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Abstract: Due to the intrinsic uncertainty and variability affecting biochemical reaction networks, it is
fundamental to assess their structural stability, i.e., to establish if all the networks having a given structure
are stable independent of specific parameter values. For basic motifs in biochemical networks, we show
that stability cannot be structurally proved by quadratic Lyapunov functions. However, structural stability
of these motifs can be shown resorting to piecewise–linear Lyapunov functions, based on the results
by Blanchini and Giordano (2014), who provide a theoretical framework and efficient numerical methods
to evaluate structural stability of biochemical reaction networks with monotone reaction rates.
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1. INTRODUCTION

In biochemical networks, parameters are often uncertain, time
varying and unpredictably dependent on the environment. Nev-
ertheless, characteristic behaviours have been shown to depend
on particular structures, often called motifs (Alon (2007)), in-
dependent of parameter values. Only a structural investigation
can explain how and why some biochemical systems keep on
performing their specific task in completely different condi-
tions (Alon (2006)). A structural property is satisfied by all
the systems belonging to a class characterised by a structure,
regardless of parameter values (Nikolov et al. (2007); Blan-
chini and Franco (2011)). This concept is deeply related with
robustness (Chesi and Hung (2008); El-Samad et al. (2006)),
a less demanding requirement: usually a property is robust if
preserved under large parameter variations.
Structural analysis of chemical reaction networks (Horn and
Jackson (1972); Horn (1973a,b)) has provided fundamental re-
sults: the zero–deficiency theorem and the one–deficiency the-
orem by Feinberg (1987, 1995a,b), for instance, have inspired
a lot of subsequent work (Craciun and Feinberg (2005, 2006);
Chaves (2006); Anderson (2008); Hangos (2010)). The zero–
deficiency theorem assures that a chemical network admits a
single positive stable equilibrium if a structural sufficient con-
dition holds (which can be easily tested based on the network
structure); in the proof, the system entropy is adopted as a
(logarithmic) Lyapunov function. A fundamental assumption
in the zero–deficiency theorem requires the reaction kinetics
to be of the mass action type (hence polynomial, although a
possible generalization is proposed by Sontag (2001)). Yet there
are cases in which this assumption is not satisfied, and still we
would like to successfully carry out a structural investigation.
Blanchini and Giordano (2014) investigate structural stabil-
ity of a wide category of (bio)chemical reaction networks for
which only monotonicity of reaction rates is required. The anal-
ysis is carried out by absorbing the nonlinear system equations
in a linear differential inclusion and then looking for a polyhe-
dral Lyapunov function (actually a norm, including the 1–norm

as a special case, see Blanchini and Miani (2008)), based on the
network structure only. The existence of a polyhedral Lyapunov
function is shown to be equivalent to the stability of a proper
discrete difference inclusion, based on which a numerical re-
cursive procedure is devised to test stability and generate the
unit ball of the polyhedral norm. The results by Maeda et al.
(1978) – who proved the stability of compartmental systems,
special monotone systems (Smith (2008)) which can be seen
as chemical networks exclusively formed by monomolecular
reactions, by adopting the 1–norm as a Lyapunov function –
follow as a special case. If a polyhedral (or piecewise–linear)
Lyapunov function is derived, network stability is structurally
certified: under some general monotonicity assumptions, stabil-
ity is assured for all reaction rate functions.
Piecewise–linear Lyapunov functions have been adopted for
analysing specific chemical reaction networks by Blanchini and
Franco (2011). Piecewise linear in rate Lyapunov functions for
the analysis of chemical reaction networks have been recently
considered by Al-Radhawi and Angeli (2013, 2014, 2015).
In this paper, we consider biochemical networks under general
monotonicity assumptions on reaction rate functions – and we
wonder if the same structural (parameter–free) stability results
can be achieved resorting to different candidate Lyapunov func-
tions, the quadratic ones, which have a successful history for the
robustness analysis of uncertain systems (Zhou et al. (1996);
Sanchez Pena and Sznaier (1998); Boyd et al. (2004)).
It is well known that, for proving robust stability of linear dif-
ferential inclusions, quadratic Lyapunov functions are conser-
vative, while polyhedral Lyapunov functions are not (Brayton
and Tong (1980); Molchanov and Pyatnitskiy (1986, 1989)).
Consistently with previous work, we show that structural sta-
bility of some fundamental motifs, formed by simple chemical
reaction networks, cannot be proved by means of quadratic Lya-
punov functions. Conversely, polyhedral Lyapunov functions
allow us to prove that these motifs are structurally stable. The
proposed results substantiate the effectiveness of a polyhedral–
Lyapunov–function approach to the structural stability analysis
of biochemical networks.
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Lyapunov–function approach to the structural stability analysis
of biochemical networks.

