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Abstract: The paper presents conditions for the stability of a dynamical network described by
a directed graph, whose nodes represent dynamical systems characterised by the same transfer
function F (s) and whose edges account for the interactions between pairs of nodes. In turn,
these interactions depend via a transference G(s) on the outputs of the subsystems associated
with the connected nodes. The stability conditions are topology-independent, in that they hold
for all possible connections of the nodes, and robust, in that they allow for uncertainties in the
determination of the transferences. Two types of interactions are considered: bidirectional and
unidirectional. In the first case, if nodes i and j are connected, both node i affects node j and
node j affects node i, while in the second case only one of the two occurrences is admitted. The
robust stability conditions are expressed as constraints for the Nyquist diagram of H = FG.
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1. INTRODUCTION

Recently, considerable attention has been paid to the
analysis of dynamical networks consisting of a number
of equal subsystems interacting dynamically with one an-
other according to a similar mechanism. Indeed, models
of this kind prove quite effective in describing a number
of biological, economic, mathematical, chemical, and ar-
tificial distributed problems. Fairly ample and updated
bibliographies on this subject are provided by Golovin
et al. (2008), Cao et al. (2013), Nicolaides et al. (2015),
Green and Sharpe (2015), Le Novère (2015), Giordano
(2016). The application of dynamical networks is now
spreading rapidly in diverse areas (cf., e.g., Jadbabaie et al.
2003; Smith and Hadaegh 2007; Del Vecchio et al. 2008;
Wang et al. 2014) following a rather long latency, after
the seminal papers by Turing (1952) on the chemical basis
of morphogenesis (pattern formation) and Wolpert (1969)
on positional information and the spacial pattern of cellu-
lar differentiation. Interesting early attempts at studying
rigorously the dynamics of pattern formation are due to
Gierer and Meinhardt (1972) and, for lateral-inhibition
type homogeneous neural fields with general connections,
to Amari (1977). Nor should we forget the fundamental
book by Nicolis and Prigogine (1977) on self-organising
systems. The subject has been lately reconsidered in more
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mathematical terms in many papers. Suffice it to recall the
contribution of Golovin et al. (2008), Arcak (2011, 2013),
Lin et al (2016), Lestas and Vinnicombe (2006), Pates
and Vinnicombe (2012). The last two works, in particular,
provide Nyquist–like conditions (the so–called “stability
certificates”) that guarantee the stability of the entire
network by satisfying local rules involving each agent and
the dynamics of its neighbours, so that these conditions
scale with the network size. A number of interesting issues
of biochemical networks relevant to the control engineering
perspective are illustrated by Wolkenhauer et al. (2004).
The present contribution has been stimulated by the last–
mentioned papers as well as by Blanchini et al. (2015,
2016); Hori et al (2015); Miyazako et al. (2014), which ap-
ply concepts and tools of systems and control theory, such
as feedback, decentralisation, stabilisation, root loci, lin-
earisation and harmonic balance, to the stabilising control
of decentralised systems and to the analysis of coordinated
spacial pattern formation of biomolecular networks.
This paper focuses on homogeneous dynamical networks
represented by directed graphs, whose nodes correspond
to equal linear dynamic systems that are influenced by
flow variables associated with the arcs connecting every
node with its adjacent nodes. In turn, these flows depend
dynamically, yet linearly, on the variables characterising
the nodes, i.e., their outputs. The aim of the paper is to
derive conditions that ensure the robust stability of the
overall network independently of its size and connectivity.
To this purpose, both node and arc transferences are
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degli Studi di Udine, Via delle Scienze 206, 33100 Udine, Italy
{daniele.casagrande,viaro}@uniud.it.

∗∗∗ Department of Automatic Control LTH and LCCC Linnaeus
Center, Lund University, Box 118, SE 221 00 Lund, Sweden

giulia.giordano@control.lth.se.

Abstract: The paper presents conditions for the stability of a dynamical network described by
a directed graph, whose nodes represent dynamical systems characterised by the same transfer
function F (s) and whose edges account for the interactions between pairs of nodes. In turn,
these interactions depend via a transference G(s) on the outputs of the subsystems associated
with the connected nodes. The stability conditions are topology-independent, in that they hold
for all possible connections of the nodes, and robust, in that they allow for uncertainties in the
determination of the transferences. Two types of interactions are considered: bidirectional and
unidirectional. In the first case, if nodes i and j are connected, both node i affects node j and
node j affects node i, while in the second case only one of the two occurrences is admitted. The
robust stability conditions are expressed as constraints for the Nyquist diagram of H = FG.

Keywords: Dynamical networks, Directed graphs, Feedback, Robust stability, Nyquist diagram.

