glucose feeding input ufeedGLC , the dilution
rate D and the specific growth rate µ, the resulting dynamical
system that describes the time evolution of species concentra-
tions is reported in Table I, where cx = 0.0154 LIC /LEC and
k1 are positive constants. Assuming that dilution and growth
(averaged over each feast-famine cycle) are the same, hence
the biomass concentration is constant, we set µ = D.

Assumption 1: Functions fi, gi and hi are nonnegative.
Functions fi are increasing and asymptotically bounded in
each argument, and zero when at least one argument is zero.
Functions gi are increasing and asymptotically unbounded,
and zero when their argument is zero. Functions hi are
increasing and asymptotically bounded in the first argument,
and decreasing and asymptotically zero in the second; they
are zero when the first argument is zero, and strictly positive
(finite) when only the second argument is zero. �
Typically, functions fi are Michaelis-Menten or Hill func-
tions, while functions gi are linear (mass action kinetics).

A. Positivity, boundedness and existence of a steady-state

Since the state variables represent concentrations of chem-
ical species, they should remain nonnegative (when the initial
conditions are nonnegative) and finite throughout the system
evolution. The proposed model is able to reproduce this
behaviour, as proven next.

Proposition 1: Under Assumption 1, the dynamical sys-
tem in Table I:
(i) is positive (the nonnegative orthant is an invariant set);
(ii) has solutions that are globally asymptotically bounded
in the set B = {x : 0 ≤ xi ≤ xmaxi , i = 1, . . . , 5}, where
xmaxi > 0 are suitable constants, for all nonnegative initial
conditions;
(iii) has a steady state x̄, which is nonzero if ufeedGLC > 0. �

Proof: (i) Positivity of the system is guaranteed since,
when xi = 0, the corresponding equation ẋi has only non-
negative terms in its right-hand side, hence xi can no longer
decrease. (ii) Boundedness follows from the observation that,
since functions fi and hi are bounded, the nonpositive terms
(−gi and/or −Dx1, −µxi) dominate in the equation ẋi when
xi is sufficiently large. (iii) Boundedness ensures that the
system admits at least one steady state x̄ ∈ B [24], [26].
Since x̄1 cannot be zero if ufeedGLC > 0, it must be x̄ 6= 0.

If the dilution rate is D 6= 0 and the specific growth rate is
µ 6= 0, it is possible to have a steady state whose components
are all zero but the first: x̄2 = 0 implies x̄4 = 0, implying in
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turn x̄3 = 0 and x̄5 = 0, while x̄1 = ufeedGLC/D. Conversely,
if D = µ = 0, then x̄1 and x̄4 cannot be zero, hence x̄2 and
x̄5 cannot be zero, thus x̄3 cannot be zero: therefore, x̄ > 0
componentwise.

B. Uniqueness of the steady state

We show that, for any fixed value of the feeding input
ufeedGLC , the system admits a unique steady-state.

In view of the monotonicity properties of the reaction rate
functions, according to Assumption 1, their derivatives can
be denoted as: ∂f1/∂x1 = a > 0, ∂f1/∂x4 = b > 0,
∂f2/∂x2 = c > 0, ∂f2/∂x5 = d > 0, ∂h3/∂x3 = e > 0,
∂h3/∂x5 = −u < 0, ∂f3/∂x4 = z > 0, ∂f3/∂x5 = p > 0,
∂g3/∂x3 = q > 0, ∂h4/∂x4 = r > 0, ∂h4/∂x5 = −s < 0,
∂g5/∂x5 = t > 0. Then, the system Jacobian matrix is

J(x) = J0(x)−DI5,

where I5 is the 5× 5 identity matrix and

J0 =


−k1cxa 0 0 −k1cxb 0

a −c 0 b −d
0 c −e− q z d+ u+ p
−a 0 2e −b− 2z − r s− 2p− 2u
0 −c 2e r − 2z −d− 2u− 2p− s− t

 .

