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Abstract— To detect faults in a system we can adopt an
observer, designed for the healthy system, and monitor the
discrepancy between actual and expected behaviour of the
residual (difference between the system output and its estimate).
To isolate faults, we can compute the invariant sets associated
with each fault, and their projection in the residual space
(limit set): faults can be isolated if the associated limit sets
are separated when a (constant) test input is applied. However,
the explicit computation of limit sets can be hard even for
low-dimensional systems. As a main contribution, we show
that, by adopting an implicit representation of limit sets, very
efficient procedures can be used to solve the problem, based
on convex quadratic programming or linear programming.
Simulations show that the approach is effective in solving even
large dimensional problems, which makes it suitable for large-
scale networked systems.

I. INTRODUCTION

The real-time operation of control processes relies on the
monitoring of the global functioning as well as the health of
the sub-components [14]. The diagnosis is implemented by
means of a fault detection and isolation (FDI) mechanism
that can be further related to re-design or reconfiguration of
the feedback control system [6]. Consequently, the FDI block
is a fundamental component, whose design principles com-
monly exploit either analytical redundancy of the available
data from the process or the abstraction leading to model-
based tests [36], [3]. The FDI decision making process is
challenging due to the presence of modeling simplifications
and omissions, system disturbances, and measurement noise,
which can mask the effects of malfunctioning [9]. FDI
mechanisms can have either a passive or an active role in
the system supervision.

A passive FDI mechanism monitors just the input and
output data of the system: the decision is then based on
the processed information. Several studies developed passive
FDI methods in the presence of bounded uncertainties, which
generate on-line sets in the parameter [13], [26], [27] or
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residual space [23], [7], [24], [11]. A fault is detected when
either the parameter set is empty, or the inclusion of the resid-
ual within the corresponding set does not hold. Alternatively,
the real-time trajectories of the system states can be analysed
in terms of inclusion within sets or tubes [25], [5], which
are characterised off-line explicitly or via parameterisations.
Consequently, fault detection can be performed on-line via an
inclusion test [32]. Other passive set-theoretic FDI methods
aim at the off-line separation of healthy and faulty sets [31],
[30] by exploiting the existence of limit sets, where the
residuals are guaranteed to converge under healthy conditions
and various fault scenarios.

In the absence of security or safety reasons that forbid the
access to the system or its excitation, the FDI mechanism can
become active and step in the (closed-loop) system operation.
This gives more design freedom and helps diagnose faults
that may be affected by the closed-loop system operation [2].
In active fault diagnosis, the FDI mechanism can either steer
the reconfiguration of the control scheme so as to increase
fault detectability and isolability [16], [35], [20], [33], or
stimulate the system, to make the effects of faults detectable
[17], [8], [34], [28], [1], [21], [22], by generating an auxiliary
input signal (which can be designed based on the open-
loop [17], [8], [28] or the closed-loop [1], [34], [21], [22]
operation of the system).

This paper follows the latter approach and focuses on
the design of an active model-based FDI mechanism that
guarantees set separation via an auxiliary input signal, chosen
off-line based on an optimisation mechanism. Given a set
of pre-defined fault scenarios, the scalability advantages of
the procedure make it suitable for large-scale dynamical
systems (such as networked systems with a large number
of components). Results for continuous-time FDI design [4]
have recently shown that the fault isolation problem can be
solved for continuous-time linear systems based on the Hahn-
Banach theorem and a duality approach; the present results,
conversely, specifically deal with discrete-time systems.

We consider linear dynamics and develop an active
observer-based FDI technique to reconstruct the state infor-
mation affected by norm-bounded disturbances. We take into
account one healthy and a finite number of faulty system
configurations, and seek suitable test signals that guarantee
separation of the limit sets via hyperplanes in the residual
space [17], [19], [21]. Since the explicit computation of limit
sets is a hard task, we propose an approach that avoids it
and exploits an implicit representation [12], [29]. Given a
constant test signal u chosen to ensure set separation, we
show that the distance between two limit sets can be obtained
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without explicitly computing the sets, via convex quadratic
programming in the case of the Euclidean norm and linear
programming in the case of ∞-norm. The problem domain
is the unit ball of the residual space, which is typically of
low (output-space) dimension. When the distance between
two limit sets is positive (separation condition), we provide
the expression of a separating hyperplane. If the test signal
u is bounded in a polytope, the values of u that maximise
the distance, and offer the best discrimination, are achieved
on the vertices, since the distance is a convex function of
u. The approach allows us to efficiently handle large scale
systems and networked systems with many components.

