
Polyhedral Lyapunov functions for structural stability
of biochemical systems in concentration and reaction coordinates

Franco Blanchini a and Giulia Giordano a

Abstract— Structural properties, independent of specific pa-
rameter values, can explain the robustness of biochemical
systems. In this paper we consider the framework previously
proposed by the authors to assess structural stability of
biochemical reaction networks with monotone reaction rates,
which considers systems in concentration coordinates, and we
show that the results can be applied to systems in reaction co-
ordinates (whose stability was first investigated by Al-Radhawi
and Angeli): the same numerical test can be employed to find a
polyhedral Lyapunov function and thus certify stability. Under
suitable assumptions on the rank of structural matrices, we
prove the equivalence between the test performed for the system
in concentration coordinates and in reaction coordinates. We
finally illustrate the approach by examples.

I. INTRODUCTION

Structural investigation is a powerful tool to understand
how and why biological systems are able to perform their
specific task in completely different conditions, although
affected by the intrinsic uncertainty and variability in the
parameter values [1], [2]. A structural property is satisfied
by all the systems belonging to a class, characterized by a
structure, regardless of parameter values [3], [4]. This is a
more demanding requirement than robustness [5], [6]: to be
robust, a property just needs to be preserved under large pa-
rameter variations. Structural analysis of chemical reaction
networks [7], [8], [9] has been providing fundamental results,
such as the zero–deficiency theorem and the one–deficiency
theorem in [10], [11], [12] and a lot of subsequent work [13],
[14], [15], [16], [17]. The zero–deficiency theorem gives a
criterion to assess structural stability of reaction networks,
provided that reaction kinetics are of the mass action type
(hence polynomial, although a generalization is proposed
in [18]). Yet this assumption is not necessarily satisfied.

Structural stability is investigated in [19] for a wide class
of (bio)chemical reaction networks, under the sole require-
ment of monotone reaction rates. The nonlinear system equa-
tions are absorbed in a linear differential inclusion and then
a piecewise linear (i.e., polyhedral) Lyapunov function [20]
is sought, based on the network structure only: the existence
of a polyhedral Lyapunov function is shown to be equivalent
to the stability of a suitable discrete difference inclusion,
and a numerical recursive procedure is proposed to generate
the unit ball of the polyhedral norm. Whenever a polyhedral
Lyapunov function is found, the proposed procedure struc-
turally certifies the stability of the system for any choice of
monotone reaction rate functions.
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Polyhedral Lyapunov functions were previously adopted
in [4] for the analysis of specific biochemical networks.
Piecewise linear in rate Lyapunov functions have been re-
cently considered in [21], [22], [23] for the stability analysis
of chemical reaction networks; in this paper we recast the
methods in [19] to the framework proposed by Al-Radhawi
and Angeli, in which the system variables are reaction rates,
instead of species concentrations.

The main contributions of the paper are the following.
• We show that, since the system in reaction coordinates

has the same structure as the differential inclusion
considered in concentration coordinates, all the results
provided in [19], including the computational proce-
dure, apply in the reaction–coordinates setup as well.

• Under suitable assumptions on the rank of structural
matrices, the stability of the system in reaction coordi-
nates is equivalent to the stability of the corresponding
differential inclusion in concentration coordinates. For
a particular class of networks, which we name unitary,
this means that the proposed computational procedure
converges in the former case iff it converges in the latter.

To illustrate the approach, we finally apply the procedure
to some biochemical networks, analyzed both in concentra-
tion and in reaction coordinates.

II. PIECEWISE LINEAR LYAPUNOV FUNCTIONS IN
CONCENTRATION COORDINATES

In this section we summarize the framework introduced
in [19] to find polyhedral Lyapunov functions in concentra-
tion coordinates. Chemical species are denoted by uppercase
letters, their concentrations by the corresponding lowercase
letter. We consider reaction networks of the form

ẋ = Sg(x) + g0, (1)

where x ∈ Rn
+ is the species concentrations vector (mol/L),

g(x) ∈ Rm is the reaction rates vector (mol/L/s) and g0 ≥ 0
is a vector of constant influxes; S ∈ Zn×m is the stoichio-
metric matrix of the system, whose entries sij represent the
net amount of the ith species produced or consumed by the
jth reaction, excluding the contribution of constant influxes.

