
S

Structural Properties of
Biological and Ecological
Systems

Franco Blanchini1, Elisa Franco2, and Giulia
Giordano3
1University of Udine, Udine, Italy
2Mechanical and Aerospace Engineering,
University of California, Los Angeles, CA, USA
3Department of Industrial Engineering,
University of Trento, Povo, TN, Italy

Abstract

It is astounding how systems in nature can
survive under completely different environ-
mental conditions and in the presence of huge
parameter variations. Structural analysis aims
at explaining why this is possible by study-
ing properties of biological models that hold
regardless of parameter values. Here, we dis-
cuss selected system properties that have been
successfully investigated and explained just
looking at the structure, without the need of
quantitative information.
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Introduction

Mathematical models of biological and ecolog-
ical systems are important to help predict their
dynamics, as well as to formulate and support
hypotheses explaining their behavior (Alon 2006;
Edelstein-Keshet 2005). Deterministic models
are often employed when the species being
modeled are abundant and do not experience
stochastic fluctuations (cf. “Deterministic
Description of Biochemical Networks” by J.
Stelling and H.-M. Kalthenbach and “Stochastic
Description of Biochemical Networks” by J. P.
Hespanha and M. Khammash). Yet, deterministic
models still include uncertain parameters that
reflect the complexity of biological environ-
ments. Tools from control and dynamical systems
theory allow us to draw conclusions on their
properties and dynamic behaviors (Cosentino
and Bates 2011; Del Vecchio and Murray 2014;
Sontag 2005), also in the presence of uncertainty.

We call structural a property that is indepen-
dent of the particular parameter values (Blanchini
and Franco 2011; Shinar and Feinberg 2010). We
consider properties that can be mathematically
defined, such as the number of equilibria and
their stability, and we survey methods to struc-
turally assess these properties for biological and
ecological systems. The qualitative (parameter-
free) methods discussed in this entry complement
quantitative (numerical) approaches to establish
parametric robustness, described in “Robustness
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Analysis of Biological Models” by S. Waldherr
and F. Allgöwer.

Systems and Structures

We consider the ordinary differential equation
model:

Px.t/ D f .x.t/; �/; (1)

where x 2 R
n
C is a vector of species concentra-

tions or population densities, f W RnC � R
q
C !

R
n, and � 2 R

q
C is a vector of parameters. Both

f and � may be uncertain or even unknown and
time-varying. For instance, protein degradation
may be temperature dependent and may be mod-
eled with a linear or saturating function (Sontag
2005); population birth rates depend on variable
environmental factors and may be modeled as
exponential or logistic growth (May 1974). It
is often reasonable to assume that the compo-
nents of f (fi , i D 1; :::; n) are monotonic
functions of the xj s, i.e., each @fi .x; �/=@xj is
sign-definite (either always nonnegative or non-
positive) in the domain of interest; under this
assumption, the Jacobian matrix J of the system
is also sign-definite and can be mapped to a sign
matrix ˙ whose element .i; j / is the sign of
@fi .x; �/=@xj . Then, this sign matrix˙ captures
the structure of the system, which remains fixed
despite uncertainty or variability in the model.

For (bio)chemical reaction networks (Angeli
2009; Del Vecchio and Murray 2014), the model
in (1) can be rewritten as:

Px.t/ D Sg.x.t/; �/C g0.�/; (2)

where S 2 Z
n�m is a stoichiometry matrix of

signed integer entries, g W R
n
C � R

q
C ! R

m
C

is a vector of reaction rate functions, and g0 W
R
q
C ! R

n
C models external inputs. When the law

of mass action applies, the reaction rates can be
modeled as polynomial functions of the species
concentrations. More in general, the components
of g (gi , i D 1; :::; m) are nonnegative functions,
monotonic in the xj s; they depend on the system
state and usually include uncertain or fluctuating
parameters. Conversely, matrix S is constant,

independent of both states and parameters �, and
represents the interconnection structure of the
various reactions. System (1) is a particular case
of (2) with S D I (the identity), g D f , and
g0 D 0. The Jacobian of a system of the form
(2) is not sign-definite in general, but it always
admits the BDC decomposition (Blanchini and
Giordano 2014; Giordano et al. 2016):

J.x/ D BD.x/C; (3)

where D.x/ is a diagonal matrix carrying on
the diagonal the absolute value of the partial
derivatives of the vector function g, while B and
C are constant matrices that capture the system
structure.

