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Abstract— We consider the problem of tuning the output
of a static plant whose model is unknown, under the only
information that the input–output function is monotonic in each
component or, more in general, that its Jacobian belongs to a
known polytope of matrices. As a main result, we show that,
if the polytope is robustly non–singular (or has full rank, in
the non–square case), then a suitable tuning scheme drives
the output to a desired point. The proof is based on the
application of a well known theorem concerning the existence of
a saddle point for a min–max zero–sum game. Some application
examples are suggested.

I. INTRODUCTION

In some cases, tuning a plant with several inputs and out-
puts can be frustrating: when attempting to reach the desired
value for some output, the interaction among variables can
drive other outputs out of tune.

Consider, for instance, a large electrical network in which
the control variables are the voltage generators, and the target
is to assure that certain nodes have the appropriate voltage
level. If the number of generators (degrees of freedom) is not
smaller than the number of the target nodes, then the desired
voltage level can be obtained by assigning the proper voltage
at the generators. If the network parameters (typically the
impedances) are known, the problem has a straightforward
solution. Yet this is not always the case, because the network
parameters depend on the load, which can vary.

The same applies to many other interconnected plants,
such as power generation plants, heat transmission and
generation, electronic circuits, and flow networks. For these
systems, stability is not the main issue, while steady–state
tuning can be a more important task.

In this paper we consider the problem of tuning a static
plant, described by a system of nonlinear equations. Our
main goal is to solve a Robust Tuning Problem (RTP): we
want to drive the output to a desired level, when the plant
equations are not known.

We show that, if the equations satisfy proper assumptions
(precisely, if in some region the Jacobian matrix of the
function satisfies proper bounds, which correspond to the
inclusion in a polytope of matrices, and if some robust non–
singularity conditions are satisfied), then the RTP is solvable.
Our main result can be stated as follows.

Assume that the Jacobian of the transformation is included
in a polytope of matrices. If all the elements of the poly-
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tope are robustly right invertible (in the square case, non–
singular), then the Robust Tuning Problem is solvable.

The result requires, as a technical support, the exploitation
of the well known min–max theorem in game theory [1].
This property has already been used in the context of robust
control via Lyapunov methods [2], [3], [4] and of robust
control of flow networks [5]. Here we solve a different
problem, since we consider a static plant (in practice, a stable
plant with fast dynamics) that does not have state variables.

The contributions of the paper are the following.
• We consider a “control scheme” based on an auxiliary

control variable chosen as the derivative of the original
control (hence, the “state” of the system will be the
control variable itself).

• A Lyapunov–like positive–definite function of the out-
put variable is considered, assuming y = 0 as the target.
It is shown that, by means of a suitable robust control
strategy, this function decreases to 0.

• The control, based on a min–max principle, requires the
solution of a convex optimization problem on–line.

• The maximum tuning speed can be assigned by con-
straining the norm of the auxiliary control signal. Under
suitable choices of such a norm, the convex optimization
is a quadratic problem (Euclidean norm) or a Linear
Programming problem (∞–norm).

Some examples are provided to illustrate the technique.

II. MOTIVATING EXAMPLE AND PROBLEM FORMULATION

Consider the ventilation plant represented in Fig. 1, where
a fan forces fresh air in the environment, the air is heated
by means of a resistor, and both the current I and the fan
speed ω are assumed to be controlled variables. The goal is
keeping humidity and temperature at the desired set–point;
without restriction, we assume that the desired temperature
level and relative humidity level are both 0. We also assume
that in the environment there are both thermal dispersion
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Fig. 1: The heat–humidity regulation problem.
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and a humidity source (for instance due to vegetation). We
neglect any delay, namely, we assume that the process is
static. Although unrealistic in most circumstances, this is
reasonable when the environment is not too large. Then our
plant is represented by the equations

T = φ(I, ω),

h = ψ(I, ω),

where the functions φ and ψ are assumed to be monotonic
in both arguments, according to the following trends:

I ω
T + -
h - -

This means we are assuming that:
• the temperature T is a decreasing function of the fan

speed ω and an increasing function of the current I;
• the relative humidity h is a decreasing function of both

the fan speed ω and the current I .
The precise value of these functions is influenced by un-
known factors, such as the external temperature and humid-
ity, and the humidity generation in the environment; only the
trend is assumed to be known.