We make the following standing assumptions.
Assumption 1: All the component functions of vector

g(x) are non–negative and continuously differentiable, with
positive partial derivatives in the positive orthant.

Assumption 2: Each component function of vector g(x)
is zero if and only if at least one of its arguments is zero.
Moreover, if sij < 0, then gj must depend on xi.
Thus, (1) is a positive system: for xi = 0, we have ẋi ≥ 0.
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Assumption 3: Functions gj(·) with all arguments depend-
ing on a single variable xi are admitted if, for each argument,
sij∂gj/∂xi < 0. Functions having as an argument the sum
or difference of more variables, such as gj(±xi±xk), are ad-
mitted if they appear in a single equation, ẋk = . . . (relative
to a variable of the combination), and skj∂gj/∂xk < 0.

This means that the diagonal entries of the Jacobian of
Sg(x) are negative: no autocatalytic reactions are considered.

Biochemical networks admit a graph representation (see
e.g. Fig. 3): nodes are associated with species, arcs with
interactions among them. Fig. 1 reports possible reactions,
together with the corresponding terms in the proper equations
and the corresponding arcs in the graph.

Example 1: The reaction network associated with the
graph named Frescobaldi3 in Fig. 3 has equations

ȧ = a0 − ga(a)− gac(a, c)
ḃ = ga(a)− gbc(b, c)
ċ = ga(a)− gac(a, c)− gbc(b, c)

(2)

corresponding to the general model (1) with x = [a b c]>,

S =

−1 −1 0
1 0 −1
1 −1 −1

 , g(x) =

 ga(a)
gac(a, c)
gbc(b, c)

 , g0 =

 a0

0
0

 .

Networks composed of reactions in Fig. 1 are a subset of
those satisfying Assumption 3, and are unitary.

Definition 1: The network is unitary if sij ∈ {−1, 0, 1}.
Remark 1: The presented theory works in general, but the

computational procedure might not converge for non–unitary
networks. However, any multimolecular reaction can be plau-
sibly expressed as a cascade of bimolecular reactions [24],
[25], which are unitary.

For a structural analysis, consider the ε–modified system

ẋ(t) = −εx(t) + Sg(x(t)) + g0, (3)

with ε > 0 arbitrarily small (infinitesimal degradation).
Definition 2: System (1) is
• structurally stable if any equilibrium x̄ of the system

with g0 = 0 is Lyapunov stable: a continuous, strictly
increasing and unbounded function ω : R+ → R+

exists, with ω(0) = 0, s. t. ‖x(t)− x̄‖ ≤ ω(‖x(0)− x̄‖);
• structurally convergent if it is structurally stable and,

for any ε > 0 and g0 ≥ 0, the perturbed system (3) has
globally bounded solutions and admits an equilibrium
that is globally asymptotically stable in Rn

+.
In general, to assess asymptotic stability, we need to consider
a natural degradation of each species, represented by ε > 0
in (3), which is necessary for the system to tolerate persistent
positive inputs. Considering a spontaneous degradation is
reasonable in biochemical systems and, in practice, introduc-
ing ε cannot produce a wrong stability certificate for unstable
systems.

We now absorb the system in a differential inclusion.
Assume that an equilibrium x̄ = x̄(ε) exists ∀ ε > 0.1 Denote

1An equilibrium does actually exist if the system passes the computational
test in [19].

z
.
= x− x̄. Since 0 = S g(x̄)− εx̄+ g0, we have

ż(t) = S [g(z(t) + x̄)− g(x̄)]− εz(t). (4)

System (4) is equivalent to

ż(t) = BD(x(t))C z(t)− εz(t), (5)

where B ∈ Zn×q is formed by columns sk of S, each
repeated a number of times equal to the number of arguments
of gk(·), D(x) = diag{d1, . . . , dq} is a diagonal matrix
with non–negative diagonal entries, corresponding to all
the nonzero partial derivatives ∂gj/∂xi with respect to all
arguments, C ∈ Zq×n is such that |cki| = 1 if the derivative
dk is computed with respect to xi, 0 otherwise.