Matrix ˙ , matrix S , and the matrix pair B , C
are examples of structures of a biological model,
which are not affected by parameter uncertainty
or variability. If a property holds due to the
particular structure of the model, regardless of the
value of the parameters �, then it is a structural
property.

Positivity and Boundedness

Any biological or ecological model should be a
positive system, because negative concentrations
or population densities are not physically accept-
able. If a biological model does not structurally
satisfy the positivity property, it is not well-posed
and should be revised.

System (1) is positive if assuming that x.0/ �
0 (componentwise), then x.t/ � 0 for all t � 0.

A system of the form

Pxi D fi .x1; x2; : : : xn; �/; i D 1; : : : ; n

is positive if and only if, for all k, when xk D 0,
its derivative Pxk is nonnegative:

fk.x1; x2; : : : ; xk�1; 0
„ƒ‚…

xk

; xkC1; : : : xn; �/�0:

If this condition holds for arbitrary values of
�, then the system is structurally positive. For a
linear autonomous system Px D Ax, positivity is
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equivalent to the fact that A is a Metzler matrix
(Aij � 0 for i ¤ j ).

Boundedness is another important property
often (although not always) structurally verified
by biological and ecological models. The concen-
trations of biomolecular species such as proteins
and mRNA may fluctuate, but remain bounded in
a living cell due to the presence of degradation
or secretion mechanisms; similarly, biological
species such as predators and preys may expe-
rience wide fluctuations, but they rarely exceed
thresholds related to the carrying capacity of their
ecosystem. In a model of the form (1), we say that
the solutions are bounded if, for any initial state
x.0/ � 0, there exists a positive constant � such
that 0 � xi .t/ � � for all t > 0 and for all i .

The concept of boundedness is directly related
to the existence of positively invariant sets; a
(bounded) subset P of the state space is said to
be invariant if x.0/ 2 P implies that x.t/ 2
P for all t > 0. Nagumo’s theorem provides
general necessary and sufficient conditions for
a set to be invariant, conditions that may be
verified structurally (Blanchini and Miani 2015).
The applicability of Nagumo’s theorem is very
general. Yet, for significant classes of systems,
structural boundedness can be assessed by direct
inspection. For example, consider the model:

Px D ��x C Sg.x/C g0;

where � is a positive diagonal matrix, modeling
the presence of self-degradation for all species,
and all the mutual interactions expressed by the
entries of g are assumed to be bounded. This
system has the form (2), with extended matrix
QS D Œ�� S� and extended vector Qg.x/ D
Œx g.x/�>. If g is a vector of bounded functions,
jŒSg.x/C g0�i j � �, then

Pxi D ŒSg.x/C g0�i � �ixi � � � �ixi :

Hence for all i , if xi � � D maxf�=�ig, we
have Pxi < 0, and the variable cannot grow above
� . The existence of such a bound is a structural
property, even though its value depends on the
parameters.

Boundedness of the solutions implies the exis-
tence of at least an equilibrium, a topic discussed
next.

Analysis of the Equilibria

The vector Nx.�/ � 0 is an equilibrium for (1) if

0 D f . Nx.�/; �/

or an equilibrium for (2) if 0 D Sg. Nx.�/; �/ C

g0.�/. The equilibria of nonlinear systems
like (1) and (2) are generally found via numerical
methods. Their stability can be analyzed via
standard methods such as Routh-Hurwitz
criterion or eigenvalue computation for the
linearized system. Unfortunately, in general this
requires the knowledge of the parameter values.

