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Abstract

Since pathogen spillovers and pandemics
are unfortunately recurrent in the history
of humanity, mathematical approaches to
describe and mitigate the spread of infectious
diseases have a long tradition. Recently, the
COVID-19 pandemic has challenged the
scientific community to model, predict, and
contain the contagion, especially given the
current lack of pharmaceutical interventions
such as vaccines and anti-viral drugs targeting
the new SARS-CoV-2 coronavirus. The
control community has quickly responded
by providing new dynamic models of the
epidemic outbreak, including both mean-field
compartmental models and network-based
models, as well as combinations of control
approaches and intervention strategies to end
the epidemic and recover a new normality.
This entry deals with systems-and-control
contributions to model epidemics and design

effective intervention strategies, with a special
focus on the COVID-19 outbreak in Italy.
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Introduction

The history of humanity is unfortunately
marked by the recurrent appearance of new
lethal pathogens and the subsequent spread of
devastating epidemics. To better understand
and face this threat, epidemiology studies the
patterns of disease evolution in a population.
The mathematical foundations of contemporary
epidemiology have deep roots in the early
twentieth century, but simpler models for disease
transmission had been conceived even earlier;
see Anderson and May (1991), Bailey (1975),
Brauer and Castillo-Chavez (2012), Breda et al.
(2012), Diekmann and Heesterbeek (2000),
Hethcote (2000), House (2012), Keeling and
Eames (2005), Kiss et al. (2017), Nowzari et al.
(2016), Pastor-Satorras et al. (2015) and the
references therein for a thorough survey.

Predictive mathematical models for epidemics
are crucial not only to understand and forecast
the evolution of epidemic phenomena but
also to plan effective control strategies to
contain the contagion. The epidemic models
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studied in the literature may be divided into
two main classes: mean-field compartmental
models (Anderson and May 1991; Bailey 1975;
Brauer and Castillo-Chavez 2012; Diekmann and
Heesterbeek 2000; Hethcote 2000) and network-
based models (House 2012; Keeling and Eames
2005; Kiss et al. 2017; Nowzari et al. 2016;
Pastor-Satorras et al. 2015). We discuss both
in Section “Mathematical Models and Control
Approaches for Epidemics”.

Although mathematical models for epidemics
have been studied for a long time, the interest
of the control community in the topic awakened
only recently (Nowzari et al. 2016), with the
exception of the pioneering work in Lee and
Leitmann (1994) and Leitmann (1998) on control
strategies for endemic infectious diseases. A
boost of activity was stirred by the COVID-19
pandemic: in China, in the late 2019, a novel
strand of Coronavirus denoted SARS-CoV-2
started to spread, causing a severe and potentially
lethal respiratory syndrome labeled as COVID-
19. Its high infectiousness enabled the virus to
soon spread globally, causing a pandemic: on
8 July 2020, the World Health Organization
reported 11,669,259 cases and 539,906 deaths
worldwide. Given the lack of a vaccine and
of anti-viral drugs targeting SARS-CoV-2,
sound modeling and prediction approaches were
crucial to guide the implementation of non-
pharmaceutical interventions: quarantine, social
distancing and lockdown, testing and contact
tracing, isolation, and use of personal protective
equipment (Gatto et al. 2020; Giordano et al.
2020; Hellewell et al. 2020; Kucharski et al.
2020). The availability of open data resources
(Alamo et al. 2020) favored the emergence
of data-driven approaches and models, and

the control community explored approaches to
“flatten” (Stewart et al. 2020) or even “crush” the
epidemic curve.

Italy was among the first non-Asian countries
being severely affected by COVID-19. On 24
April 2020, the Italian Chapter of the IEEE
Control Systems Society organized an online-
workshop on Modeling and Control of the
COVID-19 outbreak: How dynamical models
can help control the epidemic to collect the
most recent contributions of systems-and-
control researchers to the problem of modeling
and predicting the dynamics of contagion
evolution. Models and approaches tailored to
the specificities of the COVID-19 outbreak
were proposed as concrete tools to support
policymakers in deciding the best intervention
strategies.

This entry illustrates classical mathematical
models of epidemic spreading and recently pro-
posed models tailored to the COVID-19 outbreak.
It discusses the insight these models provide
to help contain the contagion and manage the
epidemic phases and surveys novel approaches
for the control of epidemics with systems-and-
control methodologies.