Example 2: For system (2) in Example 1, let α =
∂ga(a)/∂a, β = ∂gac(a, c)/∂a, γ = ∂gac(a, c)/∂c, δ =
∂gbc(b, c)/∂b and ε = ∂gbc(b, c)/∂c be positive parameters.
Then D = diag(α, β, γ, δ, ε),

B =

−1 −1 −1 0 0
1 0 0 −1 −1
1 −1 −1 −1 −1

 , C =

1 1 0 0 0
0 0 0 1 0
0 0 1 0 1

>

.

Theorem 1: [19] Consider the linear differential inclusion

ż(t) = [−εI +BD(t)C] z(t), z(0) = z0, (6)

where D(t) = diag{d1(t), . . . , dq(t)} and di(t), 1, . . . , q, are
arbitrary non–negative scalar piecewise continuous functions.
Then:
• stability of (6) for ε = 0 implies structural stability of

any equilibrium of (1);
• asymptotic stability of (6) for ε > 0 implies structural

convergence of (1).
�

If the differential inclusion (6) is asymptotically stable,
then (3) admits an equilibrium. Moreover, stability of (6) for
ε = 0 is equivalent to its asymptotic stability for ε > 0.
Hence, the two claims of Theorem 1 can only be verified
together. The stability of the differential inclusion (6) with
ε = 0 can be analyzed by considering a discrete–time
difference inclusion [19].

Theorem 2: Robust stability of the differential inclusion

ż(t) = BD(t)Cz(t), di(t) ≥ 0 (7)

is equivalent to robust stability of the difference inclusion

yk+1 = Φ(k)yk, Φ(k) ∈ F , (8)

where F is the family of matrices

F =

{
Φi

.
=

[
I − bic

>
i

c>i bi

]
, i = 1, . . . q

}
, (9)

bi denotes the ith column of B and c>i the ith row of C. �
Given a full row rank matrix X ∈ Rn×s,

VX(x) = inf{‖w‖1 : Xw = x, w ∈ Rs}

is a polyhedral norm. The vertices of its unit ball are the
columns of matrix X and their opposites. Given a full
column rank matrix M ∈ Rs×n, we have the dual function

VM (x) = ‖Mx‖∞.
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(a) ∅ a0−−⇀ A:
ȧ = a0 constant

�
����

(b) A
g(a)
−−−⇀ ∅:

ȧ = −g(a)

�
����

�

(c) A
g(a)
−−−⇀ B:

ȧ = −g(a), ḃ = g(a)

�

�

������

(d) A+B
g(a, b)
−−−−−⇀ ∅:

ȧ = ḃ = −g(a, b)

�

�

������

�

(e) A + B
g(a, b)
−−−−−⇀ C:

ȧ = ḃ = −g(a, b), ċ = g(a, b)

�

�

�

����

������(f) A
g(a)
−−−⇀ B + C:

ȧ = −g(a), ḃ = ċ = g(a)

�

�

������
�

�

(g) A + B
g(a, b)
−−−−−⇀ C + D:

ȧ = ḃ = −g(a, b),
ċ = ḋ = g(a, b)

�

���	����

�

	

(h) A∗ + B
g(a∗, b)
−−−−−−⇀ A:

ȧ = g(ā− a, b) = −ḃ,
a + a∗ = ā total concentration

�

���	�	�
��

�

	 	

(i) Difference dependence:
ȧ = g(ā− b̄− a + b)

Fig. 1: Graph representations of biochemical reactions.

