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Abstract— We examine the capacity of artificial biomolec-
ular networks to respond to perturbations with structurally
signed steady-state changes. We consider network architectures
designed to balance their output production as a function of
downstream demand: the species producing the output, called a
source, up- or down-regulates its production rate as a function
of the demand. Using an exact algorithm we show that, in
certain negative feedback architectures, changes in the total
source concentration cause structurally signed variations of
the steady-state output concentration, regardless of reaction
rate parameters. Conversely, positive feedback schemes can
exhibit the same signed behaviour for reasonable (but not
for arbitrary) values of the parameters. Numerical simulations
demonstrate how the steady-state concentrations of different
network architectures vary, responding to perturbations in total
source amounts, consistently with our structural previsions.

I. INTRODUCTION

One of the research frontiers in control theory is the
development of techniques and design principles to engi-
neer biological systems for predictable responses. Recent
advances in molecular biology and nanotechnology provide
modern bioengineers with a variety of molecular parts that
can be modularly interconnected to build systems of ever in-
creasing complexity. This availability of programmable parts
motivates and fuels the rational design of de novo artificial
networks. Yet, uncertainty in the properties of these parts and
interconnections requires that parameter-independent criteria
be used for performance evaluation [1], [3], [4], [12].

Biomolecular feedback architectures have been recently
identified to stoichiometrically regulate the production of
output components as a function of downstream demand [9]:
as a case study, we considered networks where the output (R)
of each network element (T) contributes to the formation of
one or more complexes (P); output not used to form product
triggers feedback reactions to regulate its production, so that
it is stoichiometrically matched with demand [9]. Architec-
tures based either on negative or positive feedback have been
proposed [6], [7], [9], [10]. Fig. 1a illustrates an example
pathway where two network elements concur to form a
product P and are controlled with negative autoregulation:
when an output species Ri is in excess, relative to the amount
effectively used for product formation, it reduces its own gen-
eration rate. This network was experimentally implemented
using synthetic transcriptional systems [9], [17], [18], where
Ti are artificial genes and Ri their RNA transcripts, which

a Dept. of Automatic Control and LCCC Linnaeus Center, Lund Univer-
sity, Lund, Sweden. giulia.giordano@control.lth.se

b Department of Mechanical Engineering, University of California at
Riverside, Riverside, CA 92521, USA. efranco@engr.ucr.edu

bind to form a complex P. Fig. 1b shows a two-element
network with cross-activation: when a species Ri is in excess,
it increases the generation rate of species Rj. Both schemes
have been scaled to the case of n elements (hence, n interact-
ing R species) [9], [13], considering different interconnection
topologies: in the single-product interconnection, all of the
outputs combine into a single product (Fig. 2 A); in the
neighbour interconnection, each output participates in two
products (binding to its two output-neighbours in an ideal
closed chain, see Fig. 2 B); in the handshake interconnection,
each output participates in n− 1 products, binding to all of
the other outputs (Fig. 2 C).

P

(a) Self-inhibition

P

(b) Cross-activation

Fig. 1: Negative and positive rate-regulation concepts. [9]

Negative feedback networks for production rate control are
expected to exhibit “tracking” properties when the total con-
centration of each element T is varied, as discussed in [12]
for the case of a two-element scheme. These properties are
akin to correlated behaviours that arise when a single enzyme
processes several substrates: if the enzyme is overloaded,
then an increase in the total concentration of one of the
substrates causes an increase in the free concentration of the
others, as shown in [5]. The architecture of a negative auto-
regulation circuit, with outputs creating a single product, is
similar: several output components assemble in one product
and, if they are not used up, their corresponding production
source is inhibited. If the total concentration of one of the
elements increases, it leads to an increase in the correspond-
ing output. Hence, the other output species should decrease
at first (there is a creation of more binding sites for prod-
uct formation) and the other source element concentrations
should rise, because stoichiometric self-inhibition is reduced.
If an output species Ri decreases due to the reduction in
the total concentration of the corresponding source Ti, then
the concentration of all other Rj should increase, because
the number of binding sites progressively decreases, and
the corresponding Tj concentrations should decrease, due to
an increased self-inhibition. This “coherent propagation” of
perturbations can be considered a tracking behavior, which
has been experimentally shown in other negative feedback
modules fueled by cooperative (rather than stoichiometric)
interactions [15].
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Fig. 2: Different interconnection topologies: single-product (A), neighbour (B) and handshake (C). [9]

Do these properties of steady-state input-output variations
hold for positive feedback as well? For negative (or, in case,
positive) feedback schemes, are these properties structural,
i.e., “inherent” to circuit design and independent of the
specific values of the parameters?

