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Abstract— Nonlinear relaxation oscillators in engineering rely
on positive feedback to operate. One category of relaxation
oscillators is given by astable multivibrators, that include a
bistable component at the core of their architecture. Here we
describe a molecular network motif that operates as an astable
multivibrator, and relies on a bistable switch (the classical
Gardner and Collins genetic switch) that is toggled between its
stable steady states by a persistent input. We show that oscilla-
tions arise in the presence of two negative feedback loops that
process the persistent input and influence the production of the
molecular species forming the bistable subsystem. We perform
a thorough stability analysis of this motif obtaining closed-form
practical conditions for the emergence of oscillations, and we
examine the sensitivity of the system to parameter variations.

I. INTRODUCTION

We consider the problem of building a molecular relax-
ation oscillator using a bistable system as its core component.
Because bistable molecular systems require the presence of
positive feedback, this is a positive-feedback oscillator. Like
relaxation oscillators in engineering, our goal is to obtain a
system that, if it oscillates, it does with a robust period that
is related to the time constants of the bistable system.

Positive feedback is known to promote oscillations in
negative-feedback architectures [1], but it is known that some
oscillators can be built primarily with a positive feedback
component like a bistable switch that can be “frustrated”
by negative feedback [2]. Some of these efforts have been
focused on bistable systems that oscillate between their stable
states due to stochastic fluctuations or noise [3], [4]. Here we
work in a deterministic setting, and we consider the canonical
Gardner and Collins toggle switch:

˙̂x1 =
α̂

1 + (x̂2/κ)m
− δx̂1 (1)

˙̂x2 =
α̂

1 + (x̂1/κ)m
− δx̂2. (2)

Here, x̂1 and x̂2 are proteins that mutually regulate their
production and operate as repressors. The mRNA transcrip-
tion is assumed to be fast and its dynamics are neglected.

We now introduce additional species that force the system
to toggle between its steady states [5]. These additional
species ŵ1 and ŵ2 increase the production rate of proteins
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x̂1 and x̂2 by competitively binding to their promoters:

˙̂x1 =
α̂+ θ̂ŵ1/κw

1 + (x̂2/κ)m + ŵ1/κw
− δx̂1 (3)

˙̂x2 =
α̂+ θ̂ŵ2/κw

1 + (x̂1/κ)m + ŵ2/κw
− δx̂2 (4)

Here κw is the apparent dissociation constant of ŵi to the
gene expressing x̂i, and θ̂ is the maximal expression rate of
x̂i induced by ŵi.

Now we reason that these additional species should self-
regulate, and be triggered by an external input. Ideally, the
production rate of x̂1 and x̂2 should be increased only when
the species are at low concentration; because x̂1 and x̂2
are never at low or high concentration simultaneously, since
they are part of a bistable system, this should occur also
for species ŵ1 and ŵ2. We propose to use a model for a
genetic AND logic gate, which relies on negative feedback:
ŵi should be high if a certain input û is high but x̂i is low,
and ŵi should be low when û and x̂i are both high. The
ODEs describing this AND gate are:

˙̂yi =
ρ̂

1 + ( x̂i
κ

)m
− δŷi, i = 1, 2 (5)

˙̂wi =
ψ̂( û

κu
)r

1 + ( û
κu

)r
·

( ŷi
κy

)n

1 + ( ŷi
κy

)n
− δŵi, i = 1, 2 (6)

We name these additional elements “push” modules, as they
push the bistable system to toggle between its stable states.

A B

Fig. 1. Astable multivibrator motif. The core of the network is the
positive feedback toggle-switch along with the two regulatory “push”
modules. A) Electronic implementation of the circuit. B) Biomolecular
network based on the interconnection of a toggle switch and two push
modules, along with a potential implementation of the circuit based on a
gene network relying on the Gardner and Collins toggle switch.