Proceedings of the 8th IFAC Symposium on Robust Control Design
July 8-11, 2015. Bratislava, Slovak Republic

Copyright © 2015 IFAC 278

Structural Stability of Biochemical Networks:
Quadratic vs. Polyhedral Lyapunov Functions

Franco Blanchini ∗ Giulia Giordano ∗

∗ Dipartimento di Matematica e Informatica, Università degli Studi di Udine,
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Fig. 1. Graph representation of biochemical reaction motifs and networks.

2. BIOCHEMICAL MODELS AND FRAMEWORK

In this section we summarise some of the results proposed
by Blanchini and Giordano (2014).

Consider models in the class
ẋ = Sg(x)+g0, (1)

where the state x ∈ Rn
+ represents the concentration of bio-

chemical species (chemical species are denoted by uppercase
letters, their concentrations by the corresponding lowercase let-
ter), g(x)∈Rm is a vector of functions representing the reaction
rates and g0 ≥ 0 is a vector of constant influxes; S ∈Zn×m is the
stoichiometric matrix of the system, whose entries si j represent
the net amount of the ith species produced or consumed by the
jth reaction, excluding the contribution of constant influxes.

For isolated systems (g0 = 0), the solution is forced to stay in
the stoichiometric compatibility class C (x(0)):

x(t) ∈ C (x(0)) = {x(0)+Ra[S]}∩Rn
+.

Assumption 1. All the component functions of vector g(x) are
nonnegative and continuously differentiable. All their partial
derivatives are positive in the positive orthant.
Assumption 2. Each component function of vector g(x) is zero
if and only if at least one of its arguments is zero. Moreover, if
si j < 0, then g j must depend on xi.

The latter assumption assures that for xi = 0 we have ẋi ≥ 0 and
is required in order for (1) to be a positive system.

Biochemical networks can be visually represented by graphs, as
shown in Fig. 1: nodes are associated with biochemical species,
while arcs represent interactions among them.

Assumption 3. Functions g j(·) in which each argument de-
pends on a single variable xi are admitted if si j∂g j/∂xi < 0 for
each argument. Functions having as an argument the sum or dif-
ference of more variables, such as g j(±xi ± xk), are admitted if
they appear in a single equation, ẋk = . . . , and sk j∂g j/∂xk < 0.

Hence the diagonal entries of the Jacobian of Sg(x) are negative
and no autocatalytic reactions are considered.
Example 4. The chemical reaction network shown in Fig. 1 (e)
is associated with the ODE system

ȧ = a0 −gab(a,b)

ḃ = b0 −gab(a,b)
ċ = gab(a,b)−gc(c)

(2)

corresponding to the general model (1) with x = [a b c]�,

S =

[ −1 0
−1 0

1 −1

]
, g(x) =

[
gab(a,b)

gc(c)

]
, g0 =

[ a0
b0
0

]
.

For a structural analysis, consider the ε–modified system
ẋ(t) =−εx(t)+Sg(x(t))+g0, (3)

with ε > 0 arbitrarily small (infinitesimal degradation) and the
following definitions.
Definition 5. System (1) is

• structurally stable if any equilibrium point x̄ of the system
with g0 = 0 is Lyapunov stable: there exists a continuous,
strictly increasing and unbounded function ω : R+ →R+,
with ω(0) = 0, such that ‖x(t)− x̄‖ ≤ ω(‖x(0)− x̄‖);

• structurally convergent if it is structurally stable and, for
any ε > 0 and g0 ≥ 0, the perturbed system (3) has
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globally bounded solutions and admits an equilibrium
which is globally asymptotically stable in Rn

+.