We may also have 0 elements in the Jacobian. For instance,
while the relative humidity decreases with the current I , the
absolute humidity ha essentially depends on the external
humidity and has practically no dependence on I . Hence,
if we considered the absolute humidity ha instead of h, the
trend table would have a 0 in the position (2, 1).

Given the Jacobian matrix of the function, we assume that,
in a certain domain, the partial derivatives are bounded in
absolute value as ε ≤ |(∂ · /∂·)| ≤ µ. Then[

∂T
∂I

∂T
∂ω

∂h
∂I

∂h
∂ω

]
∈
[

+m1 −m2

−m3 −m4

]
,

where m1,m2,m3,m4 ∈ [ε, µ]. We consider a feedback loop
as in Fig. 2, where the control has information on the trends
and the bounds ε and µ only.

STATIC

TUNER

yu

Fig. 2: The automatic tuning.

More in general, we may assume that the Jacobian matrix
of the function is included in a polytope of matrices; having
upper and lower bounds separately available for each entry
is a special case.

A. Problem formulation
We call a polytope of matrices a set of the form

M = {M =

r∑
k=1

Mkαk :

r∑
k=1

αk = 1, αk ≥ 0} (1)

and we denote by

Sρ = {y : y>y ≤ ρ2}

the sphere of radius ρ with respect to the Euclidean norm.
The problem we wish to consider is the following.

Problem 1: Given the static plant

y = g(u), (2)

where g : Rq → Rp, p ≤ q, assume that, for some ū,
g(ū) = 0 and that the following inclusion holds:

Gu
.
=

[
∂g

∂u

]
∈M. (3)

Find a dynamic algorithm such that

y(t)→ 0 (4)

and
u(t)→ ū (5)

as t→∞, where ū solves the equation

0 = g(u). (6)

�
As a first attempt to solve the problem, we may consider

the system ẋ(t) = g(u) and then drive x to zero. This would
be possible in principle by adopting the techniques presented
hereafter. However, the control u may be discontinuous in
time. In the next section, we will propose a dynamic solution
ensuring a continuous evolution of the inputs (beneficial,
for instance, to avoid exciting high–frequency unmodeled
dynamics of the plant).

The considered problem is related to methods that have
been previously proposed for parameter tuning [12], aimed
at optimizing performances and/or identifying the system
parameters. Also, a different approach to solve the problem
could rely on multi–dimensional extremum seeking tech-
niques [13], [14], [15]. Indeed, our goal is reached when
‖g(u)‖2 = 0; thus, in principle, the problem could be
formulated as extremum seeking. However, the substantial
difference of our approach is that we are exploiting the
structure of g and its Jacobian, information that would be
lost in the extremum–seeking framework.

III. SOLUTION OF THE PROBLEM

A. The case p = q

We consider here Problem 1 under the assumption that
there are as many outputs as inputs, hence p = q.

Since we are assuming that condition (3) is the only
available information for control purposes, we need to design
a robust scheme. We just need the further assumption.

Assumption 1: Robust non–singularity. Any matrix in
the polytope M is non–singular.
For instance, the matrix associated with the heat–humidity
problem in Section II is robustly non–singular. We will see
later how the condition in Assumption 1 can be checked,
under suitable assumptions on the matrix structure.
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Theorem 1: Under Assumption 1, Problem 1 can be
solved with a control scheme of the form

u̇(t) = v(t), (7)
v(t) = Φ(y(t)), (8)

with added input variable v(t). �
The constructive proof of the theorem requires several pre-
liminary steps, which are described next.