In contrast to [17], isolation in finite time can be achieved
based on a positive answer for the asymptotic separation
conditions. When compared to [19], the on-line monitoring
reduces to a simple positioning with respect to separating hy-
perplanes, having lower computational complexity. Also, the
forward set propagation and projection in [21] are avoided.

From a broader point of view, the present work can be in-
terpreted as an active-mode detection technique for discrete-
time linear systems affected by bounded disturbances [37].

The paper is organised in two main parts, one devoted to
the problem statement and the theoretical results on active
fault isolation, and one that illustrates the results by means
of a numerical example with complete state and observer
space dimension 20, for which no explicit computation
is practically possible: our method, based on an implicit
representation, assures fault isolation. A series of conclusions
and remarks complete this study.

II. ACTIVE FAULT ISOLATION FOR DISCRETE-TIME
SYSTEMS BASED ON IMPLICIT SET REPRESENTATION

Consider the family of linear time invariant discrete-time
systems

x(k + 1) = Ahx(k) +Bhu(k) + Ehd(k) (1)
y(k) = Chx(k) +Dhw(k) (2)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is a controlled in-
put, y(k) ∈ Rp is the measured output, while d(k) ∈ Rq and
w(k) ∈ Rp represent disturbance and noise, respectively. Ah,
Bh, Ch, Dh and Eh are matrices of appropriate dimensions.
For the sake of simplicity, the state dimension is considered
as constant for all h. The signals d(k) ∈ Rq w(k) ∈ Rp are
unknown and subject to the bounds

‖d(k)‖∞ ≤ 1,

‖w(k)‖∞ ≤ 1.

Any weight concerning the components of d and w is
absorbed in the matrix Eh and in the square, possibly
diagonal matrix Dh. The index h is associated with the
configuration in which the system is actually operating:

[Ah, Bh, Ch, Dh, Eh], h ∈ H,

where H = {0, 1, . . . , N} is a discrete and finite set of
indices. We will assume that h = 0 corresponds to the
healthy condition [A0, B0, C0, D0, E0]

.
= [A,B,C,D,E],

while any other h ≥ 1 corresponds to a faulty condition.
To detect a fault and to isolate it (namely, to establish the
actual active configuration h of the system), we can adopt
an observer:

x̂(k + 1) = (A+ LC)x̂(k) +Bu(k)− Ly(k), (3)
ŷ(k) = Cx̂(k). (4)

Under observability assumptions, in healthy conditions and
in the absence of disturbance and noise, with an appropriate
choice of the gain L, the residual variable r(k) = y(k)−ŷ(k)
converges to zero. Conversely, in faulty conditions and in the
presence of disturbance and noise, this convergence is not
ensured and r can be used as a fault detection indicator. The
overall system dynamics obey to[

x(k + 1)
x̂(k + 1)

]
=

[
Ah 0
−LCh (A+ LC)

] [
x(k)
x̂(k)

]
+

[
Bh

B

]
u(k) +

[
Eh 0
0 −LDh

] [
d(k)
w(k)

]
, (5)

with residual output equation

r(k) =
[
Ch −C

] [ x(k)
x̂(k)

]
+
[

0 Dh

] [ d(k)
w(k)

]
.

(6)
We will adopt the new state space representation

z(k + 1) = Fhz(k) +Ghu(k) + Phv(k), (7)
r(k) = Mhz(k) +Qhv(k), (8)

where z(k) =
[
x(k)> x̂(k)>

]>
, v(k) =

[
d(k)> w(k)>

]>
and the matrices Fh, Gh, Ph, Mh and Qh are those appearing
in (5) and (6). Note that v(k) ∈ Rs, s = q+ p, is in the unit
ball of the ∞-norm:

v(k) ∈ B .
= {v ∈ Rs : ‖v‖∞ ≤ 1}.