1. INTRODUCTION

Recently, considerable attention has been paid to the
analysis of dynamical networks consisting of a number
of equal subsystems interacting dynamically with one an-
other according to a similar mechanism. Indeed, models
of this kind prove quite effective in describing a number
of biological, economic, mathematical, chemical, and ar-
tificial distributed problems. Fairly ample and updated
bibliographies on this subject are provided by Golovin
et al. (2008), Cao et al. (2013), Nicolaides et al. (2015),
Green and Sharpe (2015), Le Novère (2015), Giordano
(2016). The application of dynamical networks is now
spreading rapidly in diverse areas (cf., e.g., Jadbabaie et al.
2003; Smith and Hadaegh 2007; Del Vecchio et al. 2008;
Wang et al. 2014) following a rather long latency, after
the seminal papers by Turing (1952) on the chemical basis
of morphogenesis (pattern formation) and Wolpert (1969)
on positional information and the spacial pattern of cellu-
lar differentiation. Interesting early attempts at studying
rigorously the dynamics of pattern formation are due to
Gierer and Meinhardt (1972) and, for lateral-inhibition
type homogeneous neural fields with general connections,
to Amari (1977). Nor should we forget the fundamental
book by Nicolis and Prigogine (1977) on self-organising
systems. The subject has been lately reconsidered in more

� G.G. acknowledges support from the Swedish Research Council
through the LCCC Linnaeus Center and the eLLIIT Excellence
Center at Lund University.

mathematical terms in many papers. Suffice it to recall the
contribution of Golovin et al. (2008), Arcak (2011, 2013),
Lin et al (2016), Lestas and Vinnicombe (2006), Pates
and Vinnicombe (2012). The last two works, in particular,
provide Nyquist–like conditions (the so–called “stability
certificates”) that guarantee the stability of the entire
network by satisfying local rules involving each agent and
the dynamics of its neighbours, so that these conditions
scale with the network size. A number of interesting issues
of biochemical networks relevant to the control engineering
perspective are illustrated by Wolkenhauer et al. (2004).
The present contribution has been stimulated by the last–
mentioned papers as well as by Blanchini et al. (2015,
2016); Hori et al (2015); Miyazako et al. (2014), which ap-
ply concepts and tools of systems and control theory, such
as feedback, decentralisation, stabilisation, root loci, lin-
earisation and harmonic balance, to the stabilising control
of decentralised systems and to the analysis of coordinated
spacial pattern formation of biomolecular networks.
This paper focuses on homogeneous dynamical networks
represented by directed graphs, whose nodes correspond
to equal linear dynamic systems that are influenced by
flow variables associated with the arcs connecting every
node with its adjacent nodes. In turn, these flows depend
dynamically, yet linearly, on the variables characterising
the nodes, i.e., their outputs. The aim of the paper is to
derive conditions that ensure the robust stability of the
overall network independently of its size and connectivity.
To this purpose, both node and arc transferences are

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 1772

Topology-Independent Robust Stability of
Homogeneous Dynamic Networks �

Franco Blanchini ∗ Daniele Casagrande ∗∗ Giulia Giordano ∗∗∗

Umberto Viaro ∗∗

∗ Dipartimento di Scienze Matematiche, Informatiche e Fisiche,
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considered to be uncertain, the only available information
being the maximum number of arcs that may leave or enter
a node.

2. DEFINITIONS AND PROBLEM STATEMENT

A directed graph with n nodes and m arcs is the ordered
pair G = (N ,A), where N is the set of the nodes with
cardinality |N | = n and A ⊂ N × N is the set of the
arcs with cardinality |A| = m. Each arc is identified by a
pair of nodes (i, j), with i, j ∈ N and i �= j. It is assumed
that two nodes are connected at most by one arc, so that
(i, j) ∈ A ⇒ (j, i) /∈ A. Two nodes i, j ∈ N are adjacent if
they are connected by an arc, namely, if either (i, j) ∈ A
or (j, i) ∈ A. An arc (i, j) ∈ A is incident in both nodes i
and j. For each node i ∈ N , Li ⊆ A denotes the set of all
the arcs that are incident in i, i.e.,

Li={(h, k)∈A : either h = i or k = i}. (1)

The degree of node i is the cardinality of Li. The maximum
connectivity degree of the graph, denoted by M, is the
maximum of the degrees of its nodes. It is assumed that the
graph is connected : given any pair of nodes i, j ∈ N , there
always exists a path, formed by a sequence of adjacent
nodes, connecting node i to node j.

The dynamic behaviour of the graph is characterised by
scalar variables associated with its nodes and arcs. Pre-
cisely, yi(t), i = 1, . . . , n, denote the variable characterising
node i and uh(t), h = 1, . . . ,m, the variable characterising
arc h, where for notational simplicity a single index is
used to identify arcs (e.g., according to a lexicographic or-
der). Typically, node variables represent stored quantities
(stocks), and arc variables represent flows.

It is assumed that the variable characterising each node
i is related to those characterising its incident arcs via
a balance-like equation that in the domain of Laplace
transforms can be written as:

Yi(s) = [F (s) + ∆F (s)]
∑
h∈Li

δih Uh(s), (2)

where:
- Yi and Uh denote the Laplace transforms of yi and uh,
respectively,
- F is the (scalar) nominal transfer function from each
incident arc variable to the node variable,
- ∆F represents the deviation of the actual transfer func-
tion from the nominal one F (common to all nodes),
- δih accounts for the arc orientation, precisely:

δih =

{
1 if arc h is entering node i ,

−1 if arc h is leaving node i .