To answer these questions, we exploit a result relying on
the implicit function theorem and the algorithms proposed
in [12] to structurally compute the steady-state input-output
influence based on the so-called BDC-decomposition [2],
[4], [11], [12]. We show that, in the 2-element case, negative-
feedback systems exhibit structurally signed input-output
influences for all state variables, while positive-feedback
systems exhibit input-output influences having a specific
sign for reasonable parameter values (but not structurally, at
least for some of the variables). The same phenomena occur
for more than two elements: negative feedback circuits still
feature structurally signed influences, for all variables in the
single-product interconnection, just for some of the variables
in the other topologies; positive feedback circuits can exhibit
the same signed behaviour for reasonable (as in [9]) values of
the parameters. Analytical results are paired with simulations
performed for rate-regulatory networks of growing size, with
negative and positive feedback regulation, and with different
output interconnection topologies: we stimulate the system
by suddenly varying a total source amount and we evaluate
changes in steady state concentrations.

II. STEADY-STATE INPUT-OUTPUT INFLUENCES

The steady-state input-output influence is the ensuing
variation of the steady state of a certain variable of the system
(seen as the system output), upon a variation in a relevant
variable or parameter (which can be seen as an input for the
system). Of course, different variables of the system may
respond with a steady-state variation that has the same sign as
the input variation, the opposite sign, or is zero. The steady-
state input-output influence is structurally signed if it always
has the same sign (positive, negative, or zero), regardless of
the choice of parameter values. [12]

To assess the steady-state input-output influence in a
generic nonlinear system

ẋ(t) = f(x(t), u(t)),

y(t) = g(x(t)),

where f and g are continuously differentiable, x ∈ Rn,
u is a scalar input and y a scalar output, we assume that
there exists an asymptotically stable equilibrium point x̄,
corresponding to ū, such that f(x̄, ū) = 0. Then, both the
state asymptotic value x̄(u) and the output asymptotic value
ȳ(u) = g(x̄) are functions of u. If the considered input
variation is small enough to ensure that asymptotic stability

of x̄(u) is preserved (being the eigenvalues of the Jacobian
matrix continuously dependent on the entries, which are in
turn continuous functions of u), then the implicit function
theorem provides an analytic expression for the derivative of
the steady-state input-output map that relates y to u:

∂ȳ

∂ū
=

∂g

∂x

∣∣∣∣
x̄

(
− ∂f

∂x

∣∣∣∣
(x̄,ū)

)−1
∂f

∂u

∣∣∣∣
(x̄,ū)

.

Given the linearization of the system in a neighborhood of
x̄, with z(t) = x(t)− x̄, v(t) = u(t)− ū, w(t) = y(t)− ȳ,

ż(t) = Az(t) +Bv(t),

w(t) = Hz(t),

where Aij = ∂fi
∂xj

∣∣∣
(x̄,ū)

, Bi = ∂fi
∂u

∣∣∣
(x̄,ū)

and Ci = ∂g
∂xi

∣∣∣
x̄

,

the input-output influence can be expressed as [12]

∂ȳ

∂ū
= C(−A)−1B =

n(0)

d(0)
,

where d(0) = det(−A) > 0, in view of stability, while

n(0) = det

[
−A −B
C 0

]
. (1)

Note that n(0) and d(0) are the numerator and the denom-
inator of the system transfer function F (s) = n(s)/d(s) =
C(sI −A)−1B, computed at s = 0.

The above expression can be used to evaluate input-output
influences for a given choice of parameters. To evaluate
the structural (parameter-free) input-output influence, [12]
proposes an efficient algorithm, yielding a “+” if increasing
the input structurally results in an increase in the steady-
state value of the considered variable, a “−” if it structurally
results in a decrease, a “0” if the steady-state of the con-
sidered variable is unchanged, and a “?” if the behaviour
is parameter-dependent. The algorithm in [12] is applicable
to systems admitting a particular type of decomposition,
called BDC-decomposition [2], [4], [11], [12]. This category
includes systems with a signed Jacobian as a particular case,
because the BDC-decomposition relies on the fact that, for
this class of systems, the determinant in (1) can be written as
a multiaffine function of suitable positive parameters, related
to the system partial derivatives (see [11], [12] for details).
As shown in the next section, rate-regulatory models have
indeed a sign-definite Jacobian, hence the algorithm in [12]
can be applied to structurally evaluate the sign of steady-state
input-output influences.

