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Abstract— We provide necessary and sufficient structural
conditions for multistationarity and oscillations in aggregate
monotone systems, defined as the interconnection of stable
monotone components. Our classification is based on the
presence of exclusively positive or exclusively negative cycles
in the system aggregate graph, whose nodes are the monotone
subsystems. The results presented here scale up the structural
classification of oscillatory and multistationary behaviors in
sign–definite biochemical networks previously proposed by the
authors. Models of biomolecular systems are discussed to
demonstrate the applicability of our classification.

I. INTRODUCTION

Periodic and multistationary dynamics are autonomous
behaviors relevant in engineering, physics and biology. These
behaviors often depend on key parameters that must be
carefully tuned to achieve the desired performance. However,
when parameters are uncertain, even determining whether a
system has the capacity to generate oscillations or multista-
tionarity can be difficult. In this case, it is crucial to find
structural, parameter–free criteria to evaluate the possible
behaviors of the system.

Biological network models are almost always character-
ized by uncertain parameters, thus structural analysis is
particularly important. In a previous paper [1] we considered
dynamical systems relevant in biochemistry and biology
which present a sign–definite Jacobian, and studied the
corresponding Jacobian graph (nodes are associated with
species concentrations and arcs with signed Jacobian entries).
We called strong (weak) candidate oscillators the systems
that can exclusively (possibly) transition to instability due
to a complex pair of eigenvalues, and strong (weak) can-
didate multistationary systems those which can exclusively
(possibly) transition to instability due to a real eigenvalue.
Building on a vast literature (see [2], [3], [4], [5], [6],
[7], [8], and the thorough discussion in [1]), we proposed
a structural classification of oscillatory and multistationary
networks based on the exclusive or concurrent presence of
positive and negative cycles in the Jacobian graph.

In this paper, we extend our results to aggregate monotone
systems, defined as the interconnection of monotone subsys-
tems. The theory of monotone systems [9], [10] simplifies
the analysis of large, complex networks which can be de-
composed into interconnections of input–output monotone
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subsystems [11]: monotonicity facilitates the detection of
multistationarity [12] and provides necessary conditions for
oscillations [13]. Since a monotone subsystem within a large
network can be regarded as a single element having a sign–
definite input–output mapping, our classification for sign–
definite biochemical systems can be successfully scaled to
consider interconnections of monotone subsystems, rather
than interconnections of a myriad of individual molecular
species. We focus on networks comprised of stable monotone
subsystems and we provide a characterization of potential
multistationary and oscillatory behaviors based on the pres-
ence of exclusively positive or exclusively negative cycles.
Our classification is applied to evaluate structurally the
behavior of artificial biomolecular networks [14], [15], and
reveals that their design is well suited to achieve the desired
periodic or bistable dynamics.

II. FRAMEWORK AND PREVIOUS RESULTS

We begin by summarizing the general framework and
the structural classification introduced in [1]. We consider
a vector field f(·), continuously differentiable in all its
components fi(·), i = 1, ..., n, and the dynamical system:

ẋ = f(x), x ∈ Rn. (1)

Assumption 1: All the solutions of (1) are globally uni-
formly asymptotically bounded in the compact set S ⊂ Rn.
Hence, (1) admits an equilibrium x̄ in S ([16], [17], [18]).

Assumption 2: ∂fi/∂xj is either always positive, always
negative, or always null in the considered domain.

Assumption 3: For all i, ∂fi/∂xi < 0, i.e., the system is
non–autocatalytic.

Due to the monotonicity of fi(·) with respect to each
argument, the Jacobian of system (1) is sign definite.

Definition 1: Given a system with a sign–definite Jaco-
bian J , its structure is the sign pattern matrix Σ = sign[J ].
We associate matrix Σ with a directed n–node graph, whose
arcs are positive (+1), negative (−1), or zero depending on
the sign of the corresponding matrix entries.

Definition 2: A realization of a structure Σ is given by
any choice of functions fi(·), along with specific parameter
values, which is compatible with Σ.
Clearly, the choice of fi(·) and its parameters uniquely
determines the entries of the Jacobian matrix J .