Mathematical Models and Control
Approaches for Epidemics

Compartmental Models
Classical models for epidemic outbreaks are
compartmental models; of these, the simplest
model capturing the qualitative evolution of
an epidemic phenomenon is the SIR model
visualized in Fig. 1, introduced in the seminal
work (Kermack and McKendrick 1927) to
describe the human-to-human transmission of

Modeling of Pandemics and Intervention Strategies: The COVID-19 Outbreak, Fig. 1 Graph representation of
the mean-field compartmental epidemiological SIR model: Susceptible-Infected-Recovered
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infectious diseases. Compartmental models are
mean-field models, where all the parameters
represent averaged values over the whole
population and do not aim at describing the
specific situation of a single individual. They
rely on some simplifying assumptions:

• births, deaths (other than those due to the dis-
ease), and any other demographic processes
either are absent or compensate for each other
during the considered period of time, so that
the total population is constant;

• the population can be partitioned into
mutually exclusive classes, or compartments,
depending on the stage of the disease: for
the SIR model, each individual is either
susceptible to infection (S), infected and
infectious (I), and recovered and permanently
immune (R); alternatively, R may stand
for removed, namely, either recovered and
immune or dead;

• the population is large and it is randomly
and homogeneously mixed, so that infections
occur according to the mass-action law, i.e.,
depending on the product between the amount
of susceptible individuals and of infectious
individuals, with rate constant ˇ;

• recovery (or recovery, death, and removal)
from the infection occurs with rate constant � .

To understand how the transitions between the
various stages are modeled, we can adopt an
analogy and represent individuals belonging to
different compartments as particles or chemical
species, whose concentrations evolve according
to given interaction rules or reactions, each asso-
ciated with a possible transition among compart-
ments. Each “reaction” corresponds to a given
“stoichiometric” law and a “reaction” rate. Then,
the SIR model visualized in Fig. 1 is described by

the equivalent chemical reactions S C I
ˇ
�* 2I

and I
�
�* R, which correspond to the positive

dynamical system

ds

dt
.t/ D �ˇs.t/i.t/ (1)

di

dt
.t/ D ˇs.t/i.t/ � �i.t/ (2)

dr

dt
.t/ D �i.t/ (3)

where s.t/, i.t/, and r.t/ denote, respectively, the
fraction of susceptible, infected, and recovered
individuals (which can be seen as the normal-
ized concentrations of the equivalent chemical
species S, I, and R) and s.t/ C i.t/ C r.t/ �

1 (the total population is constant, which can
be seen as a conservation law). Equation (3)
may be neglected, since r does not influence the
other variables and its evolution can be obtained
by difference: r.t/ D 1 � s.t/ � i.t/. The
involved parameters are the transmission coeffi-
cient ˇ, depending both on intrinsic features of
the pathogen/infection and on the intensity of
interactions among individuals, and the recov-
ery/removal coefficient � , depending on the aver-
age time before an individual recovers or dies
from the infection; the average duration of infec-
tiousness is 1=� . The system is positive: start-
ing from nonnegative initial conditions, all the
system variables preserve nonnegative values for
their whole evolution.

We consider initial conditions with s.0/ � 1,
while 0 < i.0/� 1 and r.0/ D 0.

In the initial stages of the epidemic, the SIR
model yields an exponential growth, or decay. In
fact, since initially s � 1,

di

dt
.t/ � .ˇ � �/i.t/; (4)

which has the explicit exponential solution

i.t/ � i.0/e.ˇ��/t : (5)

Let us define the basic reproduction number R0,
corresponding to the average number of sec-
ondary infections caused by a primary case intro-
duced in a fully susceptible population (Ander-
son and May 1991; Brauer and Castillo-Chavez
2012), as

R0
:
D
ˇ

�
: (6)
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Then, Eq. (5) represents an exponential growth
if ˇ � � > 0, namely, R0 D

ˇ
�
> 1, and

an exponential decay if ˇ � � < 0, namely,
R0 D

ˇ
�
< 1.