We make the following assumptions.
Assumption 1: Matrices Ah are Schur for all h ∈ H.

Matrix L is given1 and such that (A+ LC) is Schur.
Without any further assumption on v, it is in general

impossible to detect any fault unless we provide more
hypotheses on the input. We assume thus that a test signal
u of bounded magnitude can be adopted.

Assumption 2: The test signal u is constant and u ∈ U ,
where U is a polytope.

In the absence of v in (7) and (8), and in view of
asymptotic stability, the residual converges asymptotically to
the point

r∞(h)
.
= Mh(I − Fh)−1Ghu = Ch(I −Ah)−1Bhu

−C(I −A− LC)−1[−LCh(I −Ah)−1Bhu+Bu].

Note that r∞(0) = 0. Under these assumptions, distinguish-
ing two faults, h and l, in finite time is possible if we know
a separating hyperplane between r∞(h) and r∞(l). But even
if r∞(h) and r∞(l) are separable, the noise v may prevent
the system trajectories from ultimately crossing the barrier

1L may be designed e.g. to optimise nominal (healthy) working condi-
tions.
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that discriminates the configurations h and l. A necessary
and sufficient condition for ultimately crossing this barrier
is that the limit sets for h and l are on opposite sides of the
plane [18].

To distinguish two faults, we need to find an input u
assuring the existence of proper separating hyperplanes be-
tween the limit sets. Denoting by Zh(0) the minimal robustly
invariant set for the system (7) with u = 0,

z(k + 1) = Fhz(k) + Phv(k), (9)

the limit set for the residual r is

Rh(u) = {Mh(I − Fh)−1Ghu} ⊕MhZh(0)⊕QhB,

where ⊕ is the Minkowski sum for sets. Therefore a
crucial condition for the existence of u that discriminates
between configurations h and l in finite time T [17] is
Rh(u)

⋂
Rl(u) = ∅, i.e., the distance between the two sets

is positive:

δhl(u) = dist (Rh(u),Rl(u)) > 0, (10)

with
dist (Q,R)

.
= inf

q∈Q, r∈R
‖r − q‖, (11)

where ‖r − q‖ can denote any relevant norm (typically the
Euclidean norm or the ∞-norm).

Definition 1: Configurations l and h are distinguishable if
there exists u ∈ U such that δhl(u) > 0.

Problem 1: Given the matrices Fh, Gh, Mh, Qh Ph,
h ∈ H, the matrices Fl, Gl, Ml, Ql Pl, l ∈ H, l 6= h,
and the polytope U , find constant values uhl ∈ U such that
δhl(uhl) > 0.

Remark 1: Considering a separating hyperplane might be
conservative for simple (e.g., first or second order) systems,
where faults can be isolated simply by examining the tran-
sient even when the distance conditions (10) are not met.
However, the general hyperplane method can be efficiently
used for high dimensional systems, as we will see later.

Some preliminary results are the following.
Proposition 1: [15] Function δhl (u) is convex; hence, its

maximum is reached on the set of vertices of U , vert(U).
It follows that configurations h and l are distinguishable
if and only if δhl(u) > 0 for some u ∈ vert(U). There-
fore, checking if configurations l and h are distinguishable
requires solving a finite number of convex optimisation
problems.

In principle, to compute the limit set for the residual,
we would need to compute the minimal robustly invariant
set Zh(0) and to evaluate its projection MhZh(0). In [5]
it is shown how to compute an external invariant approxi-
mation of Zh(0). In our case, we need a suitable external
approximation of MhZh(0) as a projection of an external
approximation of Zh(0). Precisely, we wish to approximate
the set

R(0) =

{
r ∈ Rp : r =

∞∑
k=0

MF kPvk, vk ∈ B

}
(12)

by the set

RT (0)
.
=

{
r ∈ Rp : r =

T∑
k=0

MF kPvk, vk ∈ B

}
. (13)

Indeed, the following approximation result holds.