Definition 3: A property is structural if it is satisfied by
any realization of a system with a given structure Σ [19].
Hence, a property is not structural if there exists at least one
realization which does not satisfy such property.
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Definition 4: Given a graph, a cycle is an oriented, closed
sequence of distinct nodes connected by distinct directed
arcs. A cycle is negative (positive) if the number of negative
arcs is odd (even). The order of a cycle is the number of
arcs involved in the cycle.

To define the concept of transition to instability, we
consider the system

ẋ(t) = g(x(t), µ), x ∈ Rn, (2)

where µ is a real–valued parameter and g(·, ·) is a sufficiently
smooth function, continuous in µ, satisfying Assumptions 1,
2 and 3 for every value of µ. The structure Σ of system (2) is
assumed to be invariant with respect to µ. Assumption 1 en-
sures that an equilibrium exists; all the following definitions
refer to this equilibrium, which is, in general, a function of µ:
g(x̄µ, µ) = 0. We assume that x̄µ depends continuously on
µ. A suitable change of coordinates always allows us to shift
the equilibrium to the origin, without affecting our analysis.

Definition 5: System (2) undergoes a Transition to In-
stability (TI) at µ = µ∗ iff its Jacobian matrix J(x̄µ) is
asymptotically stable in a left neighborhood of µ∗, and
unstable in a right neighborhood1. A TI is simple if at most a
single real eigenvalue or a single pair of complex conjugate
eigenvalues crosses the imaginary axis.

Since most systems have a dominant eigenvalue,
non–simple TIs are unlikely to occur. We consider two types
of simple TIs related to oscillations and multistationarity.

Definition 6: System (2) undergoes an Oscillatory Tran-
sition to Instability (OTI) at µ = µ∗ iff its Jacobian matrix
J(x̄µ∗) has a single pair of pure imaginary eigenvalues, while
all the other eigenvalues have negative real part:

σ (J(x̄µ∗)) = {λ1, λ2, . . . , λn}, where λ1,2 = ±jω,

with Re(λk) < 0 for k > 2 and Re(λk) > 0 for k = 1, 2 in
a right neighborhood of µ∗.

Definition 7: System (2) undergoes a Real Transition to
Instability (RTI) at µ = µ∗ iff its Jacobian matrix J(x̄µ∗)
has a single zero eigenvalue, while all the other eigenvalues
have negative real part:

σ (J(x̄µ∗)) = {λ1, . . . , λn}, where λ1 = 0,

with Re(λk) < 0 for k > 1 and Re(λ1) > 0 in a right
neighborhood of µ∗.

As is discussed in [1], TIs are related to bifurcation theory:
typically, OTIs are related to Hopf bifurcations and RTIs are
related to zero–eigenvalue bifurcations [20]; these types of
bifurcations, however, occur under additional assumptions.

We now provide general definitions for candidate oscilla-
tory and multistationary2 systems. We consider system (1),
with its given structure Σ, under Assumptions 1, 2 and 3.

1The definition holds as well for systems transitioning to instability from
the right to the left neighborhood of µ∗: just take µ̂ = µ∗ − µ as the
bifurcation parameter.

2We speak of multistationarity, and not of multi–stability, because an RTI
causes the appearance of additional equilibria, which are not necessarily
stable. A strong candidate multistationary system, however, under suitable
assumptions, admits two new equilibria that are asymptotically stable [1].

Definition 8: An alteration of (1) is a system of the form
(2), such that for µ = µ0, g(x, µ0) = f(x), while for µ 6= µ0

the structure Σ is preserved, yielding equilibrium x̄µ.
Definition 9: A system of the form (1), with structure Σ,

is structurally a candidate
i) oscillator in the weak sense iff there exists an alteration

(2) which admits an OTI;
ii) oscillator in the strong sense iff, for any alteration (2),

every simple TI (if any) is an OTI;
iii) multistationary system in the weak sense iff there exists

an alteration (2) which admits an RTI;
iv) multistationary system in the strong sense iff, for any

alteration (2), every simple TI (if any) is an RTI.
Fig. 1 summarizes necessary and sufficient conditions

provided in [1] for non–critical3 systems: the presence of
negative (positive) cycles in a structure is linked to oscillatory
(multistationary) system behavior.