A sketch of the overall network in reported in Fig. 1.
We summarise qualitatively the expected circuit behaviour:
the bistable switch species are x̂1 and x̂2, and they repress
species ŷ1 and ŷ2. When x̂1 is low, it promotes an increase
in ŷ1 and vice-versa. The production of ŵ1 and ŵ2 depends
respectively on (ŷ1, û), and (ŷ2, û). For a given input û,
without loss of generality, we assume that x̂1 is high and x̂2
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is low, resulting in low ŷ1 and high ŷ2. Thus, ŵ2 is produced
(high), while ŵ1 is not (low). If ŵ2 is large, it pushes an
increase in x̂2, which in turn forces x̂1 to decrease. When x̂1
is low and x̂2 is high, the production of ŵ1 increases (high).
This pushes x̂1 to increase, and x̂1 causes a decrease in x̂2.
In summary, when x̂1 is high, push module 1 is inactive, and
push module 2 (associated to x̂2) is active.

This is indeed a multi-functional network motif [6], [7],
[8], which can exhibit different types of dynamic behaviours
depending on the chosen parameters. As previously demon-
strated in [5], this circuit can operate as a frequency divider.
In this paper, we show that it can also behave as an oscillator,
and as a bistable and a monostable system as well.

In the next sections we provide a thorough analysis of the
system. Degree-theory arguments that exploit the system’s
inherent symmetry allow us to show that, under suitable
assumptions, the system admits a unique equilibrium, hence
can exhibit sustained oscillations provided that the dominant
eigenvalues of its Jacobian matrix computed at the equilib-
rium are complex with positive real part. Based on root locus
analysis and Routh-Hurwitz arguments, we provide closed-
form practical conditions for oscillations, which depend on
the magnitude of the system Jacobian entries. Our theoretical
analysis is followed by a computational sensitivity analysis
that highlights the robustness of the period in certain condi-
tions.

II. MODEL FORMULATION

We provide here a mathematical description of the consid-
ered system. The ensemble of interactions discussed in the
previous section leads to the following ODE model

˙̂x1(t̂) =
α̂+ θ̂ŵ1(t̂)/κw

1 + (x̂2(t̂)/κ)m + ŵ1(t̂)/κw

− δx̂1(t̂) (7)

˙̂y1(t̂) =
ρ̂

1 + ( x̂1(t̂)
κ

)m
− δŷ1(t̂) (8)

˙̂w1(t̂) = u∗ ·
( ŷ1(t̂)
κy

)n

1 + ( ŷ1(t̂)
κy

)n
− δŵ1(t̂) (9)

˙̂x2(t̂) =
α̂+ θ̂ŵ2(t̂)/κw

1 + (x̂1(t̂)/κ)m + ŵ2(t̂)/κw

− δx̂2(t̂) (10)

˙̂y2(t̂) =
ρ̂

1 + ( x̂2(t̂)
κ

)m
− δŷ2(t̂) (11)

˙̂w2(t̂) = u∗ ·
( ŷ2(t̂)
κy

)n

1 + ( ŷ2(t̂)
κy

)n
− δŵ2(t̂) (12)

where, for i = 1, 2, x̂i ≥ 0 are the toggle switch states,
ŷi ≥ 0 are the concentrations of the species repressed by x̂i,
ŵi ≥ 0 are the push module outputs, and

u∗ =
ψ̂( û(t̂)κu

)r

1 + ( û(t̂)κu
)r
,

where û is the common input. The parameters are defined as
follows: α̂ is the maximum production rate of species x̂i; θ̂ is

the production rate of species x̂i due to ŵi; κ is the apparent
dissociation constant of proteins x̂i; κw is the apparent
dissociation constant of proteins ŵi; ρ̂ is the maximum
production rate of species ŷi; ψ̂ is the maximum production
rate of species û; κu and κy are apparent dissociation
constants of proteins û and ŷi respectively; r, m and n are
cooperativity coefficients of species x̂i, ŷi and ŵi; finally, δ
is the degradation rate, which can be reasonably assumed to
be equal for all species due to the stability of proteins in this
reaction environment and the prevalence of dilution effects.