Proposition 2: Define

ν(M,F, P )
.
= max

i

∞∑
k=0

∑
j

∣∣[MF k+T+1P ]ij
∣∣ ,

where [·]ij are the elements of matrix ·, and

µ(T ) = min{µ > 0 : ν(M,F, P )B ⊂ µRT (0)}, (14)

where B is the unit ball of the ∞-norm. Then

R(0) ⊆ (1 + µ(T ))RT (0).

Proof: We have that

R(0) = RT (0)⊕

{
r =

∞∑
k=0

MF k+T+1Pv′k, v
′
k ∈ B

}
︸ ︷︷ ︸

.
=ST (0)

.

The maximum ‖·‖∞ norm of the elements of the set denoted
by ST is the ∞-to-∞ induced norm of the operator

[MFT+1P MFT+2P MFT+3P . . . ],

which is given by [10]

ν(M,F, P )
.
= maxr∈ST ‖r‖∞
= maxi

∑∞
k=0

∑
j

∣∣[MF k+T+1P ]ij
∣∣ .

Therefore ST ⊆ µRT if the unit ball of the ∞-norm
multiplied by ν(M,F, P ) is a subset of µRT , exactly as
required by condition (14).

Checking condition (14) requires the solution of some Linear
Programming problems. For each vertex b of the unit ball of
the infinity norm multiplied by ν(M,F, P ), ν(M,F, P )b, we
need to minimise µ such that ν(M,F, P )b can be expressed
by a finite sum of the form (13), with vectors vk whose
component absolute value is less or equal to 1.

The complexity of the explicit representation of the
set RT (0) can be too high anyway [5]. To compute the
set, we have to generate the candidate vertices, which
are

∑T
k=0 MF kP v̂k, with v̂k ∈ vert(B). Their number

grows exponentially: there are (#vert(B))T+1 vertices to
be projected in the p-dimensional residual space. Yet, we
can solve the problem efficiently by providing an implicit
representation as follows.

Consider the lower bound

δThl(u) = dist
(
RT

h (u),RT
l (u)

)
≤ δhl(u),

where

RT
h (u)

.
={Mh[I − Fh]−1Ghu} ⊕ (1 + µ(T ))RT

h (0)⊕QhB.

This lower bound can be computed as the solution of the
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minimisation problem:

δThl(u) = min
v′
Q, v′′

Q, v′
k, v

′′
k

‖rh − rl‖ (15)

s.t.
rh = Mh[I − Fh]−1Ghu+

+ (1 + µ(T ))

T∑
k=0

MhF
k
hPhv

′
k +Qhv

′
Q (16)

rl = Ml[I − Fl]
−1Glu+

+ (1 + µ(T ))

T∑
k=0

MlF
k
l Plv

′′
k +Qlv

′′
Q (17)

v′Q, v
′′
Q, v

′
k, v

′′
k ∈ B. (18)

Computationally, this is a substantial improvement. Con-
sider, e.g., n = 10, m = 2, p = 3, q = 1 (hence s = 4) and
T = 10. There are (#vert(B))T+1 = [2s]T+1 = 244, more
than 16 × 1012, candidate vertices. Most of these would be
redundant, but the elimination procedure would be intractable
and practically unfeasible. Then we should solve a minimum-
distance problem between two sets of such a complexity
in dimension p = 3. Yet, in the Euclidean norm case, the
quadratic minimisation problem has 2[(T + 1) ∗ s+ s] = 96
variables (each upper and lower bounded, which requires
96 ∗ 2 inequality constraints) and p ∗ 2 = 6 equality
constraints, and is solvable via standard software.

If in (15) we take the infinity norm (possibly weighted),
we obtain a Linear Programming (LP) problem

min δ : −δ1̄ ≤ rh−rl ≤ δ1̄, subject to (16) (17) (18),

where 1̄ = [1 1 1 . . . 1]> and the inequalities have to be
intended component-wise. LP problems with thousands of
variables are standard in optimisation.

An important role in fault isolation is played by the
distance matrix, defined as follows. For any input u we have
seen how to approximate δhl(u), the distance between limit
sets. Since the distance is a convex function, it reaches its
maximum on the vertices of U . Then, for any vertex uj of
U , one can consider the distance matrices

[∆(uj)]hl = δhl(uj),

which are nonnegative and symmetric. Distance matrices
suggest which signal u is the most appropriate for distin-
guishing between pairs of configurations.