The internal fluxes (fi, gi, hi) are much higher than
dilution due to growth (µxi) and outflow (Dx1, controlled
to keep the bioreactor volume constant), and dominate the
dynamics. Hence, we can make the following assumption.

Assumption 2: In the system in Table I, D = µ = 0. �
If D = µ = 0, the system admits a BDC-decomposition

[4], [7], [8], [9], [14]: J(x) = BDx(x)C, where

B =


−k1cx −k1cx 0 0 0 0 0 0 0 0 0 0 0

1 1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 1 1 −1 1 1 1 −1 0 0 0 0
−1 −1 0 0 2 −2 −2 −2 0 −1 1 0 1
0 0 −1 −1 2 −2 −2 −2 0 1 −1 −1 −1

 ,

C =


1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 1 0 1 0 1 0 0 1 1 1


>

,

and Dx(x) = diag{a, b, c, d, e, u, z, p, q, r, s, t, v} is the di-
agonal matrix that contains all the nonzero partial derivatives.

Then, the steady state can be proven to be unique.
Proposition 2: Under Assumptions 1 and 2, the system in

Table I admits a unique steady state x̄ ∈ B, which does not
have zero components. �

Proof: When D = µ = 0, the system Jacobian is J0;
det(−J0) > 0 structurally. Recall that, when D = µ = 0,
there cannot be steady-state vectors with zero components,
and the system admits a BDC-decomposition. Therefore,
structural non-singularity of the Jacobian implies that the
steady state is unique, in view of [8, Theorem 3].

C. Capability of oscillatory behaviour

Glycolytic oscillations are a well-investigated phe-
nomenon in S. cerevisiae [2], [11], reported also in E. coli
[22], [23], [31] and in human pancreatic beta-cells [33]. We
show here that the proposed model has indeed the capability

of generating oscillatory behaviours; in fact, the system is a
strong candidate oscillator as defined in [5], [6].

In particular, consider the scenario in which, due to
parameter variations, the Jacobian at the equilibrium has
a transition to instability. A system is a strong candidate
oscillator if any transition to instability occurs due to a pair
of complex eigenvalues crossing the imaginary axis from the
left to the right. Hence, exponential instability is excluded:
if the system is driven to instability, it will necessarily give
rise to sustained oscillations.

Proposition 3: Under Assumptions 1 and 2, the system in
Table I is a strong candidate oscillator. �

Proof: If D = µ = 0, the constant term of the char-
acteristic polynomial p(s) is det(−J0), which is structurally
positive: p(0) > 0. Hence, 0 cannot be an eigenvalue, and
all transitions to instability (if any) must be due to complex
eigenvalues whose real part becomes negative.

Therefore, either the unique steady state x̄ is globally
asymptotically stable, hence all trajectories x(t) converge to
x̄ when t→∞, or the steady state is unstable, and sustained
glycolytic oscillations will necessarily arise.

III. STEADY-STATE INFLUENCES

In this section, we assume that the unique steady state
is globally asymptotically stable. Then, upon a perturbation
due to a constant input ε, after a transient the system will
converge to a new steady state x̄ε. How does the new steady-
state differ from the previous one? For systems admitting a
BDC-decomposition, the sign of the variation between the
old and the new steady-states can be computed based on the
algorithm proposed in [14] (see also the extension [9] and the
applications to biological systems in [13], [15], [16], [17]).

In particular, we can compute the structural steady-state
influence matrix Σ0 for the system with D = µ = 0.
The (i, j)-entry of Σ0 represents the structural sign of the
variation of the steady state of the ith variable due to a
constant positive input added to the equation of the jth
variable. This variation is always positive if [Σ0]ij = 1,
negative if [Σ0]ij = −1, zero if [Σ0]ij = 0 (regardless of
parameter values), while it depends on the parameter values
if [Σ0]ij =?.