To simplify our analysis, we consider a scaled model
obtained by scaling the time as t = δt̂ and by introducing the
change of variables xi = x̂i/κ, yi = ŷi/κy , wi = ŵi/κw,
where the coefficients are redefined as α = α̂/(κδ), θ =
θ̂/(κδ), ρ = ρ̂/(κyδ), ψ = ψ̂/(κwδ) and the new input is
u = u∗/(κwδ). The equations of the scaled model are:

ẋi =
α+ θwi

1 + xmj + wi
− xi, (i, j) = (1, 2), (2, 1), (13)

ẏi =
ρ

1 + xmi
− yi, i = 1, 2, (14)

ẇi = u · yni
1 + yni

− wi, i = 1, 2, (15)

where, again, all state variables are nonnegative (note that
the system is positive).

Assumption 1: We assume that θ > α. �
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Fig. 2. System evolution. We numerically solve equations (7)–(12), with
input u∗ = 0.2µM and the other parameters as in Table III, and we show
an example trajectory for the species x̂1 and x̂2.

III. SYSTEM ANALYSIS AND OSCILLATORY CONDITIONS

We now investigate the system’s capability of exhibit-
ing sustained oscillations: this indeed occurs for suitable
parameter values, as shown in Fig. 2. We analyse the
system equilibria and show that, under suitable assumptions,
there exists a unique unstable equilibrium, whose Jacobian
has dominant complex positive-real-part eigenvalues. These
results provide useful indications to tune the model so as to
achieve a biomolecular oscillator.

A. Equilibria Analysis

Due to symmetry, if there exists an equilibrium (x̄1, x̄2) =
(µx, νx), (ȳ1, ȳ2) = (µy, νy) and (w̄1, w̄2) = (µw, νw), there
must be an equilibrium (x̄1, x̄2) = (νx, µx), (ȳ1, ȳ2) =
(νy, µy) and (w̄1, w̄2) = (νw, µw) as well. Let us consider
first the case of “specular” equilibria.

Definition 1: An equilibrium for system (13)–(15) is spec-
ular if x̄1 = x̄2 = x̄, ȳ1 = ȳ2 = ȳ and w̄1 = w̄2 = w̄. �

Proposition 1: Under Assumption 1, system (13)–(15)
admits a unique specular equilibrium (in the positive orthant).
�
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Proof. The equilibrium conditions, achieved by setting the
system equations (13)–(15) to zero, when particularised to
specular equilibria become

x̄ =
αρn + θρnu+ α(1 + x̄m)n

ρnu+ ρn(1 + x̄m) + (1 + x̄m)n+1
= f(x̄) (16)

ȳ =
ρ

1 + x̄m
= g(x̄) (17)

w̄ = u
ȳn

1 + ȳn
= u

ρn

ρn + (1 + x̄m)n
= h(x̄) (18)

The function f has a positive value for x̄ = 0, while it goes
asymptotically to zero when x̄ → ∞. If we show that f is
monotonically decreasing, then it admits a single intersection
with the identity function, hence there is a single specular
equilibrium; g and h are both monotonically decreasing.

By setting to zero the equation in (13), we have that

x̄ =
α+ θw̄

1 + x̄m + w̄

.
= φ(w̄, x̄),

where φ is decreasing in x̄ and, in view of Assumption 1,
increasing in w̄. Then, we have that x̄ = f(x̄) = φ(h(x̄), x̄).
The function φ is decreasing in its second argument, while
it is increasing in its first argument and h is a decreasing
function of x̄. Therefore, f(x̄) is a monotonically decreasing
function of x̄, and the specular equilibrium is unique. �

The Jacobian matrix of the system linearised around the
unique specular equilibrium is

J =


−1 0 d −b 0 0
−a −1 0 0 0 0
0 c −1 0 0 0
−b 0 0 −1 0 d
0 0 0 −a −1 0
0 0 0 0 c −1

 , (19)

where

a =
ρmx̄m−1

(1 + x̄m)2
, b =

m(α+ θw̄)x̄m−1

(1 + x̄m + w̄)2
,

c = u
nȳn−1

(1 + ȳn)2
, d =

θ(1 + x̄m) − α

(1 + x̄m + w̄)2
,

are all positive (also d > 0, in view of Assumption 1).
We make an additional assumption.
Assumption 2: For all possible equilibria of system (13)–

(15), whose number is assumed to be finite, the correspond-
ing Jacobian matrix is nonsingular. �

Then, the presence of other equilibria can be inferred or
ruled out based on the sign of the determinant det(J) =
det(−J) = (acd + 1)2 − b2, by applying a fundamental
result from degree theory.