B. Proof of Theorem 1

First, for both technical and practical reasons, we deliber-
ately bound the control as

‖v(t)‖ ≤ ξ, (9)

where ξ > 0 and ‖ · ‖ is any norm.
As a second step, we momentarily pretend that the Jaco-

bian Gu in u is available to the controller (which is not true).
Namely, instead of the control action (8), we assume to have
v(t) = Φ(y(t), Gu).

We consider the Lyapunov–like positive definite function

V (y) =
1

2
y>y,

whose Lyapunov derivative is

V̇ = y>ẏ = y>Guu̇ = y>Guv. (10)

Then, since Gu is invertible, we take the “fake” control

v = −γ(y)G−1
u y, (11)

where γ(y) > 0 is a suitable continuous scalar function, to
get

V̇ = −γ(y)y>y < 0, for y 6= 0. (12)

We can choose function γ so as to ensure

‖v‖ = ‖γ(y)G−1
u y‖ ≤ ξ, (13)

therefore achieving the following preliminary result.
Lemma 1: The control (11) satisfies (9) and asymptoti-

cally drives y(t) to 0. �
The next step towards the true solution requires a game–

theoretic interpretation of (10), (12) and (13).
If y and γ(·) are given, then the following holds:

Statement 1 For all Gu ∈M, there exists v, ‖v‖ ≤ ξ, such
that V̇ ≤ −γ(y)y>y.

This is equivalent to writing

max
Gu∈M

min
‖v‖≤ξ

y>Guv ≤ −γ(y)y>y.

Since y>Guv is bilinear in Gu ∈M and v ∈ Sξ, and the sets
M and Sξ are compact and convex, a fundamental theorem
in game theory [1] states that min and max commute, i.e.,
the min–max game has a saddle point. Hence also

min
‖v‖≤ξ

max
Gu∈M

y>Guv ≤ −γ(y)y>y.

Thus, Statement 1 is equivalent to the following.
Statement 2 There exists v, ‖v‖ ≤ ξ, such that, for all
Gu ∈M, V̇ ≤ −γ(y)y>y.

Consider M∗ ∈M and v∗ ∈ Sξ such that (v∗(y),M∗(y))
is the saddle point of

max
Gu∈M

min
‖v‖≤ξ

y>Guv = min
‖v‖≤ξ

max
Gu∈M

y>Guv (14)

(= y>M∗(y)v∗(y)) and define the discontinuous control

Φ(y)
.
= v∗(y). (15)

Then we have

V̇ = y>GuΦ(y) = y>Guv
∗(y) ≤ −γ(y)y>y. (16)

for all Gu. This condition assures that, if in (8) we take
Φ(y) as in (15), the control (7)–(8) guarantees that y(t)→ 0.
Moreover, since u is the integral function of v, which is a
continuous function, we have u(t)→ ū, where g(ū) = 0.

As far as convergence is concerned, from (16) we have

V̇

V
≤ −2γ(y),

hence
d

dt
log V ≤ −2γ(y).

Then, if γ ≥ γ̄, we have exponential convergence:

V (y(t)) ≤ V (y(0))e−2γ̄t.

Theorem 1 is therefore proved.
Remark 1: The dynamics of the output y can be described

by ẏ = Guv. If we assume invertibility of g, so that
u = g−1(y), we have that y is represented by a driftless
system [6], [7], for which several stabilizability results are
available. These results do not apply to our case, since we
assume the model completely unknown. Note however that
we have some analogies, since also in our case we resort
to a discontinuous control, as it must be done for driftless
systems [6], [7].

C. The case p < q

If the number of inputs is lesser than the number of
outputs, Assumption 1 needs to be changed as follows.