Candidate oscillator Candidate multistationary system

Weak A negative cycle exists A positive cycle exists

Strong All cycles are negative All cycles are positive

Fig. 1: Structural classification provided in [1].

III. OSCILLATIONS AND MULTISTATIONARITY IN
AGGREGATE MONOTONE SYSTEMS

We now extend the structural results in [1] to aggregate
systems that are composed of stable monotone components.

We define an aggregate system as the interconnection of
N subsystems of the form

żi(t) = Fii(zi(t)) +
∑
j∈Ji

Gij(wij(t)), (3)

wki(t) = Hki(zi(t)), k ∈ Ki, (4)

where i = 1, ..., N , zi(t) is the state vector associated
with subsystem i, wij ∈ R are the subsystem inputs and
wki ∈ R are its outputs. Subsystem i receives inputs from
subsystems j ∈ Ji, and sends an output to subsystems
k ∈ Ki, where Ji and Ki are the sets that index all the
subsystems having respectively an upstream or downstream
connection with subsystem i (see Fig. 2). We assume that
Fii(·), Gij(·) and Hki(·) are sufficiently smooth functions.
Function Gij(wij(t)) models the influence of subsystem j
on subsystem i through wij(t), output of subsystem j.

Assumption 4: The input–to–state mappings Gij are ei-
ther non–decreasing or non–increasing: wij ≥ ŵij implies
either Gij(wij) ≥ Gij(ŵij), or Gij(wij) ≤ Gij(ŵij).

Assumption 5: Functions Hij(zj) are non–decreasing.
Assumption 5 enables a simplified analysis without being

restrictive: negative interconnection trends among subsys-
tems can be captured by the input functions Gij(wij). For
example, consider a generic subsystem 1 and the influence
of subsystem 2 on 1 given by w12:

ż1 = F11(z1) +G12(w12), w12 = H12(z2),

3A system is critical when all negative cycles (if any) are of order two.
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Fig. 2: (A) Sketch of an aggregate monotone system, i.e., the interconnection of monotone subsystems (3)–(4). (B) Graph of the aggregate monotone system,
where each monotone subsystem is collapsed in a single node. Pointed arrowheads indicate non–decreasing interconnections, while hammer–arrowheads
indicate non–increasing interconnections.

with H12 decreasing. The overall interaction depends on the
monotone compound function G12◦H12, and we can account
for the decreasing trend with a simple sign change: ŵ12 =
−w12. The net effect remains unchanged:

ż1 = F11(z1) +G12(ŵ12), ŵ12 = H−12(z2),

where H−12(ω)
.
= −H12(ω) is now increasing.

Definition 10: Subsystem (3)–(4) is unconditionally sta-
ble iff, for constant input values w̄ij , it admits a single
equilibrium z̄i, which is the solution of

0 = Fii(z̄i) +
∑
j∈Ji

Gij(w̄ij), w̄ki = Hki(z̄i), (5)

and such an equilibrium is asymptotically stable (all of the
eigenvalues of the Jacobian Ji = ∂Fii

∂zi

∣∣∣
z̄i

have a negative
real part).

Definition 11: Subsystem (3)–(4), with inputs wij , is
input–to–state monotone iff, for wij(t) ≥ w̃ij(t) ∀ j ∈ Ji,
we have that either zi(0) ≥ z̃i(0) =⇒ zi(t) ≥ z̃i(t), t ≥ 0,
or zi(0) ≤ z̃i(0) =⇒ zi(t) ≤ z̃i(t), t ≥ 0.
With a slight abuse of notation, we call simply monotone a
system that is either monotone, or anti–monotone.

Assumption 6: We consider aggregate systems composed
of subsystems (3)–(4), each unconditionally stable as in Def-
inition 10 and input–to–state monotone as in Definition 11.