Equation (2) means that the storage variable yi associated
with node i depends dynamically on the flow variables uh

associated with the arcs entering and leaving node i.

In turn, the arc variables are made to depend dynamically,
yet linearly, on the variables characterising the nodes
connected by the arc. This dependence may be either
bidirectional or unidirectional.

In the bidirectional case the variable associated with arc
h = (i, j), directed from node i to node j, depends on both
the departure and the arrival node variables according to

Uh(s) = µ [G(s) + ∆G(s)] [Yi(s)− Yj(s)], (3)
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Fig. 1. Example of subgraph involving two nodes.
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Fig. 2. Network connected with the external environment
(denoted by node 0).

where G plays the role of a (scalar) nominal transference
(common to all arcs), ∆G is the deviation from the
nominal transference G, and µ is a (possibly unknown)
gain parameter.

In the unidirectional case, instead, an arc variable depends
only on the variable associated with the departure node,
i.e., for arc h = (i, j):

Uh(s) = µ[G(s) + ∆G(s)] Yi(s). (4)

Example 1. For the subgraph depicted in Figure 1, equa-
tions (2) particularise to

Y1(s) = µ[F (s) + ∆F (s)][U2(s)− U1(s)− U3(s)],

Y2(s) = µ[F (s) + ∆F (s)][U3(s)− U4(s) + U5(s)].

Let B ∈ {−1, 0, 1}n×m denote the (generalised) incidence
matrix of the directed graph, whose rows and columns
correspond to the n nodes and to the m arcs, respectively.
Each column has at most two non-zero entries. In each
row, the entries corresponding to departure arcs are equal
to −1, whereas the entries corresponding to arrival arcs
are equal to 1.

To allow for possible interactions between some (or all) of
the n nodes and the external environment, a further node,
representing the environment and denoted by 0, may be
added to the graph. This node is associated with variables
that are not affected by the other graph variables and may
account, e.g., for boundary conditions.

Example 2. The network in Figure 2 corresponds to the
incidence matrix

B =




1 −1 −1 0 0 0
0 0 1 −1 0 0
0 1 0 0 −1 0
0 0 0 1 1 −1


 . (5)

No row is assigned to the external node 0, meaning that the
(unique) variable associated with it is y0 ≡ 0. Therefore,
in the bidirectional case the flow from node 0 and the one
to node 0 are given by: U1(s) = −µ[G(s) + ∆G(s)]Y1(s)
and U6(s) = µ[G(s) + ∆G(s)]Y4(s), respectively.
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Let B̃ denote the matrix whose entries are defined by:

B̃ij = min{0, Bij}.

Example 3. For the graph considered in Example 2,

B̃ =




0 −1 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


 .

Remark 1. Since the topology of a graph is specified by
its incidence matrix, in the following, with some abuse of
terminology, matrix B will also be referred to simply as
the topology.

Given the vectors of node and arc transfer functions 1 :

Y (s) = [ Y1(s) Y2(s) . . . Yn(s) ]
�

,

U(s) = [ U1(s) U2(s) . . . Um(s) ]
�
,

the system of equations for the arc-to-node transferences
can be expressed in compact form as

Y (s) = [F (s) + ∆F (s)]BU(s) , (6)

and the system of equations for the node-to-arc transfer-
ences as

U(s) = −µ[G(s) + ∆G(s)]B
�Y (s) (7)

in the bidirectional case, and

U(s) = −µ[G(s) + ∆G(s)]B̃
�Y (s) (8)

in the unidirectional case.

By combining (6) and (7), the characteristic equation in
the bidirectional case turns out to be

det[In + µH(s)L] = 0 , (9)

where In is the n-dimensional identity matrix,

H(s) = [F (s) + ∆F (s)][G(s) + ∆G(s)] , (10)

and L = BB� is the Laplacian matrix of the graph.

In the case of networks characterised by unidirectional
arcs, instead, the characteristic equation is obtained by
combining (6) and (8) and turns out to be

det[In + µH(s)A] = 0 , (11)

where A = BB̃�.

Remark 2. Matrix L = BB� has non-positive off-diagonal
entries and positive diagonal entries. It is symmetric and
positive semi-definite. It is positive definite if and only if
the system is externally connected (see e.g. Merris 1994).

Remark 3. Matrix A = BB̃� has non-positive off-diagonal
entries and positive diagonal entries. It is also column
diagonally dominant since, for all j,

∑
i�=j |Aij | ≤ Ajj .

Therefore, −A is a compartmental matrix (see e.g. De
Leenheer and Aeyels 2001).

Example 4. The L and A matrices for the graph consid-
ered in Example 2 are

L =




3 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 3


 , A =




2 0 0 0
−1 1 0 0
−1 0 1 0
0 −1 −1 1


 .