III. ANALYSIS OF PRODUCTION CONTROL NETWORKS

We consider molecular networks where each element i
is composed of a molecular production source Ti and the

3370



corresponding output species Ri. A source can be active
(Ti) or inactive (T∗i ), and its total concentration is conserved
[Ti]+[T∗i ] = [Ttot

i ]. Active source produces Ri according to
the linear reaction Ti

β
⇀Ri + Ti; then, the produced Ri can

interact with other output species, reacting at rate k. Outputs
either inactivate their own production source (Ri + Ti

δ
⇀T∗i ,

negative feedback regulation), or enable the activation of
other sources (Ri + T∗j

δ
⇀Tj, positive feedback regulation).

Sources spontaneously revert to an active state T∗i
α
⇀Ti

(in negative feedback architectures) or to an inactive state
Ti

α
⇀T∗i (positive feedback architectures).
In the following, we consider a specific kind of molecular

implementation of these architectures using transcriptional
systems [6], [7], [9], [10]. Production sources T are synthetic
gene templates, which are inactive when the promoter (the
binding region of RNA polymerase, RNAP) is incomplete,
or active when the promoter is complete. Promoter activa-
tion/inactivation is done via strand displacement [17], and
RNA species R transcribed by the templates are designed
to either interact to form a product or to inactivate/activate
templates. In these systems, enzyme RNase H allows gene re-
activation or inactivation following RNA regulatory activity.
In general, other implementations are possible where regu-
lators operate stoichiometrically, such as using TALENs or
CRISPR [16], [19]. We now consider architectures based on
both negative and positive regulatory loops, to (structurally)
assess steady-state input-output influences.

A. Negative-Feedback Schemes

A 2-gene rate-regulatory feedback circuit based on self-
repression is described by the reactions [6], [7], [9]

T∗i
αi
⇀Ti, Ti

βi
⇀Ri + Ti, Ri + Ti

δi
⇀T∗i , R1 + R2

k
⇀P,

where i ∈ {1, 2} (see Fig. 1a). We also consider a sponta-
neous RNA degradation Ri

φi
⇀ ∅. Using mass action kinetics,

and denoting x1 = [T1], x2 = [R1], x3 = [T2], x4 = [R2],
the reactions can be associated with the ODE system:

ẋ1 = α1(xtot1 − x1)− δ1x1x2

ẋ2 = β1x1 − kx2x4 − δ1x1x2 − φ1x2

ẋ3 = α2(xtot3 − x3)− δ2x3x4

ẋ4 = β2x3 − kx2x4 − δ2x3x4 − φ2x4

(2)

Positivity of the system is expected (the variables phys-
ically represent concentrations, hence, nonnegative quanti-
ties); moreover, it can be proved that the trajectories are
globally asymptotically bounded in the set Bn = {x ∈ R4 :
0 ≤ x1 ≤ xtot1 , 0 ≤ x2 ≤ x+

2 , 0 ≤ x3 ≤ xtot3 , 0 ≤ x4 ≤ x+
4 },

where x+
2 = β1

φ1
xtot1 and x+

4 = β2

φ2
xtot2 .

Proposition 1: System (2) is positive and its solutions are
globally asymptotically bounded in Bn for any nonnegative
initial condition such that x1(0) ≤ xtot1 and x3(0) ≤ xtot3 .

Proof: The system positivity is immediately proved by
noticing that, when xi = 0, the corresponding equation ẋi
has only nonnegative terms in the right-hand side (hence, xi
cannot decrease any longer). The bounds x1(t) ≤ xtot1 and

x3(t) ≤ xtot3 for all t immediately descend from the first and
third equations in (2). The conditions 0 ≤ x2(t) ≤ x+

2 and
0 ≤ x4(t) ≤ x+

4 are satisfied for all t > 0, as long as they
hold for t = 0; also, they are asymptotically satisfied for all
initial conditions. In fact, since ẋ2 ≤ β1x

tot
1 −φ1x2, based on

the comparison principle, x2(t) ≤ x+
2 + [x2(0)− x+

2 ]e−φ1t,
and analogously x4(t) ≤ x+

4 + [x4(0)− x+
4 ]e−φ1t.