Since the considered parameters values are sign definite but
unknown (hence can be arbitrarily close to zero), a natural
degradation of each species, represented by ε > 0 in (3), is in
general needed to assess asymptotic stability. The degradation
term is necessary for the system to tolerate persistent positive
inputs and its introduction does not lead to a “false” stability
certificate for systems which are unstable.

To absorb the system in a differential inclusion, assume that an
equilibrium x̄ = x̄(ε) exists ∀ε > 0. 1 Denote z .

= x− x̄. Since
0 = S g(x̄)− ε x̄+g0, we have

ż(t) = S [g(z(t)+ x̄)−g(x̄)]− εz(t). (4)
Proposition 6. System (4) can be equivalently written as

ż(t) = BD(z(t))C z(t)− εz(t), (5)
where matrix B ∈ Zn×q is formed by a selection of columns of
S, C ∈ Zq×n and D(z) is a diagonal matrix with nonnegative
diagonal entries. q is the number of possible partial derivatives
with respect to all arguments (q ≥ n, q ≥ m).
Example 7. For the reaction network (2) in Example 4, let
α = ∂gab(a,b)/∂a, β = ∂gab(a,b)/∂b and γ = ∂gc(c)/∂c be
positive parameters. Then D = diag(α,β ,γ),

B =

[ −1 −1 0
−1 −1 0

1 1 −1

]
, C =

[ 1 0 0
0 1 0
0 0 1

]
.

Denoting by bi the ith column of B and by c�i the ith row of C,
the following results hold.
Theorem 8. Consider the linear differential inclusion

ẋ(t) =

[
−εI +

q

∑
i=1

bidi(t)c�i

]
x(t), x(0) = x0 (6)

where di(t) are arbitrary nonnegative scalar piecewise continu-
ous functions. Then:

• stability of (6) for ε = 0 implies structural stability of any
equilibrium of (1);

• asymptotic stability of (6) for ε > 0 implies structural
convergence of (3).

Corollary 9. If the differential inclusion (6) is asymptotically
stable, then (3) admits an equilibrium.
Proposition 10. Stability of (6) for ε = 0 is equivalent to its
asymptotic stability for ε > 0.

To analyse stability of the differential inclusion, a proper
discrete–time difference inclusion can be considered such that:

• if all the possible discrete transitions starting from the
vertices of the diamond (the unit ball of ‖x‖1) re-
main bounded, then the continuous–time solution remains
trapped inside the convex hull of the reached points (stable
case);

• if the difference inclusion diverges, so does the differen-
tial inclusion, since there exist continuous–time solutions
arbitrarily close to the discrete–time solutions.

For any state value x ∈ Rn, the set of all derivatives is included
in a cone of directions ±bi:

1 If the system passes the computational test proposed by Blanchini and
Giordano (2014), such an equilibrium indeed exists.

ẋ ∈ {v : v =
q

∑
i=1

vidi, di ≥ 0}, where vi = bic�i x.

Hence, if a common convex Lyapunov function exists for all
systems

ẋ = bic�i x, i = 1, . . . ,q, (7)
then the same function is a Lyapunov function for the differen-
tial inclusion (and the nonlinear system). Reasoning along these
lines, the following results can be achieved.
Theorem 11. Robust stability of the differential inclusion

ẋ(t) = BD(t)Cx(t), di(t)≥ 0 (8)
is equivalent to robust stability of the difference inclusion

yk+1 = Φ(k)yk, Φ(k) ∈ F , (9)
where F is the family of matrices

F =

{
Φi

.
=

[
I − bic�i

c�i bi

]
, i = 1, . . .q

}
. (10)

Corollary 12. (9) is marginally stable and has a weak polyhe-
dral Lyapunov function if and only if (8) is marginally stable
and has the same weak Lyapunov function.
Theorem 13. If (9) admits a weak Lyapunov function, then

• (6) is stable for ε = 0;
• (6) is asymptotically stable for ε > 0;
• (1) is structurally convergent.