1 For notational simplicity the variable or variables associated with
the external node 0, if any, are assumed to be identically zero and
thus neglected.

In general, however, A is not triangular.

The following assumptions are adopted in the remainder
of this article.

Assumption 1. The nominal transferences F and G are
both proper and asymptotically stable, and at least one of
them is strictly proper.

Assumption 2. The terms ∆F and ∆G are bounded as

sup
ω∈R+

∣∣∣∣
∆F (jω)

F (jω)

∣∣∣∣ < KF , sup
ω∈R+

∣∣∣∣
∆G(jω)

G(jω)

∣∣∣∣ < KG ,

with K � KF +KG +KFKG < 1.

As will be shown in Section 3, the value of K provides
a measure of the uncertainty induced on (10) by the
uncertainties on F and G.

With a slight abuse of terminology, in the following the
system with characteristic equation (9) or (11) will be
referred to simply as system (9) or system (11).

Definition 1. Let the value of µ be fixed and let B be a
family of incidence matrices associated with the same set
of n nodes. System (9) (or system (11)) is robustly topology-
invariant stable in B (B-RTIS) if, for all ∆F and ∆G

satisfying Assumption 2, asymptotic stability is ensured
for all incidence matrices B ∈ B. System (9) (or system
(11)) is robustly topology-invariant stable (RTIS) if, for all
∆F and ∆G satisfying Assumption 2, asymptotic stability
is ensured for all possible incidence matrices.

Definition 2. Let B be a family of incidence matrices. Sys-
tem (9) (or system (11)) is µ-robustly topology-invariant
stable in B (B-µ-RTIS) if, for all ∆F and ∆G satisfying
Assumption 2, asymptotic stability is ensured for all in-
cidence matrices B ∈ B and for all µ > 0. System (9)
(or system (11)) is µ-robustly topology-invariant stable (µ-
RTIS) if, for all ∆F and ∆G satisfying Assumption 2,
asymptotic stability is ensured for all possible incidence
matrices and for all µ > 0.

Since both systems (9) and (11) depend on the topology
B, even if in different ways, it is natural to wonder whether
and how the network topology affects system stability. In
the following two sections, it is shown that, under mild
hypotheses, stability does not depend on B in both the
bidirectional and the unidirectional case.

Remark 4. The assumption of homogeneous uncertainties
may be reasonable in some cases, for instance in dealing
with swarms of robots (Jadbabaie et al. 2003), cellular
dynamics (Turing 1952), consensus (Olfati-Saber and Mur-
ray 2004) or distributed estimation (Giordano et al. 2016),
where the component subsystems are uncertain but iden-
tical. Still, it remains a restriction; a more general setup,
where uncertainties are heterogeneous, is considered by
Blanchini et al. (2017).

3. TOPOLOGY-INVARIANT STABILITY FOR
BIDIRECTIONAL NETWORKS

Let T ∈ Rn×n be an invertible matrix such that T−1LT =
Γ is a diagonal matrix whose diagonal entries are the real
nonnegative eigenvalues of L = BB�. The solutions of (9)
clearly coincide with those of
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B̃ =




0 −1 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


 .

Remark 1. Since the topology of a graph is specified by
its incidence matrix, in the following, with some abuse of
terminology, matrix B will also be referred to simply as
the topology.

Given the vectors of node and arc transfer functions 1 :

Y (s) = [ Y1(s) Y2(s) . . . Yn(s) ]
�

,

U(s) = [ U1(s) U2(s) . . . Um(s) ]
�
,

the system of equations for the arc-to-node transferences
can be expressed in compact form as

Y (s) = [F (s) + ∆F (s)]BU(s) , (6)

and the system of equations for the node-to-arc transfer-
ences as

U(s) = −µ[G(s) + ∆G(s)]B
�Y (s) (7)

in the bidirectional case, and

U(s) = −µ[G(s) + ∆G(s)]B̃
�Y (s) (8)

in the unidirectional case.

By combining (6) and (7), the characteristic equation in
the bidirectional case turns out to be

det[In + µH(s)L] = 0 , (9)

where In is the n-dimensional identity matrix,

H(s) = [F (s) + ∆F (s)][G(s) + ∆G(s)] , (10)

and L = BB� is the Laplacian matrix of the graph.

In the case of networks characterised by unidirectional
arcs, instead, the characteristic equation is obtained by
combining (6) and (8) and turns out to be

det[In + µH(s)A] = 0 , (11)

where A = BB̃�.

Remark 2. Matrix L = BB� has non-positive off-diagonal
entries and positive diagonal entries. It is symmetric and
positive semi-definite. It is positive definite if and only if
the system is externally connected (see e.g. Merris 1994).

Remark 3. Matrix A = BB̃� has non-positive off-diagonal
entries and positive diagonal entries. It is also column
diagonally dominant since, for all j,

∑
i�=j |Aij | ≤ Ajj .

Therefore, −A is a compartmental matrix (see e.g. De
Leenheer and Aeyels 2001).