Boundedness implies the existence of an equilibrium point
x̄ inside Bn ([20], [21], [22]). The Jacobian matrix Aneg ,
corresponding to the linearization of the system around x̄,
is shown in Table I. Since at steady state (β1 − δ1x̄2)x̄1 −
kx̄2x̄4 = 0, it must be β1−δ1x̄2 > 0; likewise, β2−δ2x̄4 >
0, hence the system Jacobian is a sign-definite matrix. Note
that det(−Aneg) > 0 (actually, all of the coefficients of
the characteristic polynomial are positive) independent of
parameter values; since the system trajectories are bounded,
due to degree theory arguments [14], structural positivity of
the determinant implies that the equilibrium is unique. Let
us assume that such an equilibrium is asymptotically stable.

If the total gene template amount [Ttot
1 ] increases, then, at

steady-state, the active gene template amount [T1] increases
and therefore so does the RNA species amount [R1]. Due to
the increase in [R1], more binding sites are created, hence
the other RNA species amount [R2] decreases, being more
required and consumed in the product generation. Then,
the other gene template amount [T2] increases, because
stoichiometric self-inhibition is reduced. The increase in [T2]
might in turn increase [R2], whose behaviour is not clearly
predictable. However, the net effect is that [R2] decreases,
as shown in [12]. (The reasoning is naturally the same if
subscripts 1 and 2 are swapped.) Of course, the concentra-
tion increases provided that it can: since the reagents bind
according to a given stoichiometry, the expected increase can
only occur if the reagent with the lowest concentration is
augmented until it is no more a bottleneck for the output
production. To analytically assess steady-state influences,
we check how an increase in xtot1 (and in xtot3 ) influences
each variable by means of the steady state derivative. This
means considering the sign of the determinant in Eq. (1),
by choosing B = [1 0 0 0]

> when an increase in xtot1 is
considered, B = [0 0 1 0]

> when an increase in xtot3 is
considered, and by choosing C as the row vector whose
entries are all zero, except for the ith, which is 1, when
assessing the influence on variable xi.

As discussed in [12], based on the tools proposed therein
we obtain that, when the total concentration of a gene tem-
plate varies, all of the steady-state influences are structurally
signed, independent of parameter values:

effect on variable

x1 {
x2 {
x3 {
x4 {

increase in variable


xtot
1︷︸︸︷
+
+
+
−

xtot
3︷︸︸︷
+
−
+
+

 .
The behaviour is symmetric, as expected. For a physically
reasonable choice of the parameters (consistent with [9]), the
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system evolution when xtot1 is suddenly increased is shown
in Fig. 3a, exhibiting exactly the expected behaviour.

The negative auto-regulated system can be extended to the
general case of n genelets [9], [13], according to the different
interconnection topologies in Fig. 2. Still, an increase in
the total concentration of any of the gene templates, [Ttot

i ],
increases [Ti], hence [Ri]; then, all the other RNAs forming
products with Ri should decrease at first, leading to an
increase in the concentration of all other active genes (there
is a creation of more binding sites due to the increase in
[Ri], hence stoichiometric self-inhibition is reduced). On the
other hand, if [Ri] decreases, due to a decrease in [Ttot

i ], then
all the other gene template concentrations should decrease
because the number of binding sites progressively decreases,
resulting in an increased self-inhibition.

The systems are described by the equations (i = 1, . . . , n){
ẋ2i−1 = αi(x

tot
2i−1 − x2i−1)− δix2i−1x2i, (templates)

ẋ2i = βix2i−1 − δix2i−1x2i − φix2i − Pi, (RNAs)

where
• Pi = k

∏n
j=1 x2j for the single-product case (Fig. 2 A);

• Pi = k2i,2(i−1)x2ix2(i−1) + k2i,2(i+1)x2ix2(i+1) (with
i − 1 = n if i = 1 and i + 1 = 1 if i = n) for the
neighbour connection (Fig. 2 B);

• Pi =
∑
j 6=i k2i,2jx2ix2j for the handshake connection

(Fig. 2 C).
Positivity and boundedness can still be proved, as for the
2-gene system. Also, the determinant is still structurally
positive, thus ensuring uniqueness of the equilibrium. In the
case of a single-product interconnection (for instance, with
three genes), the influence is structurally determined:

effect on variable

x1 {
x2 {
x3 {
x4 {
x5 {
x6 {

increase in variable



xtot
1︷ ︸︸ ︷
+
+
+
−
+
−

xtot
3︷ ︸︸ ︷
+
−
+
+
+
−

xtot
5︷ ︸︸ ︷
+
−
+
−
+
+

,

consistently with the simulations shown in Fig. 3b. In
the case of a 3-gene neighbour/handshake interconnection,
instead, only the influences squared in blue in the above
sign matrix are structurally determined; the others, however,
despite being “?” from a structural point of view, still
have the sign provided above for reasonable choices of the
parameters, as is shown by the simulation in Fig. 3c.