For the system in Table I, under Assumptions 1 and 2, the
structural steady-state influence matrix computed with the
algorithm in [14], based on the system BDC-decomposition,
is

Σ0 =


? ? −1 −1 ?
? ? −1 ? −1
1 1 1 1 1
? ? 1 1 ?
? ? 1 ? 1

 . (3)

Quite many influences (13 out of 25) are structurally signed,
independent of parameter values. For instance, a persistent
positive perturbation added to any of the equations will lead
to an increase in the steady state of x3, regardless of the
system parameters. Also, a persistent positive perturbation
added to ẋ3 or ẋ5 will always lead to a larger steady-state
value of x5. The first column is particularly interesting,
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because it displays the effect of an abrupt increase in the
value of the feeding input ufeedGLC . The effect on x5 is not
sign-determined.

To get a more quantitative insight [15], [16], we can
analyse the input-output sensitivity and give bounds for
the components of ∆x̄ε/ε, where ∆x̄ε is the variation in
the steady state due to the applied perturbation ε, when
the entries of matrix Dx in the BDC-decomposition are
bounded as 0.1 ≤ [Dx]i ≤ 10. Then, when k1 = 16 and
cx = 0.0154 LIC /LEC , the element-wise lower and upper
bounds for Σ0 can be computed as in [9]:


[−198123, 2271] [−65866, 234] [−88035,−0] [−22289,−0] [−22169, 491]
[−8208, 1034] [−2730, 209] [−3666,−0] [−926, 197] [−926,−0]

[0.2, 23] [0.05, 10] [0.05, 10] [0.001, 5] [0.001, 2]
[−22, 1981] [2, 659] [+0, 880] [0.03, 223] [−5, 222]
[−10, 83] [−2, 27] [+0, 37] [−2, 9] [−0.01, 9]

 .
Consistently with the structural influence matrix, only the

entries corresponding to ‘?’ in Σ0 have bounds with opposite
signs (−0 and +0 denote extremely small negative and
positive values, respectively). It can be noticed that the sign-
indefinite intervals showing the sensitivity of x5, [ATP ], are
particularly tight, and this can explain the small variations in
the energy charge even when the system is subject to drastic
changes in ufeedGLC and in the other state variables.

We can also compute the signed influence for randomly
picked values of the parameters (in the interval [0, 10]
with uniform distribution) and average over the number of
considered samples. With 107 samples, we obtain the matrix

0.816 −0.987 −1 −1 −0.072
0.942 0.898 −1 −0.068 −1

1 1 1 1 1
−0 0.987 1 1 −0.072
−0 −0.050 1 0.068 1

 ,
where, consistently with Σ0, sign-definite entries are ex-

actly equal to ±1, while the value of sign-indefinite entries
represents the prevalence of positive, or negative, signs. The
variation of x̄5 due to perturbations on ẋ1 appears to be
positive or negative with very similar probability, and/or very
often equal to zero.

IV. SIMULATION RESULTS VS. EXPERIMENTAL DATA

A. Periodic feeding: feast-famine perturbations

We compare here the behaviour of the proposed model in
numerical simulations with previously unpublished experi-
mental data collected through feast-famine experiments, used
to mimic the dynamic conditions in large-scale bioreactors
with a scale-down approach.

The experiments are carried out as shown in Fig. 1: E.
coli cells are grown inside a bioreactor with a working
volume of 1 L, as a pure culture. Glucose is used as the
only substrate. The microorganisms oxidise glucose (electron
donor) to provide energy for all the metabolic activities.
Oxygen is also fed to the system (aerobic conditions) and
acts as the electron acceptor. Glucose is fed to the reactor at
a constant rate (ufeedGLC = 151 mmol/LEC /min) for 20 s and
then feeding is stopped for 380 s. The procedure is repeated
in successive cycles of 400 s. Due to this block-wise feeding,
the cells experience a feast phase when glucose is still

Feed

Outflow

Air outlet

Air inlet

Feeding phase

Cultivation time [sec]

Fe
ed

in
g 

ra
te 20 sec

No feed 380 sec

20 400  420      800  820   1200  1220

Fig. 1: Feast-famine perturbation experiments: glucose is fed at a
constant rate for 20 s and then feeding is stopped for the next 380
s; the procedure is repeated in successive cycles of 400 s. Oxygen
is constantly supplied, and samples are regularly taken to measure
the concentration of metabolites.

significantly available (approx. the first 100 s) and a famine
phase when practically all substrate is consumed. During the
cultivations, samples for biomass and metabolome analysis
are taken from the bioreactor.