When the complete dynamics in Eqs. (1)–(3)
are considered without approximations, including
later stages of infection, the value of R0 still has
a key role in determining the epidemic outcome.
Denote by Ns, Ni , and Nr the asymptotic equilibrium
value. Starting from an initial condition with
i.0/ > 0, it must be Ns < s.0/, since s.t/ is mono-
tonically decreasing in view of Eq. (1), while Nr >
r.0/, since r.t/ is monotonically increasing in
view of Eq. (3). IfR0s.0/ < 1 (henceR0s.t/ < 1
for all t � 0, being s.t/ decreasing), the fraction
of infected population decreases, because di

dt
<

0, as can be seen from (2), until i.t/ reaches zero;
then there is no outbreak and infections sponta-
neously decay. Conversely, if R0s.0/ > 1, the
fraction of infected population is initially increas-
ing, because di

dt
> 0. However, since s.t/ is

decreasing, R0s.t/ decreases too: it reaches from
above the threshold 1 and then goes below. There-
fore, the fraction of infected population reaches a
peak, at the time t� such that R0s.t�/ D 1, and
eventually decreases to zero (because, for t > t�,
R0s.t/ < 1).

Any equilibrium of the system is such that
there are no infected individuals, Ni D 0: the
generic equilibrium has the form .Ns; 0; Nr/, with
Ns C Nr D 1. To ensure stability, the equilibrium
value of s must be such that R0 Ns < 1.

If we consider the sum of Eqs. (1) and (2), we
obtain

ds

dt
.t/C

di

dt
.t/ D ��i.t/: (7)

Integration of Eq. (7) yields

Z t

0

i.�/d� D
1

�
Œs.0/� s.t/C i.0/� i.t/�: (8)

Also, integrating Eq. (1) divided by s gives

log
�s.0/
s.t/

�
D ˇ

Z t

0

i.�/d� (9)

and substituting Eq. (8) into Eq. (9) gives

log
�s.0/
s.t/

�
D

ˇ

�„ƒ‚…
R0

Œs.0/ � s.t/C i.0/ � i.t/�:

(10)
Rearranging Eq. (10) computed at time t D t�,
where t� is defined above, allows us to compute
the peak value imax of i , which is achieved for
s� D s.t�/ D 1

R0
:

imax D i.0/Cs.0/�
1

R0
Œ1Clog.R0s.0//�: (11)

If we start from an initial condition with r.0/ D
0, hence s.0/ C i.0/ D 1, Eq. (10) allows us to
compute the equilibrium value of the susceptible
population as the unique positive root of the
equation

log
�s.0/
Ns

�
D R0Œ1 � Ns�; (12)

known as final size relation. The quantity 1� Ns D
Nr , called attack rate by the epidemiologists, cor-
responds to the fraction of the population having
experienced the disease during the epidemic.

Several extensions of the SIR model were
proposed, taking into account additional infec-
tion stages: for instance, the SEIR (Susceptible,
Exposed, Infectious, Recovered) model, shown in
Fig. 2, considers a latency stage when the infected
person is not yet infectious.

The SEIR model is described by the equivalent

chemical reactions S C I
ˇ
�* E C I , E

�
�* I ,

I
�
�* R, corresponding to the positive dynamical

system

ds

dt
.t/ D �ˇs.t/i.t/ (13)

de

dt
.t/ D ˇs.t/i.t/ � �e.t/ (14)

di

dt
.t/ D �e.t/ � �i.t/ (15)

dr

dt
.t/ D �i.t/ (16)

where s.t/, e.t/, i.t/, and r.t/ denote, respec-
tively, the fraction of susceptible, exposed,
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Modeling of Pandemics and Intervention Strategies: The COVID-19 Outbreak, Fig. 2 Graph representation of
the mean-field compartmental epidemiological SEIR model: Susceptible-Exposed-Infectious-Recovered

infectious, and recovered individuals and s.t/ C
e.t/ C i.t/ C r.t/ � 1. In this case, all
possible equilibria have the form .Ns; 0; 0; Nr/ with
Ns C Nr D 1.

More complex models were proposed to
better describe the specific features of a given
disease; for instance, the SEQIJR model put
forth in Gumel et al. (2004) is tailored to SARS.
The reader is referred to Anderson and May
(1991), Bailey (1975), Brauer and Castillo-
Chavez (2012), Diekmann and Heesterbeek
(2000), and Hethcote (2000) for further details
on extended compartmental models for epidemic
spreading and their analysis.