Hence, to decide off-line if two configurations h and l are
distinguishable, separation between two sets in the residual
space can be checked via the following procedure.
1) Compute ν(Mh, Fh, Ph) and ν(Ml, Fl, Pl) (compute the
sums of series and take the maximum).
2) Compute the value of µ for a given T , which can be fixed
depending on the complexity of RT

h (0) and RT
l (0).

3) For each vertex u of the set U , solve the problem (15)–
(18) and check whether the resulting δThl(u) is positive.

In order to isolate on-line the failures, once we have
established that the distances among limit sets associated
with the test signal u are positive, we need to find separation

R (0)
0

R (u)

R
T

T

T

Π

Π

Π

12

r
1

l

0l

r
2

(u)
2

02

Fig. 1: Separation hyperplanes between pairs of sets.

hyperplanes among these sets. For instance, in Fig. 1, if u is
applied, we can distinguish between failures 2 and 1 since
the residual, in finite time, will be confined to the left or to
the right of the hyperplane Π12. If we consider the Euclidean
norm, a separation hyperplane between a pair of sets RT

h (0)
and RT

l (0) can be taken as

Πhl =

{
r : (r̂h − r̂l)>r =

(r̂h − r̂l)>(r̂h + r̂l)

2

}
,

where r̂h ∈ RT
h (0) and r̂l ∈ RT

l (0) are the two points at
minimum Euclidean distance from Πhl. Again, we do not
need the explicit representation of the two sets: r̂h and r̂l are
achieved for free from the quadratic optimisation problem.
If the distance among sets is based on a different norm, the
expression is different, but still a separation hyperplane can
be determined for any pair of convex sets having positive
distance. Note that a single hyperplane can separate several
pairs of sets: this can be useful for detecting a fault.

Hence, to distinguish between two configurations h and l,
we just need to compute the discriminant function

discr(h, l) .
= sign

[
(r̂h − r̂l)>r −

(r̂h − r̂l)>(r̂h + r̂l)

2

]
,

which is positive for configuration h and negative for con-
figuration l. Since we have N + 1 possible operating modes
(including the healthy one), this requires checking at most
(N + 1)N/2 linear functions. Only discriminant functions
are needed for the on-line decision making, since the sets
RT

h (0) are used exclusively off-line, for design purposes.
Remark 2: After switching from configuration l to con-

figuration h, given a constant input u = ū and the distance
δhl(ū)/2 of the separating hyperplane from the set Rh(ū),
the time necessary for the residual trajectory to ultimately
cross the separating hyperplane between the two sets can
be estimated along the lines suggested in [30, Appendix
A]. The finite-time detection will be effective provided that
no supplementary configuration switch happens in this time
interval (i.e., under the assumption of persistence of fault).

III. EXAMPLE

Consider the 5-degree-of-freedom oscillating system de-
picted in Fig. 2, with a persistent disturbance affecting mass
3. Two control forces are applied to masses 2 and 5, while
the outputs are the positions of masses 1 and 4. We assume
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Fig. 2: The oscillating system: the springs connecting masses 1-4 and 3-4
may be broken (meaning that their elastic constant becomes 0).

that a complete failure of the springs connecting masses 1-4
and 3-4 can occur. The model of the system is

Mq̈(t) = −Khq(t)−Dq̇(t) +Bqu(t) + Eqd(t)

y(t) = [ q1(t) q4(t) ]> + w(t)

where q ∈ R5 (hence, the system state has size 10), y, w ∈
R2, ‖w‖∞ ≤ 1, |d(t)| ≤ 1, the mass diagonal matrix is
M = I , the damping matrix is D = 0.3I and the stiffness
matrix is

Kh =


2 + α −1 0 −α 0
−1 2 −1 0 0
0 −1 2 + β −β 0

−α 0 −β 1 + α+ β −1
0 0 0 −1 2

 .
The test input u and the disturbance d affect the system

through matrices Bq and Eq , respectively.
The possible configurations are

h = 0 : {α = 1, β = 1} , healthy,
h = 1 : {α = 0, β = 1} , faulty,
h = 2 : {α = 1, β = 0} , faulty.