Theorem 1: [9], [10] Assume that the system ẋ = f(x),
with f : Rn → Rn, has solutions that are globally uniformly
asymptotically bounded in an open set S and admits N <∞
equilibrium points x̄(i), i = 1, . . . , N , each contained in S
and such that the determinant of the system Jacobian matrix
evaluated at x̄(i) is nonzero: det(Jf (x̄(i))) 6= 0 ∀i. Then,

N∑
i=1

= sign[det(−Jf (x̄(i)))] = 1.

�
By applying Theorem 1 to our system, we can prove the

following result.

Theorem 2: Under Assumptions 1 and 2, consider the
system (13)–(15) linearised around its unique specular equi-
librium x̄1 = x̄2 = x̄, ȳ1 = ȳ2 = ȳ, w̄1 = w̄2 = w̄.
If det(−J) > 0, the equilibrium is unique. Conversely, if
det(−J) < 0, there are at least two additional (non-specular)
equilibria. �
Proof. The degree theory arguments of Theorem 1 can
be applied, because (13)–(15) does not admit equilibria
for which at least one of the components is zero and is
asymptotically bounded in S = R+

6 , the (strictly) positive
orthant. Therefore, it must be

N∑
i=1

sign[det(−Ji)] = 1, (20)

where N is the number of different equilibria and Ji is the
Jacobian matrix computed at the ith equilibrium.

Consider the case det(−J) > 0. In view of the system
symmetry, if there were another pair of equilibria in addition
to the unique specular equilibrium, they would have the same
determinant. Hence, the sum in (20) would be either 3 or
−1, and not 1, in contrast with Theorem 1. Therefore, the
equilibrium must be unique.

Conversely, if det(−J) < 0, there must be (at least) two
additional equilibria such that the corresponding determinant
is positive, so that the equality in (20) can be satisfied. �

Therefore, we can predict the system behaviour based on
the parameters in the Jacobian. Let us define b∗ = acd+ 1.
If b > b∗, then det(−J) < 0 and at least two additional
equilibria exist. Conversely, if b < b∗, then det(−J) > 0:
the equilibrium is unique, and the system typically exhibits
sustained oscillations provided that the dominant eigenvalues
of J (those with the largest real part) are complex and are
the only ones with positive real part. In fact, in practice, if
the linearised system has a single pair of dominant complex
positive-real-part eigenvalues, sustained oscillations arise due
to the saturating effect of the nonlinearities.

B. Conditions for Oscillations

The structure of the system Jacobian in (19) reveals
that the overall linearised system is the positive feedback
interconnection, with strength b2, of two identical subsys-
tems. If b = 0, the two subsystems are decoupled and the
characteristic polynomial of each subsystem,

pblock(s) = s3 + 3s2 + 3s+ acd+ 1,

has a real negative root and a pair of complex roots, whose
real part is negative when acd < 8 (hence, each subsystem
is stable in isolation) and positive if acd > 8 (hence, each
subsystem is an oscillator in isolation). Therefore, if b = 0
and acd is large enough, the system is simply composed of
two decoupled negative-feedback oscillators. The presence
of a term b > 0 provides coupling. Yet, if b is too large,
the positive feedback loop dominates the overall system
behaviour: it rules out oscillations and can induce bistability.

Oscillations can also arise when acd is small (hence both
the subsystems are stable in isolation), thanks to the effect
of the positive feedback: there exists an interval of values
of b for which the overall system can exhibit sustained
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oscillations. Indeed, although the overall system is stable for
b = 0, increasing b leads to instability associated initally with
positive-real-part complex eigenvalues, then, if b exceeds a
certain threshold, with a real positive eigenvalue.

Hence, in both cases, to have an oscillatory system, b
cannot be too large: the overall positive feedback loop cannot
be too strong. We provide next a more formal analysis.