Example 4. The L and A matrices for the graph consid-
ered in Example 2 are

L =




3 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 3


 , A =




2 0 0 0
−1 1 0 0
−1 0 1 0
0 −1 −1 1


 .

1 For notational simplicity the variable or variables associated with
the external node 0, if any, are assumed to be identically zero and
thus neglected.

In general, however, A is not triangular.

The following assumptions are adopted in the remainder
of this article.

Assumption 1. The nominal transferences F and G are
both proper and asymptotically stable, and at least one of
them is strictly proper.

Assumption 2. The terms ∆F and ∆G are bounded as

sup
ω∈R+

∣∣∣∣
∆F (jω)

F (jω)

∣∣∣∣ < KF , sup
ω∈R+

∣∣∣∣
∆G(jω)

G(jω)

∣∣∣∣ < KG ,

with K � KF +KG +KFKG < 1.

As will be shown in Section 3, the value of K provides
a measure of the uncertainty induced on (10) by the
uncertainties on F and G.

With a slight abuse of terminology, in the following the
system with characteristic equation (9) or (11) will be
referred to simply as system (9) or system (11).

Definition 1. Let the value of µ be fixed and let B be a
family of incidence matrices associated with the same set
of n nodes. System (9) (or system (11)) is robustly topology-
invariant stable in B (B-RTIS) if, for all ∆F and ∆G

satisfying Assumption 2, asymptotic stability is ensured
for all incidence matrices B ∈ B. System (9) (or system
(11)) is robustly topology-invariant stable (RTIS) if, for all
∆F and ∆G satisfying Assumption 2, asymptotic stability
is ensured for all possible incidence matrices.

Definition 2. Let B be a family of incidence matrices. Sys-
tem (9) (or system (11)) is µ-robustly topology-invariant
stable in B (B-µ-RTIS) if, for all ∆F and ∆G satisfying
Assumption 2, asymptotic stability is ensured for all in-
cidence matrices B ∈ B and for all µ > 0. System (9)
(or system (11)) is µ-robustly topology-invariant stable (µ-
RTIS) if, for all ∆F and ∆G satisfying Assumption 2,
asymptotic stability is ensured for all possible incidence
matrices and for all µ > 0.

Since both systems (9) and (11) depend on the topology
B, even if in different ways, it is natural to wonder whether
and how the network topology affects system stability. In
the following two sections, it is shown that, under mild
hypotheses, stability does not depend on B in both the
bidirectional and the unidirectional case.

Remark 4. The assumption of homogeneous uncertainties
may be reasonable in some cases, for instance in dealing
with swarms of robots (Jadbabaie et al. 2003), cellular
dynamics (Turing 1952), consensus (Olfati-Saber and Mur-
ray 2004) or distributed estimation (Giordano et al. 2016),
where the component subsystems are uncertain but iden-
tical. Still, it remains a restriction; a more general setup,
where uncertainties are heterogeneous, is considered by
Blanchini et al. (2017).

3. TOPOLOGY-INVARIANT STABILITY FOR
BIDIRECTIONAL NETWORKS

Let T ∈ Rn×n be an invertible matrix such that T−1LT =
Γ is a diagonal matrix whose diagonal entries are the real
nonnegative eigenvalues of L = BB�. The solutions of (9)
clearly coincide with those of
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det[In + µH(s)Γ] = 0 ,

which is equivalent to the set of n equations

1 + µH(s)γk = 0, k = 1, . . . , n , (12)

where γk is the k-th diagonal entry of Γ (see Hori et al
2015). The asymptotic stability of the overall system
requires that these solutions have negative real part.

Theorem 1. Under Assumption 1, system (9) is µ-RTIS if

and only if the Nyquist plot of W � FG lies outside the
closed sector

S0 = {�(W ) < 0 , | sin(arg(W ))| ≤ K} (13)

(shaded region in Figure 3).

ℑ(W )

ℜ(W )

Fig. 3. Nyquist plot of W not entering the “forbidden”
sector S0 (shaded). The disk inside the dashed circle
represents the uncertainty at a particular frequency.

Proof. Sufficiency. If the Nyquist plot of W lies outside
S0, then, for all ω ≥ 0,

K < | sin(arg(W (jω)))|. (14)

Recalling that �(W (jω)) = |W (jω)| sin(arg(W (jω))),
inequality (14) implies

|W (jω)|K < |�(W (jω))| . (15)

Since

H = W +W

(
∆G

G
+

∆F

F
+

∆F ∆G

FG

)
, (16)

function H differs from the “nominal” function W by

∆H � W

[
∆G

G
+

∆F

F
+

∆F∆G

FG

]
. (17)

For all ω ≥ 0, the term ∆H(jω) is contained in a circle of
radius

R(jω) � |W (jω)|K (18)

(see the circle inside the dashed contour in Figure 3). It
follows that, if (15) holds, the Nyquist plot of H cannot
intersect the negative real axis. Therefore, for any choice
of µ and for any eigenvalue γk of L, the Nyquist plot of
µγkH cannot encircle the point −1 and, according to the
Nyquist criterion, asymptotic stability is ensured.