Given an input–output monotonicity characterization for
all the subsystems, we can collapse each subsystem into an
equivalent aggregate node. Then we can define an aggregate
graph (cf. Fig. 2 B), whose nodes correspond to the aggregate
nodes, and whose signed arcs represent the influence of
subsystem j on subsystem i. The sign of each arc de-
pends on the trend of the associated input–to–state mapping
Gij(wij): positive (resp. negative) arcs are associated with
non–decreasing (resp. non–increasing) mappings.

Definition 12: A graph is strongly connected if an ori-
ented path exists connecting each pair of nodes.

Based on the cycles formed by the arcs connecting ag-
gregate nodes, we can still classify structural oscillatory
and multistationary behaviors. The main result of the paper
provides necessary and sufficient conditions for an aggregate
monotone system to be a strong candidate oscillator (every
transition to instability is an OTI) or a strong multistationary
system (every transition to instability is an RTI), in terms of
the cycles existing in the corresponding aggregate graph.

Theorem 1: Consider an aggregate system, formed by
the interconnection of strongly connected subsystems of
the form (3)–(4), satisfying Assumptions 4, 5 and 6. The
aggregate system is structurally a candidate

i) oscillator in the strong sense iff all the cycles in the
aggregate graph are negative;

ii) multistationary system in the strong sense iff all the
cycles in the aggregate graph are positive.

�
Remark 1: Positive cycles are generally present within

the monotone subsystems. However, if all the cycles in
the aggregate graph are negative, the aggregate system is
not a weak candidate multistationary system, due to the
assumption of unconditional stability for each subsystem.

IV. PROOF OF THE MAIN RESULT

In order to prove Theorem 1, we need to state a prelimi-
nary lemma and to introduce alterations by νκ,ε functions.

Given an aggregate system, under the assumptions of
Theorem 1, for constant input values w̄ij , each subsystem
admits a single equilibrium z̄i, which is implicitly defined by
the steady–state condition (5) and is globally asymptotically
stable. Then we can define

Aii =
∂Fii
∂zi

∣∣∣∣
z̄i

, Bij =
∂Gij
∂wij

∣∣∣∣
w̄ij

, Cki =
∂Hki

∂zi

∣∣∣∣
z̄i

.

In the corresponding aggregate graph, whose nodes are
associated with the monotone subsystems, the sign of the
directed arc connecting subsystems j and i depends on the
trend of function Gij(wij), i.e., on the sign of Bij .

Lemma 1: If the steady–state input–to–output mapping
in system (3)-(4) is monotone, then the input–to–output
mapping between each pair (wij , wki) is implicitly defined
by (5), and

∂wki
∂wij

= −CkiA−1
ii Bij

is a positive or negative scalar, depending on the sign of the
elements of Bij . �

Proof: As a consequence of Assumption 6 (mono-
tonicity and unconditional stability), Aii is a Metzler matrix
and is asymptotically stable. Therefore, all the entries of its
inverse A−1

ii are non–positive. Due to Assumption 5, Cki has
non–negative elements, while Assumption 4 ensures that Bij
has all non–negative elements or all non–positive elements,
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Fig. 3: Plot of an example νκ,ε function, defined as

νκ,ε(x) = x+ arctan[(κ− 1)x]
[
1−

(
x
ε

)2]2 for |x| < ε, νκ,ε(x) = x

for |x| ≥ ε, with ε = 1; κ = 2 (red) and κ = 0.5 (blue). [1]

depending on the type of interaction. Hence, the sign of
∂wki/∂wij only depends on the sign of Bij .

Now we define an alteration (2) of systems of the form (1)
that does not alter Σ. This vector field alteration, introduced
in [1], will be used to find, given a structure, a realization
which satisfies a property of interest. To simplify the nota-
tion, we henceforth assume that the equilibrium is at zero.