Corollary 12 and Theorem 13 refer to generic weak Lyapunov
functions, which may be polyhedral, as well as quadratic.

2.1 Polyhedral Lyapunov functions

Given a full row rank matrix X ∈ Rn×s, the function
VX (x) = inf{‖w‖1 : Xw = x, w ∈ Rs}.

is a polyhedral norm. The vertices of its unit ball are the
columns of matrix X and their opposites. Given a full column
rank matrix F ∈ Rs×n, we have the dual function

V F(x) = ‖Fx‖∞.

In this case, denoting by Fk the kth row of F , the facets of the
unit ball are on the planes Fkx = 1 or Fkx =−1.

VX (x) (V F(x)) is positive definite; it is a weak Lyapunov func-
tion if it is non–increasing along all possible system trajectories.

The efficient algorithm proposed by Blanchini and Giordano
(2014) can be used (and will be used in the following sections)
to compute the unit ball of the polyhedral Lyapunov function
for a biochemical system under our assumptions, thus proving
its structural stability (or at least its structural convergence)
according to Theorem 13.

2.2 Quadratic Lyapunov functions

The positive definite function

VP(x) = x�Px, P � 0,
is a weak quadratic Lyapunov function for the system with state
matrix A if A�P+PA =−Q for a proper Q � 0, or equivalently
if A�P+PA � 0.

3. STRUCTURAL STABILITY OF BASIC MOTIFS

We consider the fundamental chemical reaction motifs whose
graphs are in Fig. 1 (a)–(e) and we structurally inquire their
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stability by means of both quadratic and polyhedral Lyapunov
functions. We achieve the following main result.
Proposition 14. The chemical reaction networks in Fig. 1(a)–
(e) are structurally stable, but they are not structurally quadrat-
ically stable. Their structural stability can be proved resorting
to polyhedral Lyapunov functions.

Proof. Monomolecular reactions chain: Fig. 1 (a). The net-
work is associated with the ODE system

ȧ = a0 −ga(a)

ḃ = ga(a)−gb(b)
having Jacobian matrix

Am =

[
−α 0

α −β

]
=

[
−1 0

1 −1

]

︸ ︷︷ ︸
=B

[
α 0
0 β

]

︸ ︷︷ ︸
=D

[
1 0
0 1

]

︸ ︷︷ ︸
=C

,

where α = ∂ga(a)/∂a > 0 and β = ∂gb(b)/∂b > 0.

The system would be structurally quadratically stable if there
existed a symmetric positive definite matrix

P =

[
a b
b c

]
� 0

such that

A�
mP+PAm =

[
−2α(a−b) −α(b− c)−βb

−α(b− c)−βb −2βc

]
� 0

for any choice of α and β . Equivalently, we should have that
−2α(a−b)≤ 0 (which is true for any α , provided that a ≥ b)
and that the determinant is non–negative:

αβ (4ac−2bc−2b2)−α2(b− c)2 −β 2b2 ≥ 0.
Yet this latter condition is not satisfied if we take either α or β
(not both) small enough.
Structural stability of the motif, however, is proved by the
existence of polyhedral Lyapunov functions with

X =

[
1 0
0 1

]
, F =

[
1 0 1
0 1 1

]�
.

Reversible monomolecular reaction: Fig. 1 (b). The network
corresponds to the system

ȧ = gb(b)−ga(a)

ḃ = ga(a)−gb(b)
and the Jacobian matrix

Arm =

[
−α β

α −β

]
=

[
−1 1

1 −1

]

︸ ︷︷ ︸
=B

[
α 0
0 β

]

︸ ︷︷ ︸
=D

[
1 0
0 1

]

︸ ︷︷ ︸
=C

,

where α = ∂ga(a)/∂a > 0 and β = ∂gb(b)/∂b > 0.