Necessity. Suppose that a point of the Nyquist plot of
W lies in the sector S0, i.e., that, for some ω∗ ≥ 0,
K ≥ | sin(arg(W (jω∗)))|. Then, the circle of radius R(jω∗)
centred at W (jω∗) intersects the negative real semi–axis
(see Figure 4). As a consequence, there exist ∆F and ∆G

such that

H(jω∗) = [F (jω∗) + ∆F (jω
∗)][G(jω∗) + ∆G(jω

∗)] =

− p < 0 . (19)

Considering that at least one eigenvalue of the Laplacian
matrix L = BB� of any non–trivial graph is strictly

ℑ(W )

ℜ(W )

Fig. 4. Nyquist plot of W entering the “forbidden” sector
S0 and uncertainty disk for ω = ω∗.

positive (see Remark 2), denote by γ̄ such eigenvalue.
Since for µ = 1/(γ̄ p) equation (12) admits the solution
s = jω∗, at least one root of the characteristic equation
has a nonnegative real part. �

Corollary 1. Let γM be the maximum eigenvalue of L and
let

ρM �

[
K

γM (1−K2)

]
.

Under Assumption 1, system (9) is RTIS for µ = 1 if the
Nyquist plot of W lies outside the region R = SM ∪ CM ,
(shaded region in Figure 5) where

SM �

{
�(W ) < − 1

γM
, | sin(arg(W ))| ≤ K

}

and CM is the (closed) disk defined by

�(W )2 +

[
�(W ) +

1

γM (1−K2)

]2
≤ ρ2M .

Fig. 5. Nyquist plot of H and “forbidden” region (shaded)
for Corollary 1.

Proof. [sketch] It is enough to prove that, under the
considered hypotheses, the Nyquist plot of W cannot
cross the negative real semi–axis in the infinite interval
(−∞,−1/γM ], since the thesis then follows immediately
from Nyquist–plot arguments as in the sufficiency proof
of Theorem 1. To this purpose, consider the point P �
(−1/γM , 0). If ω∗ is such that �(W (jω∗)) ≤ −1/γM ,
and W (jω∗) lies outside sector SM , then the Nyquist
plot of H does not intersect the negative real semi–
axis (on the left of P ) (see the proof of Theorem 1).
For �(W (jω∗)) > −1/γM , instead, in order to avoid
intersections with the negative real semi-axis on the left of
P , the magnitude of the uncertainty, see (17), must be less
than the distance between P and W (jω∗) (see Figure 5),
which is guaranteed, see (18), if

|W (jω∗)|K <

√[
�(W (jω∗)) +

1

γM

]2
+ �(W (jω∗))2 . (20)
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Since both sides are positive, by using the simpler notation
x � �(W (jω∗)) and y � �(W (jω∗)), (20) is equivalent to

K2(x2 + y2) <

[
x+

1

γM

]2
+ y2 . (21)

Equation (21) can be rewritten as
[
x+

1

γM (1−K2)

]2
+ y2 >

[
K

γM (1−K2)

]2
, (22)

which corresponds to the region outside the disk CM .
Therefore, on the boundary of disk (22) we have

y = ±
√
K2 − [1 + γM (1−K2)x]2

γM (1−K2)
, (23)

whose value at x = −1/γM coincides with the ordinate of
the boundary of sector SK at the same point. Moreover,
the derivative of (23) at x = −1/γM is

dy

dx

∣∣∣∣
x=− 1

γM

= ∓ K√
1−K2

which coincides with the derivative of the boundary of
sector SK , so that the boundary of the forbidden region is
smooth there, as shown in Figure 5. �

Corollary 1 is useful to establish the following interesting
link between the stability of the network and the maximum
connectivity degree of its corresponding graph.

Theorem 2. Let BM denote the set of all possible graphs
with maximum connectivity degree M for a given set of
nodes. System (9) with µ = 1 is BM-RTIS if the Nyquist
plot of W lies outside the region{

�(W ) < − 1

2M , | sin(arg(W ))| ≤ K

}
∪ D ,

where D is the disk defined by

�(W )2 +

[
�(W )+

1

2M(1−K2)

]2
≤
[

K

2M(1−K2)

]2
.

Proof. Recall that the ith diagonal entry Lii of the
Laplacian matrix L = BB� is equal to the degree Mi

of the ith node and
n∑

j=1
j �=i

|Lij | ≤ Lii ,

where the equality holds if the ith node has no external
connections. Moreover, all of the eigenvalues of L are (real)
nonnegative and, by assumption, Lii ≤ M for all i. In view
of Gershgorin’s Circle Theorem, the eigenvalues of L lie in
the union of the n circles centred at Lii ≤ M with radii
ri =

∑
j �=i |Lij | ≤ M. Hence, the k-th eigenvalue satisfies

the double inequality 0 ≤ γk ≤ 2M, which implies that(
− 1

γm
,− 1

γM

]
⊂

(
−∞,− 1

2M

]
,

where γm and γM represent the minimum and the max-
imum eigenvalue, respectively. The application of Corol-
lary 1 ends the proof. �

Remark 5. In view of Theorem 2, the greater the connec-
tivity is, the more the system is prone to instability. For
instance, if the network corresponds to a discretisation
grid for a field model (describing, e.g., fluid dynamics)

in which the nodes are placed at the vertices of square
(2D) or cubic (3D) cells, then 2-dimensional grids (whose
maximum connectivity degree is M = 4) are less prone
to instability than 3-dimensional grids (whose maximum
connectivity degree is M = 6).