Assumption 2: Robust right invertibility. Any matrix in
the polytope M is right invertible.
Then, we can modify (11) by simply taking the pseudo
inverse instead of the inverse,

v = −γ(y)G⊥u y, (17)

and, along the same reasoning as in the previous subsection,
we reach the same conclusions. It is worth noticing that there
are in general multiple solutions to g(u) = 0 and the final
value u will depend on the initialization.

Remark 2: We have excluded from the formulation of
Problem 1 the problematic case in which the number of
inputs is greater than the number of outputs, because, if
p > q, a solution to g(u) = 0 does not exist in general.
Typically, in this case, it is possible to choose a suitable
function h(y) of y and drive h(y) to zero.

IV. IMPLEMENTATION OF THE SCHEME

For implementing the scheme, two steps are required.
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• Off–line Checking the robust non–singularity (or rank
completeness) of the polytope of matrices.

• On–line Computing the tuning law.

A. Checking robust non–singularity (or rank completeness)

In the case p = q, before implementing the tuning scheme
we need to make sure that the given polytope of matrices
M is robustly non–singular.

Checking non–singularity is a hard problem in general [8],
especially for high dimensional systems. For reasonable
instances, however, this task can be computationally tractable
and remarkable solutions are available, as shown next.

Proposition 1: [9], [10] Rank one generating matrices.
If

M =

r∑
i=1

diMi, d−i ≤ di ≤ d
+
i ,

where Mi are rank one matrices, then robust non–singularity
is equivalent to robust non–singularity of all the vertices:

det

∑
i(±)

d±i Mi

 6= 0

where the sum means, with an abuse of notation, that we take
the coefficients di on the extrema of their intervals, obtaining
2r possible combinations.1 �

Proposition 2: Interval matrices Assume that we are
dealing with an interval matrix M , having entries

M−ij ≤Mij ≤M+
ij .

Then robust non–singularity is equivalent to robust non–
singularity of all the vertices. �

Conversely, for p 6= q, in general we must check that
all the matrices of the family have full rank. One obvious
possibility is checking if there is at least one full size square
non–singular sub–matrix.

For particular systems, non–singularity can be inferred
from the structure. Consider for instance the flow system

g(u) = Bh(u) + b0, (18)

where B ∈ Rp×q , b0 ∈ Rp and

h(u) = [h1(u1) h2(u2) . . . hq(uq)]
>

is a componentwise strictly increasing function such that

0 < η− ≤ h′i(ui) ≤ η+.

Denoting by η = h′(u), the Jacobian matrix is

Mu = Bη. (19)

Then we have the following.
Proposition 3: Mu as in (19) is non–singular (if p = q;

otherwise, full rank) if and only if B is non–singular (re-
spectively, full rank). �

Proof: If p = q, Mu = Bη has a non–trivial kernel
ker(Bη) = {z : [Bη]z = 0} iff B has a non–trivial kernel.

1For instance, if r = 2: (d−1 , d−2 ), (d+1 , d−2 ), (d−1 , d+2 ), (d+1 , d+2 ).

The proof for p 6= q is similar, but tedious, and is omitted
for space reasons.

B. Computing the tuning law Φ

To compute the control law (15), we need to solve the
min–max problem (14) on–line. The saddle point value
is computed as follows. Remind that the matrices in the
polytope (1) are M =

∑r
k=1 Mkαk, with α ∈ A =

{α̂ :
∑r
k=1 α̂k = 1, α̂k ≥ 0}. Then we need to compute

J = max
α∈A

[
min
‖v‖≤ξ

r∑
k=1

αky
>Mkv

]
. (20)

Let y be given and, to simplify the notation, define

z>i (y)
.
= y>Mi.