Let us assume 0 < b < acd+1, so that det(−J) > 0 and,
according to Theorem 2, the equilibrium associated with the
Jacobian matrix J is unique. To understand when J admits a
pair of complex dominant eigenvalues with positive real part,
we need to analyse the associated characteristic polynomial:

pJ(s) = det(sI − J) = s6 + 6s5 + (15 − b2)s4

+ (20 + 2acd− 4b2)s3 + (15 + 6acd− 6b2)s2

+ (6 + 6acd− 4b2)s+ (acd+ 1)2 − b2.

(21)

Remark 1: If all the coefficients of pJ(s) turn out to
be positive for a given choice of the system parameters,
then the system is a candidate oscillator, according to the
classification discussed in [11], [12]: since there cannot be
positive real eigenvalues, any transition to instability must be
due to a pair of complex eigenvalues that cross the imaginary
axis from the left to the right. �

The characteristic polynomial can be factorised as pJ(s) =
p1(s)p2(s), where

p1(s) = s3 + (3 + b)s2 + (3 + 2b)s+ 1 + acd+ b (22)
p2(s) = s3 + (3 − b)s2 + (3 − 2b)s+ 1 + acd− b (23)

When the two subsystems are stable in isolation, hence
acd < 8, the following result gives a sufficient condition
for the practical emergence of persistent oscillations.

Theorem 3: Consider the system (13)–(15) under As-
sumptions 1 and 2, and assume that b < acd + 1, namely,
det(−J) > 0. Then, the linearisation of the system around its
unique equilibrium admits a single pair of dominant complex
positive-real-part eigenvalues if

1

2
< acd < 8 (24)

and

2 −
√
acd

2
< b < 3

3

√
acd

4
(25)

�
Proof. Consider the factorisation of the characteristic poly-
nomial in (21) into two third-order polynomials, pJ(s) =
p1(s)p2(s).

A sharp insight is given by the qualitative shape of the root
locus associated with the two polynomials. We can rewrite
p1(s) and p2(s) as

p1(s) = (s3 + 3s2 + 3s+ 1 + acd) + b(s+ 1)2

p2(s) = (s3 + 3s2 + 3s+ 1 + acd) − b(s+ 1)2

and consider the associated root locus for a given choice of
acd, when the parameter b varies, as shown in Fig. 3.

For both polynomials, when b = 0, the roots coincide with
the roots of pblock = s3 +3s2 +3s+1+acd: one root is real
and negative, smaller than −1, the other two are complex
conjugate, with a negative real part if acd < 8. Then, when
b is increased the roots of p1(s) behave as follows: the real
root moves to the left along the real axis, towards −∞,
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Fig. 3. Root locus of p1(s) and p2(s) when b is varied as a parameter,
for different values of the product acd: acd = 0.1, acd = 4 and acd = 20.
The crosses indicate the roots of the polynomial s3 +3s2 +3s+1+ acd,
which are the roots of both p1(s) and p2(s) when b = 0, while the circle
indicates −1, the repeated root of the polynomial (s + 1)2, to which two
of the roots of p1(s) and p2(s) converge when b→∞.

while the complex roots decrease both in real part and in
imaginary part, until they both collapse on the value −1, the
double root of (s+1)2. Instead, the roots of p2(s) behave as
follows: the real root moves to the right along the real axis,
until it collapses on the value −1, while the two complex
roots decrease in imaginary part and increase in real part,
until they collide on a point (“collision point”) on the real
axis, becoming two coincident real roots; then, if b is further
increased, one root moves to the left along the real axis, until
it collapses on the value −1, while the other moves to the
right along the real axis, towards +∞.