4. TOPOLOGY-INDEPENDENT STABILITY FOR
UNIDIRECTIONAL NETWORKS

Proving RTIS of unidirectional networks, whose character-
istic equation is (11), is slightly more involved. In this case,
a transformation matrix T can be found such that T−1AT
is triangular (in general, A = BB̃� is not diagonalisable),
leading to the n scalar equations

1 + µH(s)γ̃k = 0 , k = 1 , . . . , n , (24)

where the γ̃k’s are the eigenvalues of A, which are not
necessarily real. Clearly, asymptotic stability entails that
the solutions of (24) have negative real part for all γ̃k’s.
The following technical lemma, whose proof is omitted for
brevity, will be useful to prove the main result.

Lemma 1. For any z ∈ C with �(z) < 0 and any
arbitrarily small ε > 0, there exist an incident matrix B
and a real number µ > 0 such that µBB̃� admits at least
one eigenvalue γ satisfying the inequality∣∣∣∣

1

γ
+ z

∣∣∣∣ < ε . (25)

Theorem 3. Under Assumption 1, let W (0) > 0. Then,
the system represented by equation (11) is µ-RTIS if and
only if the Nyquist plot of W lies in the open sector (see
Figure 6)

Su = {�(W ) > 0 , | cos(arg(W ))| > K} .

ℑ(W )

ℜ(W )

Fig. 6. Allowed region Su (white minor sector) for Theo-
rem 3.

Proof. Sufficiency. According to Gershgorin’s Circle
Theorem, the eigenvalues of A lie in the union of the n
circles centred at the diagonal entries Aii of A with radii
ri =

∑
i�=j |Aij | so that, according to Remark 3, ri ≤ Aii.

It follows that the eigenvalues of A lie inside the circle with
centre maxi{Aii} and radius maxi{Aii}. Therefore, given
any eigenvalue γ̃k of A, the point −1/γ̃k lies in the interior
of the LHP. Now, the condition µH(jω) �= −1/γ̃k, for all
µ > 0, may be rewritten as

W (jω) + ∆H(jω) �= − 1

µ̃γk

, for all µ .

Since |∆H(jω)| ≤ |W (jω)|K, the claim can be proved
analogously to the sufficiency proof of Theorem 1.
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Since both sides are positive, by using the simpler notation
x � �(W (jω∗)) and y � �(W (jω∗)), (20) is equivalent to

K2(x2 + y2) <

[
x+

1

γM

]2
+ y2 . (21)

Equation (21) can be rewritten as
[
x+

1

γM (1−K2)

]2
+ y2 >

[
K

γM (1−K2)

]2
, (22)

which corresponds to the region outside the disk CM .
Therefore, on the boundary of disk (22) we have

y = ±
√
K2 − [1 + γM (1−K2)x]2

γM (1−K2)
, (23)

whose value at x = −1/γM coincides with the ordinate of
the boundary of sector SK at the same point. Moreover,
the derivative of (23) at x = −1/γM is

dy

dx

∣∣∣∣
x=− 1

γM

= ∓ K√
1−K2

which coincides with the derivative of the boundary of
sector SK , so that the boundary of the forbidden region is
smooth there, as shown in Figure 5. �

Corollary 1 is useful to establish the following interesting
link between the stability of the network and the maximum
connectivity degree of its corresponding graph.

Theorem 2. Let BM denote the set of all possible graphs
with maximum connectivity degree M for a given set of
nodes. System (9) with µ = 1 is BM-RTIS if the Nyquist
plot of W lies outside the region{

�(W ) < − 1

2M , | sin(arg(W ))| ≤ K

}
∪ D ,

where D is the disk defined by

�(W )2 +

[
�(W )+

1

2M(1−K2)

]2
≤
[

K

2M(1−K2)

]2
.