To prove structural quadratic stability, we should look for

P =

[
a b
b a

]
� 0

(note that P11 = P22 because, since α and β can be swapped, if

P =

[
k b
b h

]
is a suitable choice then P =

[
h b
b k

]
is suitable

as well, therefore also P =

[
(h+ k)/2 b

b (h+ k)/2

]
is suitable,

and a .
= h+k

2 ), such that A�
rmP+PArm =

[
−2α(a−b) α(a−b)+β (a−b)

α(a−b)+β (a−b) −2β (a−b)

]
� 0

for any choice of α and β . Although −2α(a−b)≤ 0 for a ≥ b,
the condition −(α − β )2(a− b)2 ≥ 0 is not structurally satis-
fied. However, structural stability is proved since the network
admits the same polyhedral Lyapunov functions as in case (a).

Bimolecular reaction: Fig. 1 (c). The system
ȧ = a0 −gab(a,b)

ḃ = b0 −gab(a,b)
has Jacobian matrix

Abim =

[
−α −β
−α −β

]
=

[
−1 −1
−1 −1

]

︸ ︷︷ ︸
=B

[
α 0
0 β

]

︸ ︷︷ ︸
=D

[
1 0
0 1

]

︸ ︷︷ ︸
=C

,

where α = ∂gab(a,b)/∂a > 0 and β = ∂gab(a,b)/∂b > 0.

Since this system corresponds to that in Fig. 1 (b) after a change
of variables (for instance, â =−a), it cannot admit a structural
quadratic Lyapunov function as well.
It instead admits polyhedral Lyapunov functions with the same
X as in case (b) and

F =

[
1 0 −1
0 1 1

]�
.

Bimolecular reversible reaction: Fig. 1 (d). The system
ȧ = gc(c)−gab(a,b)

ḃ = gc(c)−gab(a,b)
ċ = gab(a,b)−gc(c)

has Jacobian matrix

Abr =

[ −α −β γ
−α −β γ

α β − γ

]

=

[ −1 −1 1
−1 −1 1

1 1 −1

]

︸ ︷︷ ︸
=B

[ α 0 0
0 β 0
0 0 γ

]

︸ ︷︷ ︸
=D

[ 1 0 0
0 1 0
0 0 1

]

︸ ︷︷ ︸
=C

,

where α = ∂gab(a,b)/∂a > 0, β = ∂gab(a,b)/∂b > 0 and
γ = ∂gc(c)/∂c > 0.

After a state space transformation, we rewrite the Jacobian as

Âbr =

[ −α − (β + γ) γ
−α − (β + γ) γ

0 0 0

]
=

[
Â11 Â12
0 0

]
.

Then we seek

P =

[
P11 P12
P21 P22

]
� 0 (11)

such that

Â�
brP+PÂbr =

[
Â�

11P11 +P11Â11 Â�
11P12 +P11Â12

Â�
12P21 +P21Â11 Â�

12P12 +P21Â12

]
� 0

for any choice of the parameters. Yet this can be true only if
Â�

11P11 +P11Â11 � 0 for P11 � 0 and arbitrary α,β ,γ , which is
clearly impossible in view of the considerations for the case (c).
However, the system is structurally stable because it admits the
polyhedral Lyapunov function with

X =

[ 1 0 0 0 −1 1
0 1 0 −1 0 1
0 0 1 1 1 0

]
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and the dual with

F =

[ 1 0 0 −1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

]�
.

The unit ball of VX (x) is shown in Fig. 2 (a).

Bimolecular–monomolecular reaction chain: Fig. 1 (e). The
network corresponds to system (2), with Jacobian matrix

Abm =

[ −α −β 0
−α −β 0

α β − γ

]

=

[ −1 −1 0
−1 −1 0

1 1 −1

]

︸ ︷︷ ︸
=B

[ α 0 0
0 β 0
0 0 γ

]

︸ ︷︷ ︸
=D

[ 1 0 0
0 1 0
0 0 1

]

︸ ︷︷ ︸
=C

,

where α = ∂gab(a,b)/∂a > 0, β = ∂gab(a,b)/∂b > 0 and
γ = ∂gc(c)/∂c > 0.