Denoting by Mk the kth row of M , the facets of the
unit ball are on the planes Mkx = 1 or Mkx = −1.
The positive definite function VX(x) (VM (x)) is a weak
Lyapunov function if it is non–increasing along all possible
system trajectories. System (8) is marginally stable and has
a weak polyhedral Lyapunov function if and only if (7) is
marginally stable and has the same weak Lyapunov function.

Theorem 3: [19] If (8) admits a weak Lyapunov function,
• (6) is stable for ε = 0;
• (6) is asymptotically stable for ε > 0;
• (1) is structurally convergent. �
The unit ball of a polyhedral Lyapunov function for (8) can

be computed as follows. Given matrix X , let Y = mr(X) be
the minimal polytopic representation, achieved by removing
all redundant vertices. Define the following iterate in the set
of polyhedra:

Xk+1 = Ψ(Xk), (10)

where Ψ(X) = mr [X Φ1X · · · ΦqX]. System (8)
admits a polyhedral Lyapunov function if and only if Ψ has
a fixed point Ψ(X) = X [26].
Procedure.

1) Fix ν > 1, integer. Let X0 := [−I I].
2) Compute the sequence (10), until either

Successful stop: Xk = Xk−1,
Unsuccessful stop: maxij |Xk|ij > ν.

Remark 2: The quantity ν represents the maximum “tol-
erated escape”. For instance, the unsuccessful stop due to
violation for ν = 10 means that a trajectory has gone far
away 10 times with respect the initial ball size. Moreover,
it can be shown that, if the convex hull of X includes the
convex hull of X0 in its interior, then the difference inclusion
is unstable, hence no Lyapunov function exists.

A dual procedure can be considered, in which iterations
are applied to the dual system xk+1 = Φ(k)>xk, whose
stability is equivalent to stability of the primal [20]; hence,
the dual procedure converges iff the primal does. In case of
convergence to a matrix X̄ , the primal system admits the
polyhedral Lyapunov function VM (x) = ‖X̄>x‖∞.

For unitary networks we have c>i bi = −1 ∀ i and the
computation is particularly efficient [19].

We finally report the next equivalence result.
Theorem 4: [19] System (1), admitting a steady state x̄, is

stable with a polyhedral Lyapunov function V (x−x̄), for any
possible choice of functions g satisfying our assumptions, if
and only if V (z) is a Lyapunov function for (6) ∀ ε ≥ 0. �

III. PIECEWISE LINEAR LYAPUNOV FUNCTIONS IN
REACTION COORDINATES

Inspired by the concept of piecewise linear in rate Lya-
punov functions [21], [22], [23], we now show that the
results in the previous section hold for systems in reaction
coordinates as well. First, to ensure that an equilibrium exists
for the system in reaction coordinates iff it exists for the
system in concentration coordinates, we consider regular
chemical reaction networks, according to the next definition.

Definition 3: System (1) is regular if (i) it admits an
equilibrium point x̄, and (ii) g(·) is left invertible (injective),
so that, given ḡ = g(x̄), x̄ is unique.
Define the new variable r

.
= g(x) − g(x̄), which can be

thought of as a “relative” reaction rate, such that r → 0 iff
x→ x̄ (due to the regularity assumption). The corresponding
dynamics are

ṙ =

[
∂g

∂x

]
[Sg(x) + g0] =

[
∂g

∂x

]
Sr. (11)

Remark 3: In general, reaction and concentration repre-
sentations are both valid, but may lead to different conclu-
sions. For instance, the non–regular system ȧ = −g(a, b)+a0

and ḃ = −g(a, b) + b0 converges in the reaction variable
r = g(a, b), but not in the concentration variables if b0 6= a0.