Network-Based Models
Network-based models embed compartmental
models into a graph-theoretic framework: the
interacting population is represented by a graph
where the nodes are associated with individuals,
whose state corresponds to one of the stages
in compartmental models (e.g., susceptible,
infected, recovered, and immune), and the links
among them are associated with human-to-
human interactions that can potentially lead to
contagion. The transmission rate is no longer
an averaged value for a well-mixed population,
but is tailored to each specific node, depending
on its connectivity degree and on the state
of its neighboring nodes. Both stochastic and
deterministic population models, and both
stochastic and deterministic network models, can
be adopted. The models can then describe how
the total number of nodes at each of the infection
stages evolves over time, depending on the
initial conditions and the network topology, by
monitoring the fractions of nodes in each stage at
each time instant (in a deterministic framework),
or the probability that a node belongs to a

given stage (in a stochastic framework, based
on the evaluation of expectations and moment
closures). Network epidemics can also be seen as
a percolation phenomenon (House 2012; Pastor-
Satorras et al. 2015).

Network-based models also include agent-
based models, typically spatially structured,
which consider the discrete nature of individuals
and their mobility and interaction patterns
in a stochastic framework. These models
are extremely complex and detailed, since
they rely on the construction of a synthetic
population reproducing each individual and
her/his neighborhood and movements; hence,
efficient data-driven computational approaches
are needed.

In meta-population models, each node of the
network corresponds not to a single individual in
the population, but to a group of multiple indi-
viduals. We can also consider networked models
where each node is associated with a compart-
mental dynamical system, describing local epi-
demic spreading, and each link represents mobil-
ity between local communities, which spreads the
epidemic to larger geographic areas (Mei et al.
2017; Paré et al. 2018; Ye et al. 2020).

For more information on epidemics on net-
works, the reader is referred to House (2012),
Keeling and Eames (2005), Kiss et al. (2017),
Nowzari et al. (2016), and Pastor-Satorras et al.
(2015).

Control Approaches
Several approaches were considered to mitigate
the effects of an epidemic outbreak. In a com-
partmental SIR model, clearly the epidemics can
be suppressed by increasing the recovery rate
� (thanks to improved treatment for infected
individuals) and decreasing the transmission rate
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ˇ (which can be achieved by raising awareness,
use of personal protective equipment, social dis-
tancing, quarantining and isolating infected indi-
viduals, or even travel limitations and lockdown),
so that R0 D ˇ=� becomes as small as possible,
at least smaller than 1 to make the epidemic
phenomenon decay.

In network-based epidemic models, with
the constraint of a limited budget, one may be
interested in optimally investing fixed resources
to reduce at best the spreading of the disease, so
as to minimize the quantity �max.B � � /, where
�max denotes the dominant eigenvalue, B is the
matrix of infection rates ˇij among nodes, and
� is the diagonal matrix of recovery rates �i for
the individual nodes. Two possible strategies can
be devised for spectral control and optimization:
in order to reduce �max, either network nodes or
network links can be removed. This corresponds
to isolation/quarantine for some individuals
(node removal) and to social distancing (link
removal).

Optimal control approaches were proposed,
relying on Pontryagin’s maximum principle, to
minimize the cost of the epidemics, which com-
bines the cost of infection and the cost of treat-
ment or vaccination (Bloem et al. 2009; Forster
and Gilligan 2007; Hansen and Day 2011; Mor-
ton and Wickwire 1974), so as to design an opti-
mal treatment plan, or vaccination plan. Robust
control approaches were also proposed to control
the spreading of infectious diseases, seen as an
uncertain dynamical system (Lee and Leitmann
1994; Leitmann 1998). Given the complexity of
the problem, numerous heuristic feedback control
approaches were put forth as well. The reader
is referred to Nowzari et al. (2016) for a com-
prehensive survey of the control of spreading
processes.

Modeling and Control of the
COVID-19 Outbreak

Several models of the COVID-19 pandemic
started to appear in the early 2020. Stochastic
transmission models were studied in Hellewell
et al. (2020) and Kucharski et al. (2020) to

analyze disease transmission and its control by
isolation of cases. Also generalized compart-
mental models were considered: Lin (2020)
extends a SEIR model considering perceived
contagion risk and cumulative number of cases;
Anastassopoulou et al. (2020) analyzes and
forecasts the epidemic evolution in China
based on a discrete-time SIR model explicitly
accounting for dead individuals; and Wu et al.
(2020) considers a meta-population SIR model,
partitioning the population into age groups, to
estimate the clinical severity of COVID-19 from
transmission dynamics.