Tools from topological degree theory (Lloyd
1978) can help structurally establish existence,
uniqueness, and, in some cases, stability of equi-
libria. If the solution of (1) is bounded in a
convex set P that is positively invariant and has
a non-empty interior, then at least one equilib-
rium Nx exists. To analyze how many, assume
that no equilibrium is on the boundary of P
and that all equilibria Nxk are regular, namely,
detŒJ. Nxk/� ¤ 0 for all k. Then it must hold that
P

k signfdetŒ�J. Nxk/�g D 1; see Lloyd (1978).
Hence, there cannot be an even number of regular
equilibria in the interior of P. If there is an odd
number of equilibria, they must obey a rule: for
instance, if three regular equilibria exist, exactly
one must be such that detŒ�J. Nxk/� < 0, hence
it must be unstable (because detŒ�J. Nxk/� is the
constant term of the corresponding characteristic
polynomial and a characteristic polynomial with
all positive coefficients is necessary for stability).
If detŒ�J. Nx/� > 0 structurally, then the equilib-
rium must be unique.

Stability of the Equilibria
Analyzing stability of the equilibria is challeng-
ing if the parameter values are unknown. How-
ever, for important classes of systems, powerful
structural results are available. For instance, com-
partmental systems (Jacquez and Simon 1993),
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which can be seen as networks of unimolecular
chemical reactions Xi �* Xj , have a remarkable
intrinsic stability property (Maeda et al. 1978).

Interesting results come from the theory of
chemical reactions (Clarke 1980; Feinberg 1987).
For example, the structural local stability of an
equilibrium can be cast as a D-stability problem
(Clarke 1980); a matrix A is D-stable if A is
Hurwitz and AD is Hurwitz for any arbitrary
diagonal matrix D with positive elements. Also,
the famous deficiency zero theorem (Feinberg
1987) exploits the algebraic properties of matrix
S to provide structural results. The stoichiometric
matrix can be decomposed as S D NM , where
N captures the molarity of each species xi in
each complex (group of species appearing on
either side of the reactions whose rates are in vec-
tor g), whileM is the complex-reaction incidence
matrix; then, the deficiency of the network is the
structural quantity ı D dimfker.N /\range.M/g,
which depends only on S and not on the param-
eters �. If the network is weakly reversible (if
there is a directed path from complex i to com-
plex j , then a path from j to i is also present)
and all components of g are of the mass action
type (namely, for a chemical reaction p1X1 C
p2X2C : : : prXr �* q1Y1Cq2Y2C : : : qsYs , the
rate has the form gj D �jx

p1
1 x

p2
2 : : : x

pr
r ), the

deficiency zero theorem states that, if ı D 0, then
there exists within each positive stoichiometric
compatibility class (associated with the initial
conditions) a single equilibrium, which is locally
asymptotically stable. Remarkably, the theorem
is proven by showing that the system entropy is a
Lyapunov function.

Structural stability of biochemical networks
can be assessed via quadratic Lyapunov func-
tions (even parameter dependent) (Clarke 1980)
and, also for general reaction rates that are not
mass action, via non-quadratic Lyapunov func-
tions (Al-Radhawi and Angeli 2016; Blanchini
and Franco 2011; Blanchini and Giordano 2014).
Structural piecewise-linear Lyapunov functions
can be systematically built for a general system
(2) based on its BDC decomposition (Blanchini
and Giordano 2014).

Perturbation of the Equilibrium
A biological system can be subject to unknown
or uncertain inputs/perturbations, whose struc-
tural effect can be analyzed as follows. Suppose
that the system is at some (unknown) stable
steady-state Nx, corresponding to some nominal
(unknown) value N� of the parameters, and con-
sider a relevant system output y D Hx, where
H is a row vector. Assume that one of the param-
eters suddenly becomes N�j C u, with u positive
(without loss of generality) and not too large (not
to compromise stability). After a transient, the
system settles at a new equilibrium NxC´.1/ and
a new output Ny C v.1/. We have a structural
influence if the sign of the steady-state output
variation, v.1/, induced by the perturbation does
not depend on the parameters N� (Dambacher et al.
2002). Then,

signŒv.1/� 2 fC;�; 0; ‹g;

corresponding to the cases when the steady-
state output variation is always positive, always
negative, always zero, or indeterminate (i.e., it
depends on the parameters). For systems of the
form (2), structural influences can be assessed
based on the BDC decomposition (3). We can
investigate the structural steady-state influence
of a constant input variation u > 0 (which is
the parameter we are perturbing) on the output
variation v by analyzing the steady-state output
of the system:

ṔDBDC´CEu; v D H´; D positive diagonal;

where ´ D x � Nx. The structural input-output
influence of u on v can be assessed based on the
sign of

�.D/ D det

�

�BDC �E

H 0

�

D
v.1/

u
:

As shown in Giordano et al. (2016), function
�.D1;D2; : : : ;Dm/ is positive (negative) for all
Dk > 0 if and only if �.1; 1; : : : ; 1/ > 0 .<

0/ and �. OD1; OD2; : : : ; ODm/ � 0 (� 0) for all
possible choices of ODk 2 f0; 1g, while it is zero
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if and only if it is zero for all possible choices of
ODk 2 f0; 1g. It is undetermined otherwise.

When both E and H have a single nonzero
element, sayEj D 1,Hi D 1, we can investigate
the steady-state influence on variable i due to an
input affecting the equation of variable j . The
structural influence matrix collects all possible
.i; j / pairs (Giordano et al. 2016). A zero steady-
state influence is associated with perfect adap-
tation, a remarkable feature of some biological
systems that transiently respond to a persistent
input change and eventually return to the original
equilibrium (Alon 2006; Briat et al. 2016; Steuer
et al. 2011).

Structural Feedback Loops

We use simple examples to illustrate the effects
of structural feedback loops, and of their sign,
in systems of the form (1). Feedback, present
in most biological dynamical systems, enables
all homeostatic processes, as well as complex
dynamic behaviors such as bistability (or
multi-stability) and oscillations. As conjectured
in Thomas (1981), positive feedback is a
necessary condition for bistability, while negative
feedback is a necessary condition for oscillations.
These conjectures were proved in Gouze (1998)
and Snoussi (1998). We consider a two-node gene
network:

	a Pa D �aCfb.b/; 	b Pb D �bCfa.a/C u;

where a and b are concentrations of molecular
species and u is an external signal. Functions
fb.b/ and fa.a/ model the production rate of
species a and b and are monotonically increasing
Hill-type functions:

f .x/ D ˛
xp

ˇ C xp
C 
;

where ˛ is the maximal production rate, ˇ is
a threshold, p measures the sharpness of the
sigmoid, and 
 represents a basal production rate;
for x � ˇ, f .x/ saturates reaching the value

 C ˛. The factors 	a and 	b are introduced to

rescale time so that the degradation rate of a
and b is normalized (unitary). Species a and b
mutually activate, generating a positive-feedback
loop.

A negative-feedback loop could be generated
by modifying the effect of b on a (without loss of
generality):

	a Pa D �aCgb.b/; 	b Pb D �bCfa.a/C u;

where fa.a/ is defined as above (activator), while
gb.b/ is a decreasing Hill-type function (inhibi-
tion):

g.x/ D ı
1

� C xp
C �;

with similar definitions of the parameters. Both
systems are positive and evolve in bounded sets:
this may be verified as suggested in section “Pos-
itivity and Boundedness”. The feedback loops
generated by these systems are clearly identi-
fiable when inspecting the Jacobian matrices,
which are, respectively:

JP D

�

�1=	a f 0
b
.b/=	a

f 0a.a/	b �1=	b

�

;

JN D

�

�1=	a g0
b
.b/=	a

f 0a.a/=	b �1=	b

�

:

Due to the monotonicity of Hill functions,
since fa and fb are increasing while gb is
decreasing, the Jacobians can be mapped to the
sign matrices:

˙P D

�

� C

C �

�

; ˙N D

�

� �

C �

�

:

These matrices can be associated with the graphs
shown in Fig. 1A, B, whose nodes represent the
species and whose arcs represent the signed influ-
ence of each species on the other (pointed arrows
indicate positive influence; hammerhead arrows
indicate negative influence) corresponding to the
nonzero Jacobian entries. The feedback loops in
these systems are structural, i.e., they are present
for arbitrary choices of the parameters.