During such a short famine phase, no biomass lysis is ex-
pected (namely, no cell death phenomena due to starvation).

For the numerical simulations, the parameters and the
reaction rate functions for the system in Table I are chosen
as follows: k1 = 16 and cx = 0.0154 LIC /LEC , while the
reaction rate functions are chosen similarly to [22]:

f1(x1, x4) =
k11x1x4

k12 + k13x4 + k14x1 + k15x1x4
, (4)

f2(x2, x5) =
k21x

β
5x

α
2

k22 + k23x
β
5 + xα2

, (5)

h3(x3, x5) =
k31x3

1 + k33x3

1

1 + x5
, (6)

f3(x4, x5) =
k32x

α
4

k34 + xα4

k36x
β
5

k35 + k36x
β
5

, (7)

g3(x3) = k3x3, (8)

h4(x4, x5) =
k41x

α
4

k42 + k43x
γ
5 + xα4

, (9)

g5(x5) = k5x5, (10)

with parameters k11 = 259740 mmol/LIC /min, k12 = 1
mmol2/L2

IC , k13 = 1870 mmol/LIC , k14 = 5911 mmol/LIC ,
k15 = 0.5, k21 = 0.0088 (mmol/LIC=β /min, k22 = 12.76
(mmol/LIC)α, k23 = 2.5·10−5 (mmol/LIC)α−β , k31 = 6200
mmol/LIC /min, k32 = 1000 mmol/LIC /min, k33 = 10
LIC /mmol, k34 = 5 (mmol/LIC)α, k35 = 10 (mmol/LIC)β ,
k36 = 1.1·10−5, k3 = 8 1/min, k41 = 4.723 mmol/LIC /min,
k42 = 24 (mmol/LIC)α, k43 = 2.6 · 10−6 (mmol/LIC)α−γ ,
k5 = 0.8 1/min, and exponents α = 2, β = 6, γ = 4. Also,
we consider D = µ = 1/60 min−1.

In the simulations, consistently with the experiments,
ufeedGLC = 151 mmol/LEC /min for the first 20 s, and for
the following 380 s ufeedGLC = 1 mmol/LEC /min (not zero to
avoid numerical stability issues and also to represent storage
mobilisation due to glycogen that, when x1 ≈ 0, produces
glucose through a reaction that is not included in the model).
The time evolution of the state variables x1 = [GLC],
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x2 = [F6P ], x3 = [FDP ], x4 = [PEP ], x5 = [ATP ]
is computed based on the dynamical system in Table I,
integrated using the MATLAB function ode23s, while the
concentrations of ADP and AMP are calculated based on
Eqns. (1) and (2). The energy charge is then computed as

EC =
[ATP ] + 0.5[ADP ]

[ATP ] + [ADP ] + [AMP ]
.

The initial conditions match those in the experiments: x(0) =
[0.25 0.1061 0.2122 6.19 6.72]>, where the first
concentration is in mmol/LEC while all the others are in
mmol/LIC . With the chosen functions and parameters, the
system equilibrium is globally asymptotically stable.