The compartmental SIDARTHE (Susceptible-
Infected-Diagnosed-Ailing-Recognized-Threatened-
Healed-Extinct; see Fig. 3) model is proposed
in Giordano et al. (2020) to understand and
predict the COVID-19 epidemic evolution,
distinguishing between infected with different
severity of illness and between detected and
undetected cases of infection. The model
highlights the parameters associated with the two
main non-pharmaceutical interventions: social
distancing and lockdown (which reduce the
contagion parameters) and testing and contact
tracing (which increase the diagnosis parameters,
so that more infection cases are isolated).
Different scenarios are explored to assess the
effect of various interventions in the Italian case,
and the results support the combination of social
distancing with testing and contact tracing so as
to rapidly end the epidemic.

A modified SIR model including both recov-
ered and deceased, and taking into account that
only a portion of infected individuals can be
detected, is proposed in Calafiore et al. (2020).
The model predicts the evolution of the contagion
in Italy, and in each of its regions, so as to assess
the effectiveness of containment and lockdown
measures.

An extended SIR model that distinguishes
between asymptomatic and symptomatic infected,
as well as actual and confirmed cases, is used in
Russo et al. (2020) to identify the estimated day
zero of the COVID-19 outbreak in Lombardy
(Italy).

A compartmental model that highlights the
fraction of asymptomatic infectious individuals,
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Modeling of Pandemics and Intervention Strate-
gies: The COVID-19 Outbreak, Fig. 3 Graph repre-
sentation of the mean-field compartmental epidemiolog-

ical SIDARTHE (Susceptible-Infected-Diagnosed-Ailing-
Recognised-Threatened-Healed-Extinct) model. (Repro-
duced from Giordano et al. 2020)

considers the COVID-19 spread within and
among regions in Italy, and assesses the impact
of the adopted interventions is proposed in Di
Giamberardino et al. (2020).

A feedback SIR model, with nonlinear trans-
mission rates (Capasso and Serio 1978), is con-
sidered in Franco (2020) to study infection-based
social distancing and its advantages (the infec-
tion peak is reduced, even in the presence of
information delays) and disadvantages (extended
duration of the epidemic).

The control-oriented SEIR model developed
in Casella (2020) stresses the effect of delays and
compares the outcomes of different containment
policies, in China and in Lazio (Italy). It is shown
that mitigation strategies (letting the epidemic run
in a controlled way, typically aiming for herd
immunity) are likely to fail because they aim at
controlling fast unstable dynamics affected by
time delays and uncertainties, while suppression
strategies can be successful if they are prompt and
drastic enough.

Fast multi-shot intermittent lockdown inter-
vals with regular period are proposed in Bin et al.
(2020) as an exit strategy from total lockdown

to avoid second waves of infection. The sug-
gested switching control strategy is open-loop
and robust to delays and uncertainties in measure-
ments, and the parameters of the mitigation strat-
egy are tuned by a slow and robust outer super-
visory feedback loop; the proposed approach is
successfully tested on compartmental epidemic
models ranging from the SIR to the SIDARTHE
model (Giordano et al. 2020).

A robust and optimal control strategy for
the COVID-19 outbreak is proposed in Köhler
et al. (2020) based on model predictive control
approaches that dynamically adapt social
distancing measures, using the SIDARTHE
model (Giordano et al. 2020).

An extended SIR model with specific com-
partments for socially distanced susceptible and
infected (either asymptomatic or symptomatic)
individuals is introduced in Gevertz et al. (2020).
The analysis of time-varying social distancing
strategies reveals that they are effective only if
enacted quickly enough, and there is a critical
intervention delay after which they have little
effect; moreover, periodic relaxation strategies
can be effective but are extremely fragile to small
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errors in timing or parameters, while gradual
relaxation substantially improves the epidemic
situation, but the rate of relaxation needs to be
carefully chosen to prevent a second outbreak.