Proposition 1: System (11) can be equivalently written as

ṙ(t) = ED(x(t))F r(t), (12)

where E ∈ Zm×q , F ∈ Zq×m is formed by rows of S, while
q and D are as in (5). �

Proof: Matrix [∂g/∂x]S can be equivalently expressed
as the product EDF , where the diagonal entries dj of D are
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the partial derivatives ∂gk/∂xh, the entries of E are |eij | = 1
if gk in dj appears in the ith equation, 0 otherwise, and the
jth row of F is the hth row of S if the derivative in dj is
with respect to xh (or also a sum or difference of more rows
of S, if the function has as an argument a sum or difference
of more variables, see Assumption 3).

Remark 4: D(x(t)) is a matrix of partial derivatives, as in
(5), but it is not the same matrix. Consider ẋ = g(x) + g0,
with steady state 0 = g(x̄) + g0, and let z = x − x̄. Then
ż = g(z + x̄) − g(x̄) = g′(x̃)z, for some x̃. Conversely, if
r = g(x) − g(x̄), then ṙ = g′(x)ẋ = g′(x)r. In principle
we should write DBC(x(t)) and DEF (x(t)), but there is no
point in doing this, since we will use the structural property
that D has non–negative diagonal entries, only.

Example 3: For system (2) in Examples 1 and 2, r =
[ga(a)− ga(ā) gac(a, c)− gac(ā, c̄) gbc(b, c)− gbc(b̄, c̄)]>.
Let the partial derivatives and matrix D be defined as in
Example 2. The system in reaction coordinates is

ṙ =

α 0 0
β 0 γ
0 δ ε

Sr = EDFr,

where

E =

1 0 0 0 0
0 1 1 0 0
0 0 0 1 1

 , F =

−1 −1 1 1 1
−1 −1 −1 0 −1
0 0 −1 −1 −1

>

.

Note that system

ṙ(t) = ED(t)Fr(t), di(t) ≥ 0, (13)

has the same structure as system (7). Again, a spontaneous
ε–degradation must be added to assess asymptotic stability;
we can rewrite the system as

ṙ(t) = [−εI + ED(t)F ] r(t), r(0) = r0, (14)

which has the same structure as system (6). Hence, all the
reasoning and the results reported in Section II still hold in
the new reaction coordinates framework. Then, the numerical
procedure based on iterates (10) in the set of polyhedra can
be employed to find a polyhedral Lyapunov function, thus
ensuring stability of the system in reaction coordinates.

There are strong analogies between the two formulations,
as we show next.

Proposition 2: Given a reaction network, consider the
corresponding matrices B and C as in (5), and the corre-
sponding matrices E and F as in (12). Then, we have the
equality CB = FE. �

Proof: Denote by si the ith column and by si the ith
row of the stoichiometric matrix S, and by ~ei the column
versor having the ith element equal to 1, and all other
elements equal to 0. Matrix B is composed by columns
of S, B =

[
sj1 sj2 . . . sjq

]
, while F by rows of S,

F =
[
(si1)> (si2)> . . . (siq )>

]>
; the rows of C are versors,

C =
[
~ei1 ~ei2 . . . ~eiq

]>
, while the columns of E are versors,

E =
[
~ej1 ~ej2 . . . ~ejq

]
. We can always order the columns of

B and of E (and the rows of C and F accordingly) so that
the order of the indices {jk} (respectively, {ik}) is the same.

More in general, a row of F could be a sum or difference
of more rows of S; in this case, the corresponding row of C
would be the same sum or difference of the corresponding
versors (e.g., if f>k = s1 − s2, then c>k = ~e>1 − ~e>2 ).
Then we consider the two matrix products and we observe
that, if the entry [CB]uv = ~e>ihsjl , the corresponding entry
[FE]uv = sih~ejl (and analogously for the case of linear
combinations). In the former case, we are selecting the ihth
element of the jlth column of S; in the latter case, the jlth
element of the ihth row of S, which is clearly the same.
Hence, the equality CB = FE holds.

The following (immediate) corollary tells us that the same
computational benefits are guaranteed when applying the
numerical procedure to the system in reaction coordinates.

Corollary 1: A network is unitary in reaction coordinates
iff it is unitary in concentration coordinates. �

Proof: In view of the equality CB = FE, c>i bi = −1
for all i iff f>i ei = −1 for all i.