After a state space transformation, we rewrite the Jacobian as

Âbm =

[ −α −β 0
−α −β 0

0 γ − γ

]
=

[
Â11 0
Â21 Â22

]
.

Then we look for a positive definite matrix P of the form (11)
such that Â�

bmP+PÂbm =
[

Â�
11P11 +P11Â11 + Â�

21P21 +P12Â21 Â�
11P12 + Â�

21P22 +P12Â22

P21Â11 +P22Â21 + Â�
22P21 Â�

22P22 +P22Â22

]
� 0

for any choice of the parameters. This requires the (1,1)–
block to be structurally negative semidefinite. But, if we choose
γ small enough, the dominant term is Â�

11P11 +P11Â11, which
cannot be structurally negative semidefinite due to the previous
considerations for the case (c).

Yet the system is structurally stable: it admits the polyhedral
Lyapunov function with the same F as before and the dual with

X =

[ 1 0 0 0 −1
0 1 0 −1 0
0 0 1 1 1

]
,

whose unit ball is shown in Fig. 2 (b). �

Remark 15. One could argue that the counterexamples are
valid for the differential inclusion, not for the original system.
Yet we remind that we are seeking structural (parameter–free)
results. Consider the linearised original system in (4). Its Jaco-
bian, at the equilibrium z̄ = 0, has the same form of the state
matrix of system (5):

J = BDC− εI.
Therefore, if there is no quadratic Lyapunov function for the
differential inclusion, there cannot be a local quadratic Lya-
punov function independent of parameter values.

4. EXAMPLES

We consider now more complex chemical reaction networks,
which include some of the basic motifs in Fig. 1 (a)–(e). For
these networks, according to Proposition 14, there is no hope
to prove structural stability based on quadratic Lyapunov func-
tions. However, the existence of a polyhedral Lyapunov func-
tion assures their structural stability, independent of parameters.
Example 16. The reaction network whose graph is represented
in Fig. 1 (f) corresponds to the system

ȧ = a0 −ga(a)−gac(a,c)

ḃ = ga(a)−gb(b)
ċ = ga(a)−gac(a,c)

with Jacobian matrix

J3 =

[−(α +δ ) 0 −γ
α −β 0

α −δ 0 −γ

]

=

[−1 0 −1 −1
1 −1 0 0
1 0 −1 −1

]

︸ ︷︷ ︸
=B




α 0 0 0
0 β 0 0
0 0 γ 0
0 0 0 δ




︸ ︷︷ ︸
=D




1 0 0
0 1 0
0 0 1
1 0 0




︸ ︷︷ ︸
=C

,

where α = ∂ga/∂a, β = ∂gb/∂b, γ = ∂gac/∂c and δ =
∂gac/∂a are positive parameters.

The network includes the motif in Fig. 1 (c), since A+C
g(a,c)−−−⇀

/0, and it is not structurally quadratically stable. Yet it is struc-
turally stable: it admits the polyhedral Lyapunov function with

F =

[ 0 1 1 −1 1 0
1 1 0 0 1 1
0 0 1 1 −1 −1

]�
,

and the dual with

X =

[ 1 0 0 0 −1
0 1 0 1 1
0 0 1 1 0

]
,

having the unit ball shown in Fig. 2 (c).
Example 17. The reaction network in Fig. 1 (g) has equations

ȧ = a0 −ga(a)

ḃ = ga(a)−gbc(b,c)
ċ = c0 −gbc(b,c)−gc(c)