Economists modeled the epidemic resorting
to a SIR model that incorporates the optimizing
behavior of rational agents, incentives influenc-
ing the transitions, and externalities representing
restrictive government interventions (Garibaldi
et al. 2020): agent-based rational decision-
making, leading to a decentralized epidemic
equilibrium, yields outcomes consistent with
the original model in Kermack and McKendrick
(1927).

The work in Gatto et al. (2020) analyzes the
local-global effect of containment measures by
studying a meta-population SEIR-like model that
interconnects the epidemics in different Italian
provinces to model the spatial spreading of the
outbreak; the resolution that models the disease
spread at the appropriate geographical scale
allows for both spatial and temporal design of
containment measures and makes it possible to
forecast the medical resources and infrastructures
needed. The same spatially explicit approach
is adopted in Bertuzzo et al. (2020) to suggest
appropriate relaxations of the containment
measures adopted in Italy, discussing possible
options such as tracing and testing, stop-and-go
lockdown enforcement, and delayed lockdown
relaxations.

A networked meta-population SIR model is
proposed in Della Rossa et al. (2020) to describe
the Italian epidemics by looking at the coun-
try as a network of regions, each with different
epidemic parameters; this reveals the different
regional effects of the adopted countermeasures,
as well as the important impact of regional het-
erogeneity on the outbreak evolution, and sug-
gests that differentiated (but coordinated) feed-
back interventions enforced at a regional level
could be particularly beneficial.

A meta-population networked model is also
proposed in Zino et al. (2020), focused on the
role of activity and mobility in the COVID-19
outbreak in Italy: the model considers the reduc-
tion in activity (to study the effect of “stay at
home” policies) and mobility within and between

provinces (to study the effect of mobility limita-
tions, travel bans, and isolation of red zones), as
well as isolation (to study the effect of quarantine
and testing).

A different methodology is proposed in Fanti
et al. (2020), where a multi-criteria approach is
adopted for COVID-19 risk assessment in dif-
ferent lockdown scenarios, focusing on urban
district lockdowns in Puglia (Italy).

Several epidemic scenarios with different test-
ing policies and mobility restrictions are outlined
in Dahleh et al. (2020), where a network SIR-
like model is used to explore control approaches
based on testing, distancing, and quarantining.

The challenges of forecasting the spread of
COVID-19 using different models (exponential,
SIR, and Hawkes self-exciting branching pro-
cess) are discussed in Bertozzi et al. (2020).

Model accuracy and validation The proposed
models were tested against official epidemiolog-
ical data provided by local and national govern-
ments. In spite of the large noise and uncertainty
affecting the available data on the COVID-19
epidemic evolution, the proposed models, with
the parameters fit based on real data, proved to
be able to accurately reproduce and predict the
outbreak dynamics.

Summary and Future Directions

We provided an overview of dynamic models,
both compartmental and network-based, to
describe, predict, and control the evolution of
epidemics, with a special focus on the models
and intervention strategies tailored to the ongoing
COVID-19 pandemic.

Models proved to be a precious tool not only to
forecast epidemic phenomena but also to assess
and predict the effectiveness of different poli-
cies and countermeasures. Non-pharmaceutical
strategies are lockdown and social distancing
(including the widespread use of personal pro-
tective equipment), population-scale testing, and
contact tracing. Each strategy has some fragili-
ties. The impact of lockdown on the economy,
as well as on mental health (Torales et al. 2020),
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needs to be taken into account, while the effec-
tiveness and correct use of personal protective
equipment has been long debated. Testing strate-
gies need to cope with a limited availability of
tests; this problem is studied in Drakopoulos
and Randhawa (2020) using a resource allocation
approach, and it is shown that it may prove
efficient to release less accurate tests when the
epidemic is picking up and then more accurate
tests as they become available. Contact tracing
requires the adoption of individual tracking and
monitoring via apps that generate privacy con-
cerns.

In this complex situation, outlining different
scenarios and predictions based on the available
data and on solid mathematical modeling can
inform and guide policymakers deciding how to
handle the ongoing pandemic. Therefore, we are
convinced that the contribution of the systems-
and-control community will be valuable to con-
tain the COVID-19 outbreak, as well as future
pandemics. At the same time, the peculiar charac-
teristics of epidemiological models pose impor-
tant theoretical challenges that are pushing out
the frontiers of the methodological tools devel-
oped by our community.
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