It is then clear that, if acd < 8 (hence the system with
b = 0 is stable), p1(s) cannot admit positive-real-part roots.
Conversely, p2(s) has a stable real root and two dominant
complex roots (for b small enough), which have a positive-
real-part for suitable values of the parameters. Which are
these suitable parameter values? First of all, the “collision
point” must be on the positive real axis. At the collision
point, when two roots are coincident, both the polynomial
and its derivative must be equal to zero, hence

p2(s) = (s+ 1)3 + acd− b(s+ 1)2 = 0

p′2(s) = 3(s+ 1)2 − 2b(s+ 1) = 0

must be both satisfied. After some algebraic manipulations
we get that, at the collision point, b = bc

.
= 3 3

√
acd
4 . The

collision coordinate is sc = 2/3bc − 1, which must be a
positive value, otherwise all the complex roots always have
a negative real part. By substituting the expression of bc, it
turns out that sc > 0 iff acd > 1/2, which together with
the assumption acd < 8 gives the condition in (24). Then, if
this condition is satisfied, there will certainly be two unstable
complex dominant roots if b is smaller than 3 3

√
acd
4 (if it

is larger, the roots become real) and also greater than the
value at which the pair of complex roots of p2(s) crosses
the imaginary axis from the left to the right. The Routh
table for p2(s) is reported in Table I: since the first and
the last elements of its first column are always positive, the
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TABLE I
ROUTH TABLE FOR THE POLYNOMIAL p2(s)

row 3: 1 3− 2b
row 2: 3− b 1 + acd− b
row 1: R2

.
=

2(2−b)2−acd
3−b 0

row 0: 1 + acd− b 0
TABLE II

ROUTH TABLE FOR THE POLYNOMIAL p1(s)

row 3: 1 3 + 2b
row 2: 3 + b 1 + acd+ b

row 1: R1
.
=

2(b+2)2−acd
3+b

0
row 0: 1 + acd+ b 0

polynomial admits a pair of purely imaginary roots when
one of the other elements changes sign. This first occurs
when R2 = 0, for b = 2 −

√
acd
2 . Hence, it must be

2−
√

acd
2 < b < 3 3

√
acd
4 , which corresponds to (25). �

Based on the considerations in the theorem proof, we can
state the following corollaries.

Corollary 1: Consider the system (13)–(15) under As-
sumptions 1 and 2, and assume that b < acd + 1, namely,
det(−J) > 0. Then, the linearisation of the system around
its unique equilibrium cannot admit complex positive-real-
part eigenvalues if

acd <
1

2
. (26)

�
Proof. It follows from the consideration on the root locus
diagrams, in the proof of Theorem 3. In fact, if acd < 1

2 , the
linearised system is either asymptotically stable, for values of
b smaller than a certain threshold b̂ (the value for which the
dominant root of p2(s) crosses the imaginary axis at zero),
or unstable with a real positive root if b > b̂. �

Corollary 2: Consider the system (13)–(15) under As-
sumptions 1 and 2, and assume that b < acd + 1, namely,
det(−J) > 0, and that 8 < acd < K, where K satisfies√

K
2 − 2 = 3 3

√
K
4 . Then, the linearisation of the system

around its unique equilibrium admits a single pair of complex
positive-real-part eigenvalues, which are dominant, if√

acd

2
− 2 < b < 3

3

√
acd

4
. (27)

�
Proof. If acd > 8, the system is composed of two indepen-
dent oscillators if b = 0. When b > 0, initially pJ(s) has two
pairs of complex roots with positive real part: one pair due to
p1(s), the other due to p2(s); this does not result in a good
oscillatory behaviour at a precise frequency. To have a single
pair of complex unstable roots, b needs to be large enough, so
that the complex roots of p1(s) have crossed the imaginary
axis from the right to the left: by looking at the Routh table in
Table II, the crossing occurs when R1 = 0 for the first time
(the other elements of the first column are always positive),
namely when b =

√
acd
2 − 2. Then the complex roots of

p1(s) are stable for b >
√

acd
2 − 2, which gives the first

inequality in (27). However, when b gets too large, after the
collision point discussed in the proof of Theorem 3, the two

dominant roots of p2(s) are no longer complex. This imposes
the second inequality in (27). It is fundamental that acd < K,
otherwise it would be

√
acd
2 −2 > 3 3

√
acd
4 and the condition

in (27) would never hold true. �
Fig. 3 shows the root loci associated with p1(s) and p2(s),

for different fixed choices of acd, when the parameter b
varies, to showcase the different types of behaviour pre-
dicted by the above statements. When acd = 0.1 < 1/2,
there cannot be positive-real-part complex roots. Only the
polynomial p2(s) can admit an unstable root, for b large
enough, but it is a real positive root. When acd = 4, which
is between 1/2 and 8, p2(s) admits two positive-real-part
complex roots when b belongs to an interval b ∈ [bmin bmax]:
if b < bmin = 2−

√
acd
2 , the two complex roots are stable,

while if b > bmax = 3 3

√
acd
4 , any unstable root is real.