The sign matrix ˙P has only positive loops;
therefore, the corresponding system is a strong
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Structural Properties of Biological and Ecological
Systems, Fig. 1 Graph representation of a two-node
positive-feedback loop (A) and negative-feedback loop
(B) system; pointed arrows represent positive influences,
and hammerhead arrows represent negative influences.

Nullclines and equilibria for the positive-feedback loop
(C) and the negative-feedback loop (D) system. A
negative-feedback loop including at least three nodes, or
a time delay (E), is necessary to have oscillations

candidate multistationary system (Blanchini et al.
2014; Mincheva and Craciun 2008): if, by per-
turbing a parameter, we destabilize an equilib-
rium, then instability is generated by a dominant
real eigenvalue that becomes positive (any tran-
sition to instability is exponential). In fact, insta-
bility of an equilibrium for this system implies
det.�JP / < 0 in that equilibrium; however,
according to the degree theory arguments in sec-
tion “Analysis of the Equilibria”, this implies the
existence of (at least) other two equilibria with
det.�JP / > 0.

Conversely, matrix JN only has negative
loops, so the corresponding system is a strong
candidate oscillator (Blanchini et al. 2014;
Mincheva and Craciun 2008): if, by perturbing
a parameter, we destabilize an equilibrium,
then instability is generated by a pair of
dominant complex eigenvalues whose real part

becomes positive (any transition to instability
is oscillatory). Also, the system admits a single
equilibrium because det.�JN / > 0 structurally.
In this special (2�2) case, the unique equilibrium
is always asymptotically stable, as we will find
out soon.

Indeed, a strong candidate oscillator (multi-
stationary system) does not necessarily oscillate
(exhibit multiple equilibria); however, the onset
of instability (if any) is necessarily associated
with sustained oscillations (appearance of more
equilibria).

In addition to the above information about the
admissible dynamics, obtained through degree
theory arguments, the low order of the two con-
sidered systems enables a more direct and spe-
cific qualitative analysis of the equilibria and their
stability.
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The equilibrium conditions for the positive-
feedback system are:

�aC fb.b/ D 0; �b C fa.a/C u D 0:

Their solutions correspond to the intersections of
the two curves illustrated in Fig. 1C. Depending
on the value of u, we may have either one or
three intersections (we consider tangentiality as
two coincident solutions). For small u, there is a
single equilibrium (L) corresponding to low lev-
els of both variables. For large u, there is a single
equilibrium (H) corresponding to high levels of
both variables. For intermediate values of u, we
may have tree equilibria, and the intermediate
one (U) is unstable. This configuration yields a
bistable device that can act as a “switch”: from
the equilibrium U, if we increase u, we move
the system to the upper equilibrium H, while, if
we decrease u, we move the system to the lower
equilibrium L. The situation remains unchanged
if we restore u to the nominal bistable level. In
the negative-feedback system, similar reasonings
show the presence of a single equilibrium, as
shown in Fig. 1D, regardless of the parameters.

To investigate the stability of the equilibria, we
first find the characteristic polynomial associated
with JP :

˚P .�/ D �
2 C .1=	a C 1=	b/�

C .1 � f 0af
0
b/=.	a	b/:

It can be checked that:

(a) at the equilibria L and H, .1�f 0af
0
b
/=.	a	b/ >

0; hence, the roots of ˚P .�/ (the eigenvalues
of JP ) have negative real part, since
.1=	a C 1=	b/ > 0;

(b) at the equilibrium U, .1�f 0af
0
b
/=.	a	b/ < 0;

hence, there exists a positive real root.

Similarly, the characteristic polynomial of JN
is:

˚N .�/ D �
2 C .1=	a C 1=	b/�

C .1 � g0bf
0
a/=.	a	b/:

Since g0
b
f 0a < 0, all the coefficients of the

polynomial are positive; therefore, all the eigen-
values have negative real part, and the unique
equilibrium is asymptotically stable for any value
of the parameters.