Proof. Recall that the ith diagonal entry Lii of the
Laplacian matrix L = BB� is equal to the degree Mi

of the ith node and
n∑

j=1
j �=i

|Lij | ≤ Lii ,

where the equality holds if the ith node has no external
connections. Moreover, all of the eigenvalues of L are (real)
nonnegative and, by assumption, Lii ≤ M for all i. In view
of Gershgorin’s Circle Theorem, the eigenvalues of L lie in
the union of the n circles centred at Lii ≤ M with radii
ri =

∑
j �=i |Lij | ≤ M. Hence, the k-th eigenvalue satisfies

the double inequality 0 ≤ γk ≤ 2M, which implies that(
− 1

γm
,− 1

γM

]
⊂

(
−∞,− 1

2M

]
,

where γm and γM represent the minimum and the max-
imum eigenvalue, respectively. The application of Corol-
lary 1 ends the proof. �

Remark 5. In view of Theorem 2, the greater the connec-
tivity is, the more the system is prone to instability. For
instance, if the network corresponds to a discretisation
grid for a field model (describing, e.g., fluid dynamics)

in which the nodes are placed at the vertices of square
(2D) or cubic (3D) cells, then 2-dimensional grids (whose
maximum connectivity degree is M = 4) are less prone
to instability than 3-dimensional grids (whose maximum
connectivity degree is M = 6).

4. TOPOLOGY-INDEPENDENT STABILITY FOR
UNIDIRECTIONAL NETWORKS

Proving RTIS of unidirectional networks, whose character-
istic equation is (11), is slightly more involved. In this case,
a transformation matrix T can be found such that T−1AT
is triangular (in general, A = BB̃� is not diagonalisable),
leading to the n scalar equations

1 + µH(s)γ̃k = 0 , k = 1 , . . . , n , (24)

where the γ̃k’s are the eigenvalues of A, which are not
necessarily real. Clearly, asymptotic stability entails that
the solutions of (24) have negative real part for all γ̃k’s.
The following technical lemma, whose proof is omitted for
brevity, will be useful to prove the main result.

Lemma 1. For any z ∈ C with �(z) < 0 and any
arbitrarily small ε > 0, there exist an incident matrix B
and a real number µ > 0 such that µBB̃� admits at least
one eigenvalue γ satisfying the inequality∣∣∣∣

1

γ
+ z

∣∣∣∣ < ε . (25)

Theorem 3. Under Assumption 1, let W (0) > 0. Then,
the system represented by equation (11) is µ-RTIS if and
only if the Nyquist plot of W lies in the open sector (see
Figure 6)

Su = {�(W ) > 0 , | cos(arg(W ))| > K} .

ℑ(W )

ℜ(W )

Fig. 6. Allowed region Su (white minor sector) for Theo-
rem 3.

Proof. Sufficiency. According to Gershgorin’s Circle
Theorem, the eigenvalues of A lie in the union of the n
circles centred at the diagonal entries Aii of A with radii
ri =

∑
i�=j |Aij | so that, according to Remark 3, ri ≤ Aii.

It follows that the eigenvalues of A lie inside the circle with
centre maxi{Aii} and radius maxi{Aii}. Therefore, given
any eigenvalue γ̃k of A, the point −1/γ̃k lies in the interior
of the LHP. Now, the condition µH(jω) �= −1/γ̃k, for all
µ > 0, may be rewritten as

W (jω) + ∆H(jω) �= − 1

µ̃γk

, for all µ .

Since |∆H(jω)| ≤ |W (jω)|K, the claim can be proved
analogously to the sufficiency proof of Theorem 1.
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Necessity. Assume, by contradiction, that, for some ω∗,
W (jω∗) /∈ Su. This means that the uncertainties ∆F and
∆G can be such that �(H(jω∗)) < 0 and, by the continuity
of H, there is a neighbourhood U of H(jω∗) such that
�(υ) < 0 for all υ ∈ U . If H has a finite number of zeros
and poles, it is always possible to choose U such that the
Nyquist plot of H divides U into two (and not more than
two) regions U1 and U2. Observe, now, that the winding
numbers, with respect to the Nyquist plot, of any two
adjacent regions into which the plane is partitioned by the
plot itself, differ exactly by 1 (Munkres 2000). Hence, one
region among U1 and U2 must be encircled by the Nyquist
plot. Suppose it is U1; take z and ε such that the open ball
with centre z and radius ε, denoted by Sz(ε), belongs to
U1. In view of Lemma 1, there exist µ and B such that,
at least for one eigenvalue γ of µBB̃�, −1/γ ∈ Sz(ε).
The overall Nyquist plot of H encircles the point −1/γ
(hence, the Nyquist plot of γH encircles the point −1) in
the clockwise direction. Since H is assumed to be stable,
this implies that (24) admits RHP solutions. �

5. CONCLUDING REMARKS

The stability of homogeneous dynamical networks, where
nodes and arcs are associated with uncertain transfer func-
tions F + ∆F and G + ∆G, respectively, has been inves-
tigated for F , G stable and ∆F , ∆G suitably bounded. A
necessary and sufficient stability condition, robust against
variations of the gain µ, is that the Nyquist plot of the
transfer function W = FG: (a) does not enter an LHP
sector with vertex in the origin and axis of symmetry lying
on the negative real semi-axis, for bidirectional networks;
(b) lies inside an RHP sector with vertex in the origin and
axis of symmetry lying on the positive real semi-axis, for
unidirectional networks.
Further research directions along this line include the case
in which the uncertainties are not homogeneous.
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