Conversely, if acd = 20 > 8, p2(s) has two positive-real-
part complex roots for all values of b < 3 3

√
acd
4 , and also

p1(s) has two positive-real-part complex roots for all values
of b <

√
acd
2 − 2.

IV. NUMERICAL SIMULATIONS

A. Sensitivity Analysis

We propose here simulations that show how the different
parameters of the system affect the likelihood, amplitude and
period of the oscillations. All the simulations presented in
this section use the non-scaled model (7)–(12) of the system.

Time (h)

Pa
ra

m
et

er

Fig. 4. Sensitivity analysis for each parameter of the system. The y-
axis shows variation of the parameter in logarithmic scale, with respect to
the nominal values in Table III. Each horizontal line represents the time
evolution of x̂1 for a given parameter set: the magnitude varies from low
(white) to high (black).

In our theoretical analysis we have assumed that θ > α,
which implies that d > 0. If this assumption fails, then the
sign of d (and therefore of the product acd) may be negative
because it depends on the sign of θx̄m + θ − α (and the
specular equilibrium may not be unique). The simulations in
Fig. 4 show that, for large values of θ̂ = θκδ, the system
is more likely to exhibit sustained oscillations, while the
parameter α̂ = ακδ has the opposite effect: smaller values
of α̂ favour oscillations.

Other simulations investigate the period (Fig. 5), amplitude
(Fig. 6), and period and amplitude (Fig. 7) of oscillations (if
any) when the parameters are logarithmically varied around
their nominal values in Table III. The period appears to be
quite robust with respect to parameters, being almost constant
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in wide parameter intervals. Also the amplitude remains
almost constant for large variations of α̂, κ and n.
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Fig. 5. Period. The period of the oscillations (if any) is computed when
varying each parameter in a logarithm scale from 0.1 and 1, with respect
to the nominal values in Table III.
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Fig. 6. Amplitude. The amplitude of the oscillations (if any) is computed
when varying each parameter in a logarithm scale from 0.1 and 1, with
respect to the nominal values in Table III.
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Fig. 7. Amplitude vs period. Each parameter is varyied in a logarithm
scale from 0.1 and 1, with respect to the nominal values shown in Table III.

TABLE III
SIMULATION PARAMETERS:

θ̂ α̂ ρ̂ ψ̂

3 µM/h 0.5 µM/h 2 µM/h 2 µM/h

κ κy κw κu u∗

0.2 µM 1 µM 0.1 µM 1 µM 0.2 µM

δ n m r
1 h−1 1 2 1

V. CONCLUSIONS

In this paper, we have proposed a minimal motif that is
able to produce robust oscillations based on a mechanism
that is akin to that of astable multivibrators in electronics.
At the core of our architecture is a positive-feedback bistable
switch (based on double-inhibition), which is regulated by
two “push” modules, each based on negative feedback, that
can force the system to produce an oscillatory behaviour.

Our theoretical analysis guarantees that, under simple
inequality conditions on the system parameters and on the en-
tries of the system Jacobian matrix, the system has a unique

equilibrium (Theorem 2) and the corresponding linearisation
admits a single pair of dominant complex eigenvalues with
a positive real part (Theorem 3 and Corollary 2). Therefore,
sustained oscillations can arise. We also find conditions
under which the system exhibits a bistable behaviour (cf.
Theorem 2), or admits a single stable equilibrium (cf. the
proof of Corollary 1). It can also operate as a frequency
divider, as previously shown in [5]. Therefore this system is
a versatile multi-functional network [6], [7], [8].
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