We may be tempted to conclude that negative
feedback stabilizes the system; however, this is
not a generalizable conclusion. Let us modify this
model to include the additional species c:

	a Pa D �aC gc.c/;

	b Pb D �b C fa.a/;

	c Pc D �c C fb.b/C u:

The eigenvalues of the Jacobian associated with
this system are the roots of the equation

.	a�C 1/.	b�C 1/.	c�C 1/C � D 0;

where � D �f 0af
0
b
g0c > 0. These roots cannot

be real positive, consistent with the fact that we
have a negative loop only. Standard root locus
or Routh-Hurwitz analysis shows that, if � is
sufficiently large, two roots move to the right half
of the complex plane, so a necessary requirement
to have oscillations is that the loop includes at
least three first-order sub-systems in series or a
single “delay” element whose effect is compara-
ble to that of a longer chain (see Fig. 1E). Smaller
values of � are sufficient to destabilize the system
when the time constants 	i are similar, while
the most favorable situation to ensure stability
is when one of these constants, say 	1, is much
larger than the others (Blanchini et al. 2018b).

Aggregation Can Simplify the
Structural Analysis of Complex
Networks

The methods and examples we discussed so far
are easy to apply to small systems. Yet, compre-
hensive models of biological processes involve
many species, making it difficult to use analytical
methods. A route toward the simplification of
large systems is “aggregation.” Consider a system
of the form
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Px D f .x/C F u; y D Gx (4)

where, for simplicity, F and G are column and
row vectors, while u and y are scalars. A funda-
mental property that can be exploited is mono-
tonicity (see also “�Monotone Systems in Biol-
ogy” by D. Angeli). If system (4) is input-output
monotone (Angeli and Sontag 2003; Hirsch and
Smith 2005), it is order-preserving, i.e., given
two initial states, xa.0/ and xb.0/, such that
xa.0/ � xb.0/ componentwise, and two inputs
ua.t/ � ub.t/, the two corresponding solutions
xa.t/ and xb.t/ satisfy xa.t/ � xb.t/ (compo-
nentwise) and the outputs satisfy ya.t/ � yb.t/.
Input-output monotonicity is guaranteed if F and
G are positive vectors and the Jacobian J of
f .x/ is a Metzler matrix (namely, Jij � 0

for i ¤ j ). If we assume stability, the order-
preserving property of a monotone system makes
its behavior qualitatively comparable to that of a
first-order system; therefore, a high-order model
can be collapsed to a single node (see Blanchini
et al. (2018a) and the references therein). Aggre-
gation of several nodes associated with monotone
sub-systems allows us to drastically reduce the
complexity of a large network and then apply the
structural analysis tools described earlier to the
reduced system.

Discussion and Future Directions

Structural analysis reveals parameter-free prop-
erties of natural systems and explains how they
can keep performing their life-preserving func-
tion in the most different environmental con-
ditions. Many challenges related to structural
analysis are still open, such as the full charac-
terization of structurally stable chemical reac-
tion networks with arbitrary kinetics. Structural
perturbation analysis could go beyond constant
inputs to include, e.g., periodic input signals and
consider not only steady-state effects but also the
short-term system response.

Aggregating sub-systems that enjoy particular
properties and can be collapsed into a single node
enables the structural analysis of large-scale com-
plex systems through model simplification; to this

aim, properties of interest besides monotonicity
could be exploited, such as the positive-impulse-
response property (Blanchini et al. 2018a).

Structural analysis not only can establish that
a property holds for a given system even under
huge parametric uncertainties, but it can also
reveal that a property is necessarily ensured by
a certain structure. This allows us not only to
explain observed phenomena but also to falsify
models by comparing structural predictions to
experimental results. Finally, structural analy-
sis can be precious to design de novo artificial
biomolecular circuits (see � “Synthetic Biology”
by D. Del Vecchio and R. M. Murray) that are
guaranteed to exhibit the desired qualitative func-
tion, despite perturbations, in view of their struc-
ture.
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