We are now concerned with the connection between ro-
bust stability of the differential inclusion in concentration
coordinates

ż(t) = [−εI +BD(t)C]z(t), di(t) ≥ 0, (15)

and robust stability of the system in reaction coordinates,

ṙ(t) = [−εI + ED(t)F ]r(t), di(t) ≥ 0. (16)

As we have seen, in both cases the existence of a polyhe-
dral Lyapunov function ensures asymptotic stability of the
system. For unitary networks, for which c>i bi = −1 (resp.
f>i ei = −1), stability of (6) (resp. of (14)) is equivalent
to the existence of a polyhedral Lyapunov function [19].
Once we have shown stability of the system in one of the
two frameworks, because the numerical procedure converges
and generates the unit ball of the corresponding polyhedral
Lyapunov function, what can we infer about stability of the
system in the other framework?

Let η(t)
.
= Cz(t) and ξ(t) .

= Fr(t). Consider the systems

η̇(t) = [−εI + CBD(t)]η(t), di(t) ≥ 0, (17)

ξ̇(t) = [−εI + FED(t)]ξ(t), di(t) ≥ 0, (18)

and the following definition.
Definition 4: System (18) (resp. (17)) is F–stable (C–

stable) if the subspace span[F ] (span[C])2 is invariant and
all the trajectories starting from that subspace converge to
zero for any D(t).

Note that, for a fixed D(t), FED = CBD in view of
Proposition 2. We have the following results.

Lemma 1: If system (16) (resp. (15)) is asymptotically
stable for any D(t), then system (18) is F–stable (resp. (17)
is C–stable). �

Proof: Fix a matrix D(t). Given the solution r(t) of
(16) for initial conditions r(0), ξ(t) = Fr(t) is the solution
of (18) for initial conditions ξ(0) = Fr(0). If r(t)→ 0, then
also ξ(t) = Fr(t)→ 0.

2We denote by span[A] the column space of matrix A.
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Fig. 2: The connection between stability properties.

Lemma 2: Assume span(F ) = span(C).3 If (16) (resp.
(15)) is asymptotically stable for any D(t), then (17) is C–
stable (resp. (18) is F–stable). �

Proof: Since FE = CB, under our assumptions C–
stability of (17) is equivalent to F–stability of (18), which
is guaranteed by Lemma 1. Hence, starting from initial
conditions of the form ξ(0) = Cz(0), the solution ξ(t) =
Cz(t)→ 0, where z(t) is the solution of system (15).

Lemma 3: If C (resp. F ) has full column rank and system
(17) is C–stable (resp. system (18) is F–stable), then system
(15) (resp. (16)) is asymptotically stable. �

Proof: Obviously, η(t) = Cz(t)→ 0 implies z(t)→ 0
if C has full column rank. The full rank assumption is
fundamental; otherwise Cz(t) may converge to zero, but z(t)
may diverge in the kernel of C.

The connection between stability properties of the four
systems is summarized in Fig. 2 and leads to our main result.

Theorem 5: Assume that:
(i) both F and C have full column rank;

(ii) span(F ) = span(C).
Then the stability of system (15), in concentration coordi-
nates, is equivalent to the stability of system (16), in reaction
coordinates. �

For unitary networks, as we have mentioned, stability
is equivalent to the existence of a polyhedral Lyapunov
function; therefore, under the assumptions of Theorem 5, the
outcome of the computational procedure must be the same.

Remark 5: The injectivity assumption typically requires
m ≥ n (the number of reactions is greater or equal to the
number of species), while matrix F having full column rank
typically requires n ≥ m. Hence, the result in Theorem 5
particularly applies to the case n = m.