Our proposed model is a phenomenological model based
on the theory of chemical reaction networks, and has not
been obtained by fitting the data, although of course the
parameters have been chosen so as to qualitatively repro-
duce the experimental traces. Indeed, the results in Fig. 2
show that it is able to reproduce very well the trends of
experimental data, and it gets also quite close to the actual
values of the concentrations. Fig. 3, instead, shows how
fluxes change during the simulation. As can be seen in Fig. 2,
the concentration of glucose, x1, has a peak in the first
minute: it increases linearly during the feeding phase and
then it abruptly decreases until, around 100 s, it reaches a
very small value. The same happens to the concentrations
of F6P , x2, and of FDP , x3, which are directly (F6P )
or indirectly (FDP , via F6P ) fed by the glucose peak,
but abruptly decrease when glucose becomes scarce. On the
contrary, the concentration of PEP , x4, becomes suddenly
higher when glucose is in short supply, because the reaction
associated with f1, which leads to a decrease in both GLC
and PEP , almost stops occurring. In spite of the large and
abrupt variations in the concentrations, and also in the fluxes
shown in Fig. 3, the concentration of ATP , x5, does not
change significantly. Indeed, the amount of ATP is sustained
in a twofold way, both through flux h3, associated with x3,
and through flux h4, associated with x4. When x3 abruptly
decreases, x4 abruptly increases, leading to a compensation
that keeps x5 almost constant. The same variations can be
seen in the computed evolution of [ADP ] and [AMP ]. Also
the corresponding energy charge is practically constant, with
values around 0.8, both for the experimental data and for
the numerical simulation. Hence, the model reproduces the
experimentally observed energy homeostasis.

Actually, in the simulated curves the variation in metabo-
lite concentrations is often even larger than in experimental
traces, and in spite of this the variation in EC is negligible.
This shows that robustness is guaranteed anyways, even
when the fluctuations are very large.

After the feeding is stopped, the system would reach a
new steady state that is fully consistent with the predictions
in Section III. However, periodic feeding prevents the system
from reaching an actual steady state, and keeps it in a never-
ending transient.
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Fig. 2: Time evolution of the concentration of the metabolites: GLC,
x1; F6P , x2; FDP , x3; PEP , x4; ATP , x5; ADP , calculated;
AMP , calculated; EC, computed energy charge. Glucose is exter-
nally fed for the initial 20 s and feeding is stopped for the following
380 s. Red dots show experimental data, while blue curves show
the behaviour of the simulated model.
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Fig. 3: Time evolution of the fluxes (reaction rate functions) in the
simulated model, when glucose is externally fed for the initial 20
s and feeding is stopped for the following 380 s.

V. CONCLUDING DISCUSSION

We have presented a simple dynamical model for glycoly-
sis in E. coli that predicts the experimentally observed energy
homeostasis under dynamically changing environmental con-
ditions, including feast-famine perturbations. Studying this
phenomenon is particularly important for industrial fermen-
tation in large-scale bioreactors, where the cells are subject
to nutrient gradients that affect their metabolic responses.

A particularly interesting aspect revealed by this contri-
bution is the importance of the role of glycogen (related
to energy storage) in association with glycolysis, which is
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worth a deeper analysis. Indeed, in our reduced model,
including the additional reaction FDP

g3−−⇀ ∅ (which is
not biologically occurring in this form, but “represents”
energy storage due to glycogen) was necessary to be able
to satisfactorily reproduce the experimental traces and the
observed energy homeostasis. This result suggests that the
role of glycogen cannot be neglected, since it is key to
explain the constant energy charge observed experimentally.

As previously mentioned, this low-order model takes into
account the effect of storage just implicitly, by means of
the reaction FDP

g3−−⇀ ∅. However, the precise reaction
occurring is G6P + ATP −−⇀ glycogen + ADP whenever
the concentration of glucose is strictly positive (i.e., glucose
is present and is consumed by the cells). Also, the reaction
glycogen −−⇀ glucose occurs when glucose is absent: this
effect has been implicitly taken into account in our model
simulations by setting a very small, but not zero, feeding rate
in the famine phase, to emulate the mobilisation of stored
glycogen that occurs when the glucose concentration is zero.
Explicitly including this storage accumulation/mobilisation
effect in a higher-order model, by considering the concentra-
tion of G6P and of glycogen as a state variable, could reduce
the mismatch between the time evolution of the concentration
of F6P in the simulations and in the experiments and
provide deeper insight into the observed phenomenon.

Other future research directions include using the new
model presented here for control and optimisation of bioreac-
tors, for instance to find the optimal feeding pattern that can
maximise productivity and minimise waste, by-products and
the needed amount of glucose to feed the microorganisms.
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