Definition 13: A differential scaling map νκ,ε (see e.g.
Fig. 3), where κ, ε > 0 are real parameters, is a strictly
increasing, continuously differentiable, odd function4, such
that νκ,ε = x for |x| ≥ ε and dνκ,ε(0)

dx = κ.
Therefore, a differential scaling map νκ,ε has a scalable

derivative at the origin and is the identity function outside
the ε–ball.

The alteration obtained by composing the vector field f(x)
and a differential scaling map νκ,ε,

ẋ = f(. . . , xi, . . . ) → ẋ = f(. . . , νκ,ε(xi), . . . ),

a) does not alter the equilibrium xi = 0;
b) does not alter the sign of the Jacobian entries, i.e., the

structure Σ of the system;
c) changes the partial derivatives in xi = 0 as:

∂f(...,νκ,ε(xi),... )

∂xi

∣∣∣
xi=0

= κ
∂f(...,xi,... )

∂xi

∣∣∣
xi=0

;

d) does not alter ẋ = f(x) outside the ε–ball, hence
preserves boundedness of the system solution.

If we apply this alteration to a vector field f(x) in a
neighborhood of the origin as an equilibrium point, the
elements of the Jacobian of f at x = 0 can be arbitrarily
scaled without changing the value of the equilibrium. Hence,
νκ,ε alterations can be used to independently scale the
magnitude of desired cycles and find, given a structure, a
realization that satisfies a property of interest. Even if we
use different parameters κi to scale different arcs, we may
always assume that κi(µ) are functions of a single parameter
µ, consistently with (2).

Proof of Theorem 1
i): Sufficiency. We need to show that, if exclusively

negative cycles are present in the aggregate graph, then the
Jacobian of the system cannot have real non–negative eigen-
values (hence, only oscillatory destabilization is possible);

4A function is odd iff νκ,ε(−x) = −νκ,ε(x).

+

+

+

_ _

z1 z2

z3z4

Fig. 4: Aggregate graph corresponding to the sign matrix (8).

i.e., denoting by A the Jacobian of the aggregate system,

det(λI −A) 6= 0 ∀ λ ∈ R, λ ≥ 0.

Ab absurdo, assume that A admits a real non–negative
eigenvalue λ. Denoting the ith linearized subsystem by

ζ̇i(t) = Aiiζi(t) +
∑
j∈Ji Bijωij(t), ωki(t) = Ckiζi(t),

any eigenvalue λ must satisfy the equation

λζi = Aiiζi +
∑
j∈Ji

Bijωij ,

where ζ = [ζ1 · · · ζi · · · ζN ]> is the associated eigenvector.
We find

ζi = −(Aii − λI)−1
∑
j∈Ji

Bij ωij ,

where all the elements of (Aii − λI)−1 are non–positive
because of monotonicity. In fact, Aii is a stable Metzler
matrix; (Aii − λI) is still a stable Metzler matrix, because
λ ≥ 0; thus all the elements of (Aii−λI)−1 are non–positive.

Then, for all k ∈ Ki we can write

ωki =
∑
j∈Ji

−Cki(Aii−λI)−1Bij ωij =
∑
j∈Ji

πikj ωij , (6)

where πikj
.
= −Cki(Aii − λI)−1Bij are scalars. Equations

(6) are linear in ωij and can be compactly rewritten as

ω = Πω, (7)

where ω is a vector including all the arc variables ωij , which
define the interconnections in the aggregate system. In the
aggregate graph, the sign of the arc from node i to node
k depends on the sign of πikj = −Cki(Aii − λI)−1Bij .
Therefore, matrix Π in (7) has the same cycles as the
Jacobian A of the aggregate system. Let ΣΠ be the sign
matrix corresponding to Π. Every cycle in the aggregate
graph corresponds to a cycle in matrix ΣΠ. For example,
the sign matrix ΣΠ associated with the aggregate graph in
Fig. 4 is a 5×5 matrix, since there are 5 arcs. If we order the
arc variables as ω = [ω21 ω32 ω43 ω14 ω24]

>, we have:

ΣΠ =


0 0 0 − 0
+ 0 0 0 −
0 + 0 0 0
0 0 + 0 0
0 0 + 0 0

 . (8)

(The sign of the interaction depends on that of the incoming
arc, related to Bij , as shown in Fig. 5.) Therefore, if all the
cycles in the aggregate graph are negative, then all the cycles
in matrix ΣΠ are negative as well. Then we can resort to the
following result, from Theorem 3.1 in [21].
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Fig. 5: Rules for determining the sign of interactions in matrix ΣΠ.