We considered the sampling time τ = 1 and computed
the optimal filter whose gains are reported in Table I2. The
overall state and observer space dimension is n = 20.
Computing the reachable and limit set is just hopeless.

We considered a test signal u subject to ‖u‖∞ ≤ ξ, where
ξ > 0 is an amplitude parameter. According to Proposition 1,
the “best" discrimination value is found on one of the four
vertices of this set. By symmetry we can check two vertices:

ū1 = [ ξ ξ ]>, ū2 = [ ξ − ξ ]>.

We chose a time horizon T = 30 and, by evaluating the
series, we computed the values of µ(30) corresponding to
the above values of h: µ(30)|h=0 = 0.5822, µ(30)|h=1 =
0.6890 and µ(30)|h=2 = 0.4915. In Table II we reported the
distances between pairs of sets as functions of the intensity
ξ of the signal for both vertices ū1 and ū2. It turns out that
ū2 has much better discriminating properties than ū1, since
it assures greater distances.

We show the transient generated with a random signal v
assuming values at the extrema {−1, 1}, starting from the
healthy configuration (h = 0) in presence of a constant
input of magnitude ξ = 80 corresponding to ū1 in Fig. 3
(a) and to ū2 in Fig. 3 (b). We have also represented the

2The code for the example is available online at the URL
http://users.dimi.uniud.it/~franco.blanchini/fault.zip.
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(a) Input signal ū1 with ξ = 80.
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(b) Input signal ū2 with ξ = 80.

Fig. 3: The simulations and the separation lines (blue); the evolution of
system configuration h = 0 is shown with a green dotted line, h = 1 with
a red dashed line, h = 2 with a black line.

separation lines by segments whose length is proportional to
the distance between the sets. According to Table II, there
is only one separation line for ū1, which discriminates 0
and 1. It is worth pointing out that the “simulated" limit
sets seem to be quite far from the separation lines. To
solve the optimisation problem that provides δhl with the
MATLAB® function quadprog, the required computational
time amounts to tens of milliseconds (using a 2.3 GHz Intel
Core i7 processor).

IV. CONCLUDING REMARKS AND DISCUSSION

We have proposed a numerically efficient approach to fault
isolation based on limit set separation. The limit sets for the
residuals under faults are implicitly handled, by formulating
a linear-quadratic constrained problem that can be easily
solved, even for large scale systems.

Separation between configurations h and l1 might be
obtained with a constant signal different from the one needed
to separate configurations h and l2. To distinguish multiple
fault pairs, we can seek a signal that concurrently separates
all the limit sets, or we can first inject a signal that separates
the first pair, then switch to a different signal. As a further
extension, we could consider the discrete-time counterpart of
the periodic excitation signals discussed in [4].
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L =

[
−0.0393 −0.0436 −0.0455 −0.0467 −0.0424 0.1232 0.0602 −0.0528 −0.0134 0.0495
−0.0834 −0.0834 −0.0217 −0.0565 −0.0565 −0.0093 0.0589 0.0288 0.0674 −0.0008

]>

TABLE I: The observer gain for the discrete-time example.

ξ 20 40 60 80 100 120 140
δ01(ū1) 0 0 0.1581 1.8658 3.5734 5.2811 6.9888
δ02(ū1) 0 0 0 0.7094 2.0447 3.3799 4.7152
δ12(ū1) 0 0 0 0.8110 2.1920 3.5730 4.9541
δ01(ū2) 0.1581 5.2811 10.4065 15.5354 20.6653 25.7957 30.9262
δ02(ū2) 0 3.3799 7.3857 11.3915 15.4210 19.4814 23.5590
δ12(ū2) 0 3.5730 7.7161 11.8592 16.0023 20.1454 24.2885

TABLE II: The distances among sets as a function of ξ and of the vertex ūk .

Our approach allows us to decide off-line which are the
best signals to adopt, while the on-line decision is simply
made by checking if the residual is to the left or to the right
of the separating hyperplanes (which requires a negligible
computational effort). We believe that the proposed approach
can be fruitfully combined with previous methods, e.g. [18],
[34], [28], providing a priori separation guarantees.
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