ḋ = gbc(b,c)−gd(d)
ė = gd(d)−ge(e)+gc(c)

and Jacobian matrix

J5 =




−α 0 0 0 0
α −β −γ 0 0
0 −β −(γ +ψ) 0 0
0 β γ −δ 0
0 0 ψ δ −ϕ




=




−1 0 0 0 0 0
1 −1 0 −1 0 0
0 −1 −1 −1 0 0
0 1 0 1 −1 0
0 0 1 0 1 −1




︸ ︷︷ ︸
=B




α 0 0 0 0 0
0 β 0 0 0 0
0 0 γ 0 0 0
0 0 0 δ 0 0
0 0 0 0 ψ 0
0 0 0 0 0 ϕ




︸ ︷︷ ︸
=D




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




︸ ︷︷ ︸
=C

,

where α = ∂ga/∂a, β = ∂gbc/∂a, γ = ∂gbc/∂c, δ = ∂gd/∂d,
ψ = ∂gc/∂c, ϕ = ∂ge/∂e are positive parameters.

Since the network includes the motifs in Fig. 1 (a), (c), (e),
its structural stability cannot be proved by quadratic Lyapunov
functions; however, it admits polyhedral Lyapunov functions
(whose unit balls have 22 vertices in the primal case, 68 facets
in the dual case) and is thus structurally stable.

5. CONCLUDING DISCUSSION

To compare the effectiveness of polyhedral and quadratic Lya-
punov functions for proving structural stability of chemical
reaction networks, under the assumption of monotonicity of
reaction rates, we have considered a basic set of motifs. We have
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and the dual with

F =

[ 1 0 0 −1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

]�
.

The unit ball of VX (x) is shown in Fig. 2 (a).

Bimolecular–monomolecular reaction chain: Fig. 1 (e). The
network corresponds to system (2), with Jacobian matrix

Abm =

[ −α −β 0
−α −β 0

α β − γ

]

=

[ −1 −1 0
−1 −1 0

1 1 −1

]

︸ ︷︷ ︸
=B

[ α 0 0
0 β 0
0 0 γ

]

︸ ︷︷ ︸
=D

[ 1 0 0
0 1 0
0 0 1

]

︸ ︷︷ ︸
=C

,

where α = ∂gab(a,b)/∂a > 0, β = ∂gab(a,b)/∂b > 0 and
γ = ∂gc(c)/∂c > 0.

After a state space transformation, we rewrite the Jacobian as

Âbm =

[ −α −β 0
−α −β 0

0 γ − γ

]
=

[
Â11 0
Â21 Â22

]
.

Then we look for a positive definite matrix P of the form (11)
such that Â�

bmP+PÂbm =
[

Â�
11P11 +P11Â11 + Â�

21P21 +P12Â21 Â�
11P12 + Â�

21P22 +P12Â22

P21Â11 +P22Â21 + Â�
22P21 Â�

22P22 +P22Â22

]
� 0

for any choice of the parameters. This requires the (1,1)–
block to be structurally negative semidefinite. But, if we choose
γ small enough, the dominant term is Â�

11P11 +P11Â11, which
cannot be structurally negative semidefinite due to the previous
considerations for the case (c).

Yet the system is structurally stable: it admits the polyhedral
Lyapunov function with the same F as before and the dual with

X =

[ 1 0 0 0 −1
0 1 0 −1 0
0 0 1 1 1

]
,

whose unit ball is shown in Fig. 2 (b). �

Remark 15. One could argue that the counterexamples are
valid for the differential inclusion, not for the original system.
Yet we remind that we are seeking structural (parameter–free)
results. Consider the linearised original system in (4). Its Jaco-
bian, at the equilibrium z̄ = 0, has the same form of the state
matrix of system (5):

J = BDC− εI.
Therefore, if there is no quadratic Lyapunov function for the
differential inclusion, there cannot be a local quadratic Lya-
punov function independent of parameter values.