The results can be extended for more than 3 genes: for
different interconnection topologies, the simulated system
behaviour is shown in Figs. 3d-e-f. Note that, for the neigh-
bour connection, the increase in xtot1 induces the increase
in x2 ([R1], the corresponding RNA species), but not the
decrease of all of the other RNA species: in fact x6 (the
concentration of R3, which in this interconnection topology
is not forming products with R1) increases as well, due to
the decrease in x4 and x8 (the concentrations of R2 and R4,

with which R1 is forming products); and also x5 decreases
(due to the increase in x6, which amplifies the self-inhibition
effect), while other gene template concentrations increase. In
the handshake and single-product interconnections, instead,
all of the other RNA species are binding with R1, hence all
of their concentrations decrease.

B. Positive-Feedback Schemes

The 2-gene rate-regulatory feedback circuit based on
cross-activation is described by the reactions [6], [9], [10]

Ti
αi
⇀T∗i , Ti

βi
⇀Ri + Ti, Ri + T∗j

δij
⇀ Tj, R1 + R2

k
⇀P,

where i ∈ {1, 2} (see Fig. 1b). We also consider a sponta-
neous RNA degradation Ri

φi
⇀ ∅. Using mass action kinetics,

and denoting x1 = [T1], x2 = [R1], x3 = [T2], x4 = [R2],
the reactions can be associated with the ODE system:

ẋ1 = −α1x1 + δ14x4(xtot1 − x1)

ẋ2 = β1x1 − kx2x4 − δ23x2(xtot3 − x3)− φ1x2

ẋ3 = −α2x3 + δ23x2(xtot3 − x3)

ẋ4 = β2x3 − kx2x4 − δ14x4(xtot1 − x1)− φ2x4

(3)

Given the set Bp = {x ∈ R4 : 0 ≤ x1 ≤ xtot1 , 0 ≤ x2 ≤
x+

2 , 0 ≤ x3 ≤ xtot3 , 0 ≤ x4 ≤ x+
4 }, where x+

2 = β1

φ1
xtot1 and

x+
4 = β2

φ2
xtot2 , the following result can be proved along the

lines of Proposition 1.
Proposition 2: System (3) is positive and its solutions are

globally asymptotically bounded in Bp for any nonnegative
initial condition such that x1(0) ≤ xtot1 and x3(0) ≤ xtot3 .

Hence, an equilibrium point x̄ exists inside Bp ([20], [21],
[22]); the Jacobian matrix Apos, corresponding to the lin-
earization of the system around x̄, is shown in Table II. The
system Jacobian is sign-definite. Even though det(−Apos)
is not structurally positive, it is positive for a reasonable
choice of the parameters (due to the order of magnitude of
the parameters in the real system, the only term that can
be negative is much smaller). Assuming that the equilibrium
is asymptotically stable, the computation of the input-output
influences according to the methods in [12] provides:

effect on variable

x1 {
x2 {
x3 {
x4 {

increase in variable


xtot
1︷︸︸︷
+
+
+
?

xtot
3︷︸︸︷
+
?
+
+

 .
Therefore, when the gene template concentration is varied,
steady-state input-output influences are structurally signed
for most of the species concentrations, but not for all of
them. However, both of the indeterminate expressions are
actually negative for reasonable choices of the parameters
(as in [9]); hence, if xtot1 increases, x4 decreases and, if
xtot3 increases, x2 decreases as well, consistently with the
simulations in Fig. 4a. Therefore, for suitable parameter
values, the behaviour in the case of positive feedback (cross-
activation) seems to be the same as in the case of negative
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Aneg =

 −(α1 + δ1x̄2) −δ1x̄1 0 0
β1 − δ1x̄2 −(δ1x̄1 + kx̄4 + φ1) 0 −kx̄2

0 0 −(α2 + δ2x̄4) −δ2x̄3

0 −kx̄4 β2 − δ2x̄4 −(δ2x̄3 + kx̄2 + φ2)


TABLE I: Jacobian of the 2-gene system with negative auto-regulation.

feedback (self-inhibition), but in the positive feedback case
the property cannot be always ensured by means of structural
arguments: we have to rely on our knowledge of actual ex-
perimental parameters (at least, of their order of magnitude).