IV. EXAMPLES

We consider the systems corresponding to the graphs in
Fig. 3, already considered in [19], which we now analyze
both in concentration (z) and in reaction (r) coordinates.
Each chemical reaction network is named after a musician
and labeled with a number corresponding to the order of
the system. Test results are reported in Table I. Column
CVz/r shows whether the procedure converges (Yes/No) in
concentration/reaction coordinates. Whenever the polyhedral
function is found, the number of vertices and the number of
facets of its unit ball are shown in the columns labeled as nv
and nf respectively. The primal and dual procedure always
provide the same answer on the existence of the function,

3This means that rank([F C]) = rank(F ) = rank(C).

TABLE I

Network CVz nv nf CVr nv nf

Buxtehude3 No - - No - -
Corelli3 Yes 6 6 Yes 6 6
Frescobaldi3 No - - No - -
Telemann3 Yes 10 12 Yes 8 6
Boccherini4 No - - No - -
Čajkovskij4 No - - No - -
Gounod4 No - - No - -
Offenbach4 No - - No - -
Paganini4 Yes 14 18 Yes 12 8
Grieg5 Yes 22 68 Yes 52 22
Liszt5 Yes 28 66 Yes 52 22
Martucci5 No - - No - -
Mahler6 Yes 12 62 No - -

CV = Convergence (Yes/No);
nv = number of vertices (primal procedure);
nf = number of facets (dual procedure);

of course; yet nv and nf may be quite different. However,
both nv and nf are surprisingly small (in general, polyhedral
Lyapunov functions can be extremely complex [20]). All the
networks in Fig. 3 correspond to regular systems. For all of
them, apart from Mahler6, the assumptions of Theorem 5
hold: as expected, the outcome of the computational proce-
dure, in terms of convergence, is the same in the two cases.
For the network named Mahler6, the procedure converges in
concentration coordinates, but not in reaction coordinates; as
can be verified, matrix F does not have full (column) rank.

The network named Telemann3, e.g., admits in concentra-
tion coordinates the polyhedral Lyapunov function with

X =

 1 0 0 0 −1
0 1 0 1 1
0 0 1 1 0

 ,

whose unit ball is shown in Fig. 4 (a), and its dual with

M =

 0 1 1 −1 1 0
1 1 0 0 1 1
0 0 1 1 −1 −1

>

,

having the unit ball shown in Fig. 4 (b); in reaction
coordinates, it admits the polyhedral Lyapunov function with

X =

 −1 1 −1 −1
−1 1 1 1
1 1 1 −1

 ,

whose unit ball is the cube of side 2, centered in the
origin, and the dual function with M = I , the identity matrix,
corresponding to the unit ball of the 1–norm (diamond).
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Fig. 4: Unit ball of the polyhedral Lyapunov functions in concentration
coordinates, associated with the network named Telemann3 in Fig. 3.
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Fig. 3: Graphs corresponding to the biochemical networks tested in Section IV.

V. CONCLUDING REMARKS

An approach has been recently proposed [19] to assess the
structural stability of a biochemical network by absorbing
it in a linear differential inclusion, along with a numerical
procedure for determining a polyhedral Lyapunov function
for the system in concentration coordinates. In this paper, we
have shown that this procedure can be applied to determine
polyhedral functions for the system in reaction coordinates,
as proposed in [21], [22], [23]. Under some full rank
conditions, for unitary networks, the procedure converges
when applied to the system in concentration coordinates
iff it converges when applied to the system in reaction
coordinates. Numerical experiments have shown how the
procedure performs for some biochemical networks.

Further work along this direction may include the investi-
gation of the case in which the full rank condition is not
verified. Another intriguing direction concerns the global
stability property that, so far, we can establish under the
assumption of ε–degradation only. In [19] it is shown that,
without any ε–degradation assumption, the existence of a
polyhedral Lyapunov function in concentration coordinates
assures local stability of the equilibrium (if any), provided
that matrix BDC is robustly non–singular; hence, it can
be inferred that a similar property holds for polyhedral
Lyapunov functions in reaction coordinates. We believe
that, under appropriate conditions, the assumption of ε–
degradation can be removed, still ensuring global stability.
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