(i) If the control is bounded by the Euclidean norm, then,
for given α, the minimizer in (20) is

v(α) = −ξ
∑r
k=1 αkz

>
k (y)

‖
∑r
k=1 αkz>k (y)‖

. (21)

Plugging the value of v(α) in (20) leads to

J = −ξ

∥∥∥∥∥
r∑

k=1

αkz
>
k (y)

∥∥∥∥∥ .
The optimal strategy for the maximizer α is to take

α∗(y) = max
α∈A

−ξ

∥∥∥∥∥
r∑
k=1

αkz
>
k (y)

∥∥∥∥∥ = −min
α∈A

ξ

∥∥∥∥∥
r∑
k=1

αkz
>
k (y)

∥∥∥∥∥ .
This is a convex optimization problem (determining the

smallest point in a polytope, see [11]). Once α∗(y) is found,
v∗ = v(α∗) can be computed as in (21). Then the control is

Φ(y) = v(α∗(y)).

(ii) If the control is bounded by the infinity norm, then,
for a given α, the minimizer in (20) is

v(α) = −ξsign

[
r∑

k=1

αkz
>
k (y)

]
, (22)

where sign[·] is the componentwise sign vector. Plugging this
new value of v(α) in (20) leads to

J = −ξ

∥∥∥∥∥
r∑

k=1

αkz
>
k (y)

∥∥∥∥∥
1

.

The optimal strategy for α is to take

α∗ = max
α∈A
−ξ

∥∥∥∥∥
r∑

k=1

αkz
>
k (y)

∥∥∥∥∥
1

= −min
α∈A

ξ

∥∥∥∥∥
r∑

k=1

αkz
>
k (y)

∥∥∥∥∥
1

, (23)

which reduces to a linear programming problem. Given the
non–negative unknown vectors w+, w− ∈ Rp, (23) can be

1145



solved as

min

[∑
i

w+
i +

∑
i

w−i

]
(24)

s.t.
r∑

k=1

αkz
>
k (y) = w+ − w−, (25)

w+
i ≥ 0, w−i ≥ 0. (26)

Once α∗ is found, the optimal value v∗ = v(α∗) can be
computed as in (22). Again, Φ(y) = v(α∗(y)).

V. EXAMPLES

A. The heat–humidity regulation problem

Reconsider the example in Section II. The Jacobian of the
transformation can be included in the interval matrix[

+m1 −m2

−m3 −m4

]
,

where m1,m2,m3,m4 ∈ [ε, µ] and ε, µ are known. We
assume the control is bounded by the Euclidean norm. For
any y = [y1 y2]>, we need to solve min ‖y>M‖:

min
ε≤mi≤µ

‖[m1y1 −m3y2 −m2y1 −m4y2]‖ .

In this case, the problem can be split into two separate
problems:

min
ε≤m1,m3≤µ

(m1y1 −m3y2)
2
, (27)

min
ε≤m2,m4≤µ

(m2y1 +m4y2)
2
. (28)

These are elementary problems, and the square root of the
sum of the optimal values is the optimum.

The minimizer of (27) (resp. of (28)) is given by the point,
in the square ε ≤ m1,m3 ≤ µ (resp. ε ≤ m2,m4 ≤ µ),
which is closest to the line LA : m1y1 −m3y2 = 0 (resp.
LB : m2y1 + m4y2 = 0). The two lines are orthogonal if
represented in a Cartesian coordinate system where m1 and
m4 are reported in abscissa and m2 and m3 in ordinate, as in
Fig. 3. Hence, they cannot give simultaneously 0 as optimal
cost.

Fig. 3: Optimal points in the m1–m3 (m2–m4) space.

Then the control v to be used is

v = −ξ [m∗1y1 −m∗3y2 −m∗2y1 −m∗4y2]>

‖[m∗1y1 −m∗3y2 −m∗2y1 −m∗4y2]>‖
.

In our simulation we take the functions (unknown to the
controller)

∆T = (0.1I2 − 0.5ω)− 20,

∆h = (−2 10−4I2 − 2.5 10−2ω + 0.9)− 0.5,

where ∆T = 0 ◦C (corresponding to T = 20 ◦C) is the
desired temperature, and ∆h = 0 (corresponding to h =
0.50) is the desired relative humidity. Note that for ω = 0
and I = 0 we would obtain ∆T = −20 ◦C, corresponding
to a temperature T = 0 ◦C, and ∆h = 0.40, corresponding
to relative humidity h = 0.90.