Also the cross-activation regulatory scheme can be adapted
to the general case of n genelets [9], [13], with various
interconnection topologies (see Fig. 2). The system becomes:{

ẋ2i−1 = −αix2i−1 + F2i−1, (templates)
ẋ2i = βix2i−1 − F2i − φix2i − Pi, (RNAs)

with i = 1, . . . , n and
• F2i−1 = δi(x

tot
2i−1 − x2i−1)

∏
j 6=i x2j ,

F2i = δix2i

∏
j 6=i(x

tot
2j−1 − x2j−1),

Pi = k
∏n
j=1 x2j for the single-product connection;

• F2i−1 =
∑
j=i±1 δijx2j(x

tot
2i−1 − x2i−1),

F2i =
∑
j=i±1 δjix2i(x

tot
2j−1 − x2j−1),

Pi =
∑
j=i±1 kijx2ix2j for the neighbour connection;

• F2i−1 =
∑
j 6=i δijx2j(x

tot
2i−1 − x2i−1),

F2i =
∑
j 6=i δjix2i(x

tot
2j−1 − x2j−1),

Pi =
∑
j 6=i kijx2ix2j for the handshake connection.

Positivity and boundedness can still be proved, as for the
2-gene system; and, again, the determinant of the resulting
Jacobian is not sign-definite. However, when n > 2, for all of
the interconnection topologies with positive regulation, none
of the influences is structurally determined. If the influences
are computed for parameter values in the reasonable range
for the real system (used in our simulations and in [9]), again,
the same signs as in the negative-feedback case are obtained:
this is consistent with the simulations shown in Fig. 4b-c.

IV. CONCLUDING REMARKS

We have demonstrated that a class of demand-adaptive
molecular architectures respond to certain perturbations with
signed steady-state changes. Specifically, networks regulated
via negative feedback exhibit structurally (i.e., for arbitrary
values of reaction rates) signed steady-state variations in
response to perturbations in the total concentrations of certain
components. Positive feedback networks exhibit similar be-
haviours, which however are not structural. For our analysis,
we use an exact algorithm to compute the structural influ-
ence matrix [12] of a system; the behaviour of numerically
integrated solutions is consistent with our results. Our case
study suggests that negative feedback architectures may be in
general more “robust” than positive feedback architectures in
terms of steady-state responses, where “robustness” here is
intended as the occurrence of a consistent network behaviour
for arbitrary choices of the reaction rates. A systematic
analysis and comparison of non-trivial negative and positive
feedback regulatory networks is possible using the same
approach described in this manuscript, because the algorithm
in [12] can easily handle large systems.
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Apos =


−(α1 + δ14x̄4) 0 0 δ14(xtot

1 − x̄1)
β1 −[kx̄4 + δ23(xtot

3 − x̄3) + φ1] δ23x̄2 −kx̄2

0 δ23(xtot
3 − x̄3) −(α2 + δ23x̄2) 0

δ14x̄4 −kx̄4 β2 −[δ14(xtot
1 − x̄1) + kx̄2 + φ2]


TABLE II: Jacobian of the 2-gene system with cross-activation.
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(d) 4 genes, single-product
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Fig. 3: Negative-feedback scheme, simulations: system evolution when xtot1 is suddenly increased from 100nM to 300nM at time t = 300 min. The other
parameters are: αi = 3 · 10−4/s, βi = 1 · 10−2/s, δi = 5 · 103/M/s, φi = 1 · 10−4/s, xtot2 = 200nM, xtot3 = 300nM, xtot4 = 150nM; production rates
(k) vary from 2 · 103/M/s to 6 · 1015/M/s, depending on the interconnection topology (they need to be higher in single-product schemes).
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Fig. 4: Positive-feedback scheme, simulations: system evolution when xtot1 is suddenly increased from 100nM to 300nM at time t = 300 min. The other
parameters are: αi = 3 · 10−4/s, βi = 1 · 10−2/s, φi = 1 · 10−4/s, xtot2 = 200nM, xtot3 = 300nM; feedback rates are δij = 5 · 102/M/s in (a),
δij = 5 · 106/M/s in (b), δij = 50/M/s in (c); production rates (k) are 2 · 103/M/s in (a) and (c), 6 · 106 in (b).
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