4. EXAMPLES

We consider now more complex chemical reaction networks,
which include some of the basic motifs in Fig. 1 (a)–(e). For
these networks, according to Proposition 14, there is no hope
to prove structural stability based on quadratic Lyapunov func-
tions. However, the existence of a polyhedral Lyapunov func-
tion assures their structural stability, independent of parameters.
Example 16. The reaction network whose graph is represented
in Fig. 1 (f) corresponds to the system

ȧ = a0 −ga(a)−gac(a,c)

ḃ = ga(a)−gb(b)
ċ = ga(a)−gac(a,c)

with Jacobian matrix

J3 =

[−(α +δ ) 0 −γ
α −β 0

α −δ 0 −γ

]

=

[−1 0 −1 −1
1 −1 0 0
1 0 −1 −1

]

︸ ︷︷ ︸
=B




α 0 0 0
0 β 0 0
0 0 γ 0
0 0 0 δ




︸ ︷︷ ︸
=D




1 0 0
0 1 0
0 0 1
1 0 0




︸ ︷︷ ︸
=C

,

where α = ∂ga/∂a, β = ∂gb/∂b, γ = ∂gac/∂c and δ =
∂gac/∂a are positive parameters.

The network includes the motif in Fig. 1 (c), since A+C
g(a,c)−−−⇀

/0, and it is not structurally quadratically stable. Yet it is struc-
turally stable: it admits the polyhedral Lyapunov function with

F =

[ 0 1 1 −1 1 0
1 1 0 0 1 1
0 0 1 1 −1 −1

]�
,

and the dual with

X =

[ 1 0 0 0 −1
0 1 0 1 1
0 0 1 1 0

]
,

having the unit ball shown in Fig. 2 (c).
Example 17. The reaction network in Fig. 1 (g) has equations

ȧ = a0 −ga(a)

ḃ = ga(a)−gbc(b,c)
ċ = c0 −gbc(b,c)−gc(c)

ḋ = gbc(b,c)−gd(d)
ė = gd(d)−ge(e)+gc(c)

and Jacobian matrix

J5 =




−α 0 0 0 0
α −β −γ 0 0
0 −β −(γ +ψ) 0 0
0 β γ −δ 0
0 0 ψ δ −ϕ




=




−1 0 0 0 0 0
1 −1 0 −1 0 0
0 −1 −1 −1 0 0
0 1 0 1 −1 0
0 0 1 0 1 −1




︸ ︷︷ ︸
=B




α 0 0 0 0 0
0 β 0 0 0 0
0 0 γ 0 0 0
0 0 0 δ 0 0
0 0 0 0 ψ 0
0 0 0 0 0 ϕ




︸ ︷︷ ︸
=D




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




︸ ︷︷ ︸
=C

,

where α = ∂ga/∂a, β = ∂gbc/∂a, γ = ∂gbc/∂c, δ = ∂gd/∂d,
ψ = ∂gc/∂c, ϕ = ∂ge/∂e are positive parameters.

Since the network includes the motifs in Fig. 1 (a), (c), (e),
its structural stability cannot be proved by quadratic Lyapunov
functions; however, it admits polyhedral Lyapunov functions
(whose unit balls have 22 vertices in the primal case, 68 facets
in the dual case) and is thus structurally stable.

5. CONCLUDING DISCUSSION

To compare the effectiveness of polyhedral and quadratic Lya-
punov functions for proving structural stability of chemical
reaction networks, under the assumption of monotonicity of
reaction rates, we have considered a basic set of motifs. We have
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Fig. 2. Unit ball of the polyhedral Lyapunov functions associated with some of the analysed biochemical networks.

shown that none of them is structurally quadratically stable,
although each of them is structurally stable, as can be proved
resorting to polyhedral Lyapunov functions and applying the
algorithm proposed by Blanchini and Giordano (2014).
The networks we have analysed are simple but fundamental, be-
ing actual building blocks for huge and complex chemical reac-
tion networks. The outcome of our analysis reveals that, for any
network which contains one of these building blocks (practi-
cally, any reaction network), stability cannot be structurally in-
vestigated by means of quadratic Lyapunov functions. We also
conjecture that, when considering more general reaction rates
than mass action kinetics, the same negative result holds for
logarithmic Lyapunov functions, since a logarithmic candidate
Lyapunov function can be approximated as a quadratic function
in a neighborhood of the equilibrium. Polyhedral Lyapunov
functions are still the best theoretic and computational tool for
the structural stability analysis of biochemical networks.
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