Fig. 6: Aggregate graph with emphasis on the selected positive cycle (dark
gray, solid); excluded arcs are dashed, light gray.

Theorem 2: Given a matrix M with negative diagonal
entries, such that all the cycles in it are non–positive, each
leading minor of M having order k has sign (−1)k. �
Since all the cycles in Π, hence in (Π − I), are negative,
we have that sign [det(Π− I)] = ±1. Now we go back to
relation (7), which is equivalent to (Π − I)ω = 0 and thus
implies det(Π − I) = 0. Yet, if all the cycles are negative,
det(Π − I) 6= 0, hence (7) cannot be true for ω 6= 0.
Therefore, we conclude that the system cannot admit real
non–negative eigenvalues λ ≥ 0, and is thus a candidate
oscillator in the strong sense.

i): Necessity. Suppose ab absurdo that a positive cycle
exists in the aggregate graph. Then we can modify the
arcs connecting the aggregate nodes by means of νε,κ
alterations, without compromising stability of the monotone
subsystems5: we apply individual differential scaling maps
νκ,ε, scaling the κ parameter so as to enhance the considered
positive cycle only and virtually exclude all the arcs not
involved in it. For instance, in the structure in Fig. 6, we can
select the cycle formed by subsystems 1–2–3 and disregard
all the other arcs in the aggregate graph. Precisely, for each
arc, through a differential scaling map νκ,ε we scale the
interconnections so that κij = 1 for the arcs involved in
the positive cycle, κij � 1 for the arcs not involved. By
reordering the nodes, we find a realization which is the
positive feedback of m monotone subsystems of the form

żi(t) = Fii(zi(t)) +
∑
j∈Ji

Gi,i−1(wi,i−1(t))

wi+1,i(t) = Hi+1,i(zi(t)), k ∈ Ki,

where m is the order of the considered positive cycle and
the indices are to be intended in a circular way. The selected
system is monotone and has thus a real dominant eigenvalue.
Therefore a realization can be found which can be solely
destabilized due to a real root which crosses the imaginary
axis through the origin, yielding an RTI. This contradicts the
assumption; hence we can conclude that there can be only

5We cannot scale up a single positive cycle inside a monotone subsystem
in order to induce an RTI, because we assume that parameter variations
preserve stability of each monotone subsystem. Hence, the only arcs which
can be scaled are those connecting different subsystems.

negative cycles in the aggregate graph.
ii). Sufficiency: if positive cycles only are present in the

aggregate graph, then the overall system is monotone, hence
has a dominant real eigenvalue and only real destabilization
is possible. Necessity: if a negative cycle exists, then it can
be enhanced through a differential scaling map νκ,ε, as in
the necessity proof of i), and thus a realization can be found
which admits an OTI, contradicting the assumption.

V. EXAMPLES

Nature provides many excellent examples of aggregate
monotone systems. For instance, in the MAPK pathway,
each stage of the phosphorylation cascade can be regarded as
an unconditionally stable monotone module [12], [22] and,
depending on the active feedback loops, the network can
generate bistable or oscillatory behaviors [12], [22], [23].

Here we provide examples of artificial biochemical net-
works that turn out to be aggregate monotone systems, and
candidate oscillators or multistationary systems in the strong
sense. The fact that these artificial systems possess such
strong properties indicates that their bottom–up design is
fundamentally sound. In the following, capital letters indicate
species, small letters their concentration.