By solving a linear equation in the unknowns I2 and ω,
we obtain that the equilibrium inputs that achieve the desired
values are Ī = ū1 = 16.41 A and ω̄ = ū2 = 13.85 rad/s.
These values are unknown to the controller (as the whole
model is); yet, by choosing the rough bounds ε = 10−3

and µ = 200, and applying the control strategy described
above with ξ = 5, we obtain the temperature and humidity
transients represented in Fig. 4 (the initial conditions being
T = 10 ◦C and h = 0.8). The values of the control converge
to the equilibrium pair, as shown in Fig. 5. A dead zone of
|∆T | ≤ 0.1 ◦C and ∆h ≤ 0.01 has been employed; namely,
the control is turned off when the output is within the dead-
zone.
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1

t [min]

h 

Fig. 4: Transient of the temperature T [◦C] (top) and of the relative humidity
h (bottom) for the heat–humidity problem.
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Fig. 5: Input variables during a transient of the heat-humidity problem:
u1 = I (current) is represented in blue, u2 = ω (fan speed) in green.
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Fig. 6: A simple circuit.

B. Electric voltage tuning

Consider the electric circuit in Fig. 6, where the voltages
V1 and V2 have to be selected in order to keep VA and VB
to the desired levels:[

VA
VB

]
=

[
1 + R1

RA
+ R1

R3
−R1

R3

−R2

R3
1 + R2

RB
+ R2

R3

]
︸ ︷︷ ︸

=̇P

−1 [
V1

V2

]
.

By computing M = P−1 and posing y1 = VA − V̄A and
y2 = VB − V̄B , we get the representation[

y1

y2

]
=

[
a+ c+ d b

c e+ b+ d

] [
u1

u2

]
−
[
V̄A
V̄B

]
,

where a, b, c, d, e are all strictly positive, being of the form

RiRjRk
(detP )(RARBR3)

, i, j, k ∈ {1, 2, 3, A,B}.

Assuming 0 < ε ≤ a, b, c, d, e ≤ µ, the Jacobian

M =

[
a+ c+ d b

c e+ b+ d

]
is robustly non–singular. To obtain an auxiliary control that
is bounded in the infinity norm, i.e., ||v||∞ ≤ ξ, we apply
(22) taking α as in (23). In detail, given y, we need to find
a∗, b∗, c∗, d∗, e∗ that minimize

||y>M ||1 = |y1(a+ b+ c) + y2c|+ |y1b+ y2(e+ b+ d)|

in the domain
ε ≤ a, b, c, d, e ≤ µ.

In general the minimizer M∗ can be found by solving the
linear program (24)–(26). Then we apply

v = −ξsign[y>M∗].

We take R1 = RA = 10kΩ, R2 = 15kΩ, R3 = 9kΩ,
RB = 7.5kΩ, obtaining a matrix (unknown to the controller)

M =

[
0.368 0.0877
0.132 0.246

]
.

If the desired output values are V̄A = 1 V , V̄B = 2 V , by
solving the linear system ū = Mȳ, with ȳ = [V̄A V̄B ]>,
we find the control equilibrium values ū1 = 0.89 V and
ū2 = 7.67 V . For null initial conditions, the proposed control
scheme leads to the desired voltages, without knowledge of
M . By taking ε = 10−2, µ = 5, and ξ = 5, we obtain the

transient reported in Figures 7 and 8.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

t [s]

y 
[V

]

Fig. 7: Output variables during a transient of voltage tuning: y1 [V] (blue)
and y2 [V] (green). The desired levels are represented in red.
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t [s]
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]

Fig. 8: Input variables during a transient of voltage tuning: u1 [V] (blue),
u2 [V] (green).
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