Example 1: (Biochemical oscillator) We consider a sim-
plified model for an artificial oscillator where transcriptional
regulation is achieved with RNA aptamers, which are RNA
molecules whose sequence is synthetically evolved to bind
and modify the properties of a desired target [14]. In this
system, two aptamers X1 and X3 are transcribed by RNA
polymerases X2 and X4 respectively. Aptamer X1 inacti-
vates polymerase X4, while aptamer X3 activates polymerase
X2. The system is:

ẋ1 = κ1x2 − δ1x1 − γ2x4x1

ẋ2 = −β1x2 + γ1(xtot2 − x2)x3

ẋ3 = κ2x4 − δ2x3 − γ1(xtot2 − x2)x3

ẋ4 = β2(xtot4 − x4)− γ2x4x1

After a state transformation, the system Jacobian is
−γ1(xtot2 − x̄2)− δ2 γ1x̄3 κ2 0

γ1(xtot2 − x̄2) −β1 − γ1x̄3 0 0

0 0 −β2 − γ2x̄1 γ2x̄4

0 −κ1 γ2x̄1 −γ2x̄4 − δ1




The overall system, formed by the negative feedback
interconnection of two unconditionally stable aggregate
monotone subsystems, is thus a strong candidate oscillator.
It is indeed the simplified model of a biochemical circuit
that, if driven to instability, exhibits sustained oscillations,
as shown by simulation results in [14] for some choice of
the parameters.

Example 2: (Bistable circuit) A simplified model is pro-
posed in [15] for an artificial bistable network where tran-
scriptional regulation is achieved with RNA aptamers. Here
aptamers X1 and X3 are transcribed by polymerases X2

and X4 respectively; X1 represses polymerase X4 and X3
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represses polymerase X2. The system is:

ẋ1 = κ1x2 − δx1 − γx4x1

ẋ2 = βxtot2 − βx2 − γx2x3

ẋ3 = κ2x4 − δx3 − γx2x3

ẋ4 = βxtot4 − βx4 − γx4x1

A state transformation yields the Jacobian
−β − γx̄3 γx̄2 0 0

γx̄3 −γx̄2 − δ κ2 0

0 0 −β − γx̄1 γx̄4

κ1 0 γx̄1 −γx̄4 − δ




The overall system, formed by the positive feedback inter-
connection of two unconditionally stable monotone subsys-
tems, is thus a strong candidate bistable network. Actual
bistability of the system is shown by simulation results
in [15] for some choice of the parameters.

VI. CONCLUDING DISCUSSION

Many biochemical systems are monotone [10], or can be
regarded as the interconnection of monotone subsystems: no-
table examples are the Cds–Wee1 network [11], the MAPK
pathway [10], the Goldbeter oscillator [13] in Drosophila.
Since monotonicity is a property that can be verified without
the exact knowledge of functional expressions and system
parameters, criteria relying on monotonicity can be consid-
ered robust with respect to modeling choices and parametric
uncertainty. The structural nature of monotonicity makes it
an ideal property to embed by design in artificial biochemical
systems [24], [25], [26], [14], [15].

In this paper, we have provided structural necessary and
sufficient conditions for oscillatory and multistationary be-
haviors in aggregate monotone systems. Our criteria, which
are an extension of the results in [1], are based on the
exclusive presence of negative or positive cycles in the
system aggregate graph. No strong conclusions can be drawn
for aggregate graphs where positive and negative cycles are
concurrently present. Note that the proposed classification
is valid only for systems in which interactions between un-
conditionally stable monotone components are independent,
since in our proof we assume to be able to independently
scale them. Although this requirement is generally satisfied,
interactions between bimolecular systems may be coupled by
retroactivity or competition for common cellular resources.

Our characterization applies to any system presenting
a sign–definite Jacobian, but is particularly useful for the
analysis of biochemical reaction networks: criteria to predict
the possible dynamic behavior of a system independent of
parameter values are especially important for biomolecular
systems, due to their intrinsic uncertainty and variability. For
significant biochemical examples, our classification provides
a parameter–free method to assess or rule out potential dy-
namic behaviors. For this reason, this approach can be useful
to design artificial biomolecular circuits that are structurally
well suited to achieve